An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy .
93-653: Chapuis-Dornier was a French manufacturer of proprietary engines for automobiles from 1904 to 1928 in Puteaux near Paris. Between 1919 and 1921 it displayed a prototype automobile, but it was never volume produced. Chapuis-Dornier engines were used by cyclecars such as: Between 1919 and 1921 Chapuis-Dornier displayed a prototype automobile at the Paris salons, equipped with a 3-litre, four cylinder engine, but this never resulted in volume production. Engine Available energy sources include potential energy (e.g. energy of
186-447: A fuel cell without side production of NO x , but this is an electrochemical engine not a heat engine. The word engine derives from Old French engin , from the Latin ingenium –the root of the word ingenious . Pre-industrial weapons of war, such as catapults , trebuchets and battering rams , were called siege engines , and knowledge of how to construct them
279-482: A chemical reaction, but are not heat engines. Examples include: An electric motor uses electrical energy to produce mechanical energy , usually through the interaction of magnetic fields and current-carrying conductors . The reverse process, producing electrical energy from mechanical energy, is accomplished by a generator or dynamo . Traction motors used on vehicles often perform both tasks. Electric motors can be run as generators and vice versa, although this
372-454: A cold cylinder, which are attached to reciprocating pistons 90° out of phase. The gas receives heat at the hot cylinder and expands, driving the piston that turns the crankshaft . After expanding and flowing through the recuperator, the gas rejects heat at the cold cylinder and the ensuing pressure drop leads to its compression by the other (displacement) piston, which forces it back to the hot cylinder. Non-thermal motors usually are powered by
465-516: A decline in basic activity level and information usage at 1000 ppm, when compared to 500 ppm. However a review of the literature found that a reliable subset of studies on the phenomenon of carbon dioxide induced cognitive impairment to only show a small effect on high-level decision making (for concentrations below 5000 ppm). Most of the studies were confounded by inadequate study designs, environmental comfort, uncertainties in exposure doses and differing cognitive assessments used. Similarly
558-544: A few limited-production battery-powered electric vehicles have appeared, they have not proved competitive owing to costs and operating characteristics. In the 21st century the diesel engine has been increasing in popularity with automobile owners. However, the gasoline engine and the Diesel engine, with their new emission-control devices to improve emission performance, have not yet been significantly challenged. A number of manufacturers have introduced hybrid engines, mainly involving
651-446: A fixed structure. However, in a Coulomb explosion imaging experiment, an instantaneous image of the molecular structure can be deduced. Such an experiment has been performed for carbon dioxide. The result of this experiment, and the conclusion of theoretical calculations based on an ab initio potential energy surface of the molecule, is that none of the molecules in the gas phase are ever exactly linear. This counter-intuitive result
744-412: A gas as in a Stirling engine , or steam as in a steam engine or an organic liquid such as n-pentane in an Organic Rankine cycle . The fluid can be of any composition; gas is by far the most common, although even single-phase liquid is sometimes used. In the case of the steam engine, the fluid changes phases between liquid and gas. Air-breathing combustion engines are combustion engines that use
837-611: A glass state similar to other members of its elemental family, like silicon dioxide (silica glass) and germanium dioxide . Unlike silica and germania glasses, however, carbonia glass is not stable at normal pressures and reverts to gas when pressure is released. At temperatures and pressures above the critical point, carbon dioxide behaves as a supercritical fluid known as supercritical carbon dioxide . Table of thermal and physical properties of saturated liquid carbon dioxide: Table of thermal and physical properties of carbon dioxide (CO 2 ) at atmospheric pressure: Carbon dioxide
930-459: A heat difference to induce high-amplitude sound waves. In general, thermoacoustic engines can be divided into standing wave and travelling wave devices. Stirling engines can be another form of non-combustive heat engine. They use the Stirling thermodynamic cycle to convert heat into work. An example is the alpha type Stirling engine, whereby gas flows, via a recuperator , between a hot cylinder and
1023-425: A heat engine). Chemical heat engines which employ air (ambient atmospheric gas) as a part of the fuel reaction are regarded as airbreathing engines. Chemical heat engines designed to operate outside of Earth's atmosphere (e.g. rockets , deeply submerged submarines ) need to carry an additional fuel component called the oxidizer (although there exist super-oxidizers suitable for use in rockets, such as fluorine ,
SECTION 10
#17331151752281116-460: A large scale required efficient electrical generators and electrical distribution networks. To reduce the electric energy consumption from motors and their associated carbon footprints , various regulatory authorities in many countries have introduced and implemented legislation to encourage the manufacture and use of higher efficiency electric motors. A well-designed motor can convert over 90% of its input energy into useful power for decades. When
1209-489: A majority of the models. Several three-cylinder, two-stroke-cycle models were built while most engines had straight or in-line cylinders. There were several V-type models and horizontally opposed two- and four-cylinder makes too. Overhead camshafts were frequently employed. The smaller engines were commonly air-cooled and located at the rear of the vehicle; compression ratios were relatively low. The 1970s and 1980s saw an increased interest in improved fuel economy , which caused
1302-491: A mature forest will produce as much CO 2 from respiration and decomposition of dead specimens (e.g., fallen branches) as is used in photosynthesis in growing plants. Contrary to the long-standing view that they are carbon neutral, mature forests can continue to accumulate carbon and remain valuable carbon sinks , helping to maintain the carbon balance of Earth's atmosphere. Additionally, and crucially to life on earth, photosynthesis by phytoplankton consumes dissolved CO 2 in
1395-438: A more powerful oxidant than oxygen itself); or the application needs to obtain heat by non-chemical means, such as by means of nuclear reactions . All chemically fueled heat engines emit exhaust gases. The cleanest engines emit water only. Strict zero-emissions generally means zero emissions other than water and water vapour. Only heat engines which combust pure hydrogen (fuel) and pure oxygen (oxidizer) achieve zero-emission by
1488-428: A much larger denominator and a much smaller value than the true K a1 . The bicarbonate ion is an amphoteric species that can act as an acid or as a base, depending on pH of the solution. At high pH, it dissociates significantly into the carbonate ion ( CO 2− 3 ): In organisms, carbonic acid production is catalysed by the enzyme known as carbonic anhydrase . In addition to altering its acidity,
1581-560: A nuclear power plant uses the heat from the nuclear reaction to produce steam and drive a steam engine, or a gas turbine in a rocket engine may be driven by decomposing hydrogen peroxide . Apart from the different energy source, the engine is often engineered much the same as an internal or external combustion engine. Another group of noncombustive engines includes thermoacoustic heat engines (sometimes called "TA engines") which are thermoacoustic devices that use high-amplitude sound waves to pump heat from one place to another, or conversely use
1674-559: A pressure just above atmospheric to drive the piston helped by a partial vacuum. Improving on the design of the 1712 Newcomen steam engine , the Watt steam engine, developed sporadically from 1763 to 1775, was a great step in the development of the steam engine. Offering a dramatic increase in fuel efficiency , James Watt 's design became synonymous with steam engines, due in no small part to his business partner, Matthew Boulton . It enabled rapid development of efficient semi-automated factories on
1767-556: A previously unimaginable scale in places where waterpower was not available. Later development led to steam locomotives and great expansion of railway transportation . As for internal combustion piston engines , these were tested in France in 1807 by de Rivaz and independently, by the Niépce brothers . They were theoretically advanced by Carnot in 1824. In 1853–57 Eugenio Barsanti and Felice Matteucci invented and patented an engine using
1860-608: A railroad electric locomotive , rather than an electric motor. Some motors are powered by potential or kinetic energy, for example some funiculars , gravity plane and ropeway conveyors have used the energy from moving water or rocks, and some clocks have a weight that falls under gravity. Other forms of potential energy include compressed gases (such as pneumatic motors ), springs ( clockwork motors ) and elastic bands . Historic military siege engines included large catapults , trebuchets , and (to some extent) battering rams were powered by potential energy. A pneumatic motor
1953-555: A return to smaller V-6 and four-cylinder layouts, with as many as five valves per cylinder to improve efficiency. The Bugatti Veyron 16.4 operates with a W16 engine , meaning that two V8 cylinder layouts are positioned next to each other to create the W ;shape sharing the same crankshaft. The largest internal combustion engine ever built is the Wärtsilä-Sulzer RTA96-C , a 14-cylinder, 2-stroke turbocharged diesel engine that
SECTION 20
#17331151752282046-724: A small gasoline engine coupled with an electric motor and with a large battery bank, these are starting to become a popular option because of their environment awareness. Exhaust gas from a spark ignition engine consists of the following: nitrogen 70 to 75% (by volume), water vapor 10 to 12%, carbon dioxide 10 to 13.5%, hydrogen 0.5 to 2%, oxygen 0.2 to 2%, carbon monoxide : 0.1 to 6%, unburnt hydrocarbons and partial oxidation products (e.g. aldehydes ) 0.5 to 1%, nitrogen monoxide 0.01 to 0.4%, nitrous oxide <100 ppm, sulfur dioxide 15 to 60 ppm, traces of other compounds such as fuel additives and lubricants, also halogen and metallic compounds, and other particles. Carbon monoxide
2139-453: A source of water power to provide additional power to watermills and water-raising machines. In the medieval Islamic world , such advances made it possible to mechanize many industrial tasks previously carried out by manual labour . In 1206, al-Jazari employed a crank - conrod system for two of his water-raising machines. A rudimentary steam turbine device was described by Taqi al-Din in 1551 and by Giovanni Branca in 1629. In
2232-429: A strict definition (in practice, one type of rocket engine). If hydrogen is burnt in combination with air (all airbreathing engines), a side reaction occurs between atmospheric oxygen and atmospheric nitrogen resulting in small emissions of NO x . If a hydrocarbon (such as alcohol or gasoline) is burnt as fuel, CO 2 , a greenhouse gas , is emitted. Hydrogen and oxygen from air can be reacted into water by
2325-416: A study on the effects of the concentration of CO 2 in motorcycle helmets has been criticized for having dubious methodology in not noting the self-reports of motorcycle riders and taking measurements using mannequins. Further when normal motorcycle conditions were achieved (such as highway or city speeds) or the visor was raised the concentration of CO 2 declined to safe levels (0.2%). Poor ventilation
2418-431: A torque include the familiar automobile gasoline and diesel engines, as well as turboshafts . Examples of engines which produce thrust include turbofans and rockets . When the internal combustion engine was invented, the term motor was initially used to distinguish it from the steam engine—which was in wide use at the time, powering locomotives and other vehicles such as steam rollers . The term motor derives from
2511-467: A typical single C–O bond, and shorter than most other C–O multiply bonded functional groups such as carbonyls . Since it is centrosymmetric, the molecule has no electric dipole moment . As a linear triatomic molecule, CO 2 has four vibrational modes as shown in the diagram. In the symmetric and the antisymmetric stretching modes, the atoms move along the axis of the molecule. There are two bending modes, which are degenerate , meaning that they have
2604-485: A waste product. In turn, oxygen is consumed and CO 2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration . CO 2 is released from organic materials when they decay or combust, such as in forest fires. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate ( HCO − 3 ), which causes ocean acidification as atmospheric CO 2 levels increase. Carbon dioxide
2697-550: A water-powered mill was built in Kaberia of the kingdom of Mithridates during the 1st century BC. Use of water wheels in mills spread throughout the Roman Empire over the next few centuries. Some were quite complex, with aqueducts , dams , and sluices to maintain and channel the water, along with systems of gears , or toothed-wheels made of wood and metal to regulate the speed of rotation. More sophisticated small devices, such as
2790-469: Is Emiliania huxleyi whose calcite scales have formed the basis of many sedimentary rocks such as limestone , where what was previously atmospheric carbon can remain fixed for geological timescales. Plants can grow as much as 50% faster in concentrations of 1,000 ppm CO 2 when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients. Elevated CO 2 levels cause increased growth reflected in
2883-419: Is 304.128(15) K (30.978(15) °C) at 7.3773(30) MPa (72.808(30) atm). Another form of solid carbon dioxide observed at high pressure is an amorphous glass-like solid. This form of glass, called carbonia , is produced by supercooling heated CO 2 at extreme pressures (40–48 GPa , or about 400,000 atmospheres) in a diamond anvil . This discovery confirmed the theory that carbon dioxide could exist in
Chapuis-Dornier - Misplaced Pages Continue
2976-566: Is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess CO 2 emissions to the atmosphere are absorbed by land and ocean carbon sinks . These sinks can become saturated and are volatile, as decay and wildfires result in the CO 2 being released back into the atmosphere. CO 2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal , petroleum and natural gas . Nearly all CO2 produced by humans goes into
3069-406: Is a chemical compound with the chemical formula CO 2 . It is made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature and at normally-encountered concentrations it is odorless. As the source of carbon in the carbon cycle , atmospheric CO 2 is the primary carbon source for life on Earth. In
3162-416: Is a machine that converts potential energy in the form of compressed air into mechanical work . Pneumatic motors generally convert the compressed air to mechanical work through either linear or rotary motion. Linear motion can come from either a diaphragm or piston actuator, while rotary motion is supplied by either a vane type air motor or piston air motor. Pneumatic motors have found widespread success in
3255-415: Is an end product of cellular respiration in organisms that obtain energy by breaking down sugars, fats and amino acids with oxygen as part of their metabolism . This includes all plants, algae and animals and aerobic fungi and bacteria. In vertebrates , the carbon dioxide travels in the blood from the body's tissues to the skin (e.g., amphibians ) or the gills (e.g., fish ), from where it dissolves in
3348-402: Is commercially used in its solid form, commonly known as " dry ice ". The solid-to-gas phase transition occurs at 194.7 Kelvin and is called sublimation . The symmetry of a carbon dioxide molecule is linear and centrosymmetric at its equilibrium geometry. The length of the carbon–oxygen bond in carbon dioxide is 116.3 pm , noticeably shorter than the roughly 140 pm length of
3441-534: Is highly toxic, and can cause carbon monoxide poisoning , so it is important to avoid any build-up of the gas in a confined space. Catalytic converters can reduce toxic emissions, but not eliminate them. Also, resulting greenhouse gas emissions, chiefly carbon dioxide , from the widespread use of engines in the modern industrialized world is contributing to the global greenhouse effect – a primary concern regarding global warming . Some engines convert heat from noncombustive processes into mechanical work, for example
3534-710: Is not always practical. Electric motors are ubiquitous, being found in applications as diverse as industrial fans, blowers and pumps, machine tools, household appliances, power tools , and disk drives . They may be powered by direct current (for example a battery powered portable device or motor vehicle), or by alternating current from a central electrical distribution grid. The smallest motors may be found in electric wristwatches. Medium-size motors of highly standardized dimensions and characteristics provide convenient mechanical power for industrial uses. The very largest electric motors are used for propulsion of large ships, and for such purposes as pipeline compressors, with ratings in
3627-632: Is one of the main causes of excessive CO 2 concentrations in closed spaces, leading to poor indoor air quality . Carbon dioxide differential above outdoor concentrations at steady state conditions (when the occupancy and ventilation system operation are sufficiently long that CO 2 concentration has stabilized) are sometimes used to estimate ventilation rates per person. Higher CO 2 concentrations are associated with occupant health, comfort and performance degradation. ASHRAE Standard 62.1–2007 ventilation rates may result in indoor concentrations up to 2,100 ppm above ambient outdoor conditions. Thus if
3720-410: Is ordinarily a difficult and slow reaction: The redox potential for this reaction near pH 7 is about −0.53 V versus the standard hydrogen electrode . The nickel-containing enzyme carbon monoxide dehydrogenase catalyses this process. Photoautotrophs (i.e. plants and cyanobacteria ) use the energy contained in sunlight to photosynthesize simple sugars from CO 2 absorbed from
3813-405: Is produced as a by-product. Ribulose-1,5-bisphosphate carboxylase oxygenase , commonly abbreviated to RuBisCO, is the enzyme involved in the first major step of carbon fixation, the production of two molecules of 3-phosphoglycerate from CO 2 and ribulose bisphosphate , as shown in the diagram at left. RuBisCO is thought to be the single most abundant protein on Earth. Phototrophs use
Chapuis-Dornier - Misplaced Pages Continue
3906-428: Is reached with a coolant temperature of around 110 °C (230 °F). Earlier automobile engine development produced a much larger range of engines than is in common use today. Engines have ranged from 1- to 16-cylinder designs with corresponding differences in overall size, weight, engine displacement , and cylinder bores . Four cylinders and power ratings from 19 to 120 hp (14 to 90 kW) were followed in
3999-472: Is the true first acid dissociation constant, defined as where the denominator includes only covalently bound H 2 CO 3 and does not include hydrated CO 2 (aq). The much smaller and often-quoted value near 4.16 × 10 (or pK a1 = 6.38) is an apparent value calculated on the (incorrect) assumption that all dissolved CO 2 is present as carbonic acid, so that Since most of the dissolved CO 2 remains as CO 2 molecules, K a1 (apparent) has
4092-545: Is the main cause of these increased CO 2 concentrations, which are the primary cause of climate change . Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian was regulated by organisms and geological features. Plants , algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis , which produces oxygen as
4185-534: Is then cooled, compressed and reused (closed cycle), or (less commonly) dumped, and cool fluid pulled in (open cycle air engine). " Combustion " refers to burning fuel with an oxidizer , to supply the heat. Engines of similar (or even identical) configuration and operation may use a supply of heat from other sources such as nuclear, solar, geothermal or exothermic reactions not involving combustion; but are not then strictly classed as external combustion engines, but as external thermal engines. The working fluid can be
4278-419: Is trivially due to the fact that the nuclear motion volume element vanishes for linear geometries. This is so for all molecules except diatomic molecules . Carbon dioxide is soluble in water, in which it reversibly forms H 2 CO 3 (carbonic acid), which is a weak acid , because its ionization in water is incomplete. The hydration equilibrium constant of carbonic acid is, at 25 °C: Hence,
4371-465: Is used in CO 2 scrubbers and has been suggested as a possible starting point for carbon capture and storage by amine gas treating . Only very strong nucleophiles, like the carbanions provided by Grignard reagents and organolithium compounds react with CO 2 to give carboxylates : In metal carbon dioxide complexes , CO 2 serves as a ligand , which can facilitate the conversion of CO 2 to other chemicals. The reduction of CO 2 to CO
4464-693: The Antikythera Mechanism used complex trains of gears and dials to act as calendars or predict astronomical events. In a poem by Ausonius in the 4th century AD, he mentions a stone-cutting saw powered by water. Hero of Alexandria is credited with many such wind and steam powered machines in the 1st century AD, including the Aeolipile and the vending machine , often these machines were associated with worship, such as animated altars and automated temple doors. Medieval Muslim engineers employed gears in mills and water-raising machines, and used dams as
4557-649: The Volkswagen Beetle , the Citroën 2CV , some Porsche and Subaru cars, many BMW and Honda motorcycles . Opposed four- and six-cylinder engines continue to be used as a power source in small, propeller-driven aircraft . The continued use of internal combustion engines in automobiles is partly due to the improvement of engine control systems, such as on-board computers providing engine management processes, and electronically controlled fuel injection. Forced air induction by turbocharging and supercharging have increased
4650-407: The club and oar (examples of the lever ), are prehistoric . More complex engines using human power , animal power , water power , wind power and even steam power date back to antiquity. Human power was focused by the use of simple engines, such as the capstan , windlass or treadmill , and with ropes , pulleys , and block and tackle arrangements; this power was transmitted usually with
4743-733: The combustion of a fuel causes rapid pressurisation of the gaseous combustion products in the combustion chamber, causing them to expand and drive a piston , which turns a crankshaft . Unlike internal combustion engines, a reaction engine (such as a jet engine ) produces thrust by expelling reaction mass , in accordance with Newton's third law of motion . Apart from heat engines, electric motors convert electrical energy into mechanical motion, pneumatic motors use compressed air , and clockwork motors in wind-up toys use elastic energy . In biological systems, molecular motors , like myosins in muscles , use chemical energy to create forces and ultimately motion (a chemical engine, but not
SECTION 50
#17331151752284836-399: The oxygen in atmospheric air to oxidise ('burn') the fuel, rather than carrying an oxidiser , as in a rocket . Theoretically, this should result in a better specific impulse than for rocket engines. A continuous stream of air flows through the air-breathing engine. This air is compressed, mixed with fuel, ignited and expelled as the exhaust gas . In reaction engines , the majority of
4929-429: The pistons or turbine blades or a nozzle , and by moving it over a distance, generates mechanical work . An external combustion engine (EC engine) is a heat engine where an internal working fluid is heated by combustion of an external source, through the engine wall or a heat exchanger . The fluid then, by expanding and acting on the mechanism of the engine produces motion and usable work . The fluid
5022-467: The 13th century, the solid rocket motor was invented in China. Driven by gunpowder, this simplest form of internal combustion engine was unable to deliver sustained power, but was useful for propelling weaponry at high speeds towards enemies in battle and for fireworks . After invention, this innovation spread throughout Europe. The Watt steam engine was the first type of steam engine to make use of steam at
5115-448: The Earth's gravitational field as exploited in hydroelectric power generation ), heat energy (e.g. geothermal ), chemical energy , electric potential and nuclear energy (from nuclear fission or nuclear fusion ). Many of these processes generate heat as an intermediate energy form; thus heat engines have special importance. Some natural processes, such as atmospheric convection cells convert environmental heat into motion (e.g. in
5208-517: The Latin verb moto which means 'to set in motion', or 'maintain motion'. Thus a motor is a device that imparts motion. Motor and engine are interchangeable in standard English. In some engineering jargons, the two words have different meanings, in which engine is a device that burns or otherwise consumes fuel, changing its chemical composition, and a motor is a device driven by electricity , air , or hydraulic pressure, which does not change
5301-439: The air and water: Carbon dioxide is colorless. At low concentrations, the gas is odorless; however, at sufficiently high concentrations, it has a sharp, acidic odor. At standard temperature and pressure , the density of carbon dioxide is around 1.98 kg/m , about 1.53 times that of air . Carbon dioxide has no liquid state at pressures below 0.51795(10) MPa (5.11177(99) atm ). At a pressure of 1 atm (0.101325 MPa),
5394-444: The air, carbon dioxide is transparent to visible light but absorbs infrared radiation , acting as a greenhouse gas . Carbon dioxide is soluble in water and is found in groundwater , lakes , ice caps , and seawater . It is a trace gas in Earth's atmosphere at 421 parts per million (ppm) , or about 0.042% (as of May 2022) having risen from pre-industrial levels of 280 ppm or about 0.028%. Burning fossil fuels
5487-430: The atmosphere. Less than 1% of CO2 produced annually is put to commercial use, mostly in the fertilizer industry and in the oil and gas industry for enhanced oil recovery . Other commercial applications include food and beverage production, metal fabrication, cooling, fire suppression and stimulating plant growth in greenhouses. Carbon dioxide cannot be liquefied at atmospheric pressure. Low-temperature carbon dioxide
5580-436: The chemical composition of its energy source. However, rocketry uses the term rocket motor , even though they consume fuel. A heat engine may also serve as a prime mover —a component that transforms the flow or changes in pressure of a fluid into mechanical energy . An automobile powered by an internal combustion engine may make use of various motors and pumps, but ultimately all such devices derive their power from
5673-447: The combustion energy (heat) exits the engine as exhaust gas, which provides thrust directly. Typical air-breathing engines include: The operation of engines typically has a negative impact upon air quality and ambient sound levels . There has been a growing emphasis on the pollution producing features of automotive power systems. This has created new interest in alternate power sources and internal-combustion engine refinements. Though
SECTION 60
#17331151752285766-862: The condition. There are few studies of the health effects of long-term continuous CO 2 exposure on humans and animals at levels below 1%. Occupational CO 2 exposure limits have been set in the United States at 0.5% (5000 ppm) for an eight-hour period. At this CO 2 concentration, International Space Station crew experienced headaches, lethargy, mental slowness, emotional irritation, and sleep disruption. Studies in animals at 0.5% CO 2 have demonstrated kidney calcification and bone loss after eight weeks of exposure. A study of humans exposed in 2.5 hour sessions demonstrated significant negative effects on cognitive abilities at concentrations as low as 0.1% (1000 ppm) CO 2 likely due to CO 2 induced increases in cerebral blood flow. Another study observed
5859-510: The degenerate pair of bending modes at 667 cm (wavelength 15.0 μm). The symmetric stretching mode does not create an electric dipole so is not observed in IR spectroscopy, but it is detected in Raman spectroscopy at 1388 cm (wavelength 7.20 μm), with a Fermi resonance doublet at 1285 cm . In the gas phase, carbon dioxide molecules undergo significant vibrational motions and do not keep
5952-566: The dispersing effects of wind, it can collect in sheltered/pocketed locations below average ground level, causing animals located therein to be suffocated. Carrion feeders attracted to the carcasses are then also killed. Children have been killed in the same way near the city of Goma by CO 2 emissions from the nearby volcano Mount Nyiragongo . The Swahili term for this phenomenon is mazuku . Adaptation to increased concentrations of CO 2 occurs in humans, including modified breathing and kidney bicarbonate production, in order to balance
6045-541: The effects of blood acidification ( acidosis ). Several studies suggested that 2.0 percent inspired concentrations could be used for closed air spaces (e.g. a submarine ) since the adaptation is physiological and reversible, as deterioration in performance or in normal physical activity does not happen at this level of exposure for five days. Yet, other studies show a decrease in cognitive function even at much lower levels. Also, with ongoing respiratory acidosis , adaptation or compensatory mechanisms will be unable to reverse
6138-489: The efficiency of a motor is raised by even a few percentage points, the savings, in kilowatt hours (and therefore in cost), are enormous. The electrical energy efficiency of a typical industrial induction motor can be improved by: 1) reducing the electrical losses in the stator windings (e.g., by increasing the cross-sectional area of the conductor , improving the winding technique, and using materials with higher electrical conductivities , such as copper ), 2) reducing
6231-551: The electrical conductivity of fully deionized water without CO 2 saturation is comparably low in relation to these data. CO 2 is a potent electrophile having an electrophilic reactivity that is comparable to benzaldehyde or strongly electrophilic α,β-unsaturated carbonyl compounds . However, unlike electrophiles of similar reactivity, the reactions of nucleophiles with CO 2 are thermodynamically less favored and are often found to be highly reversible. The reversible reaction of carbon dioxide with amines to make carbamates
6324-496: The electrical losses in the rotor coil or casting (e.g., by using materials with higher electrical conductivities, such as copper), 3) reducing magnetic losses by using better quality magnetic steel , 4) improving the aerodynamics of motors to reduce mechanical windage losses, 5) improving bearings to reduce friction losses , and 6) minimizing manufacturing tolerances . For further discussion on this subject, see Premium efficiency ). By convention, electric engine refers to
6417-404: The engine. Another way of looking at it is that a motor receives power from an external source, and then converts it into mechanical energy, while an engine creates power from pressure (derived directly from the explosive force of combustion or other chemical reaction, or secondarily from the action of some such force on other substances such as air, water, or steam). Simple machines , such as
6510-636: The first half of the 20th century, a trend of increasing engine power occurred, particularly in the U.S. models. Design changes incorporated all known methods of increasing engine capacity, including increasing the pressure in the cylinders to improve efficiency, increasing the size of the engine, and increasing the rate at which the engine produces work. The higher forces and pressures created by these changes created engine vibration and size problems that led to stiffer, more compact engines with V and opposed cylinder layouts replacing longer straight-line arrangements. Optimal combustion efficiency in passenger vehicles
6603-674: The forces multiplied and the speed reduced . These were used in cranes and aboard ships in Ancient Greece , as well as in mines , water pumps and siege engines in Ancient Rome . The writers of those times, including Vitruvius , Frontinus and Pliny the Elder , treat these engines as commonplace, so their invention may be more ancient. By the 1st century AD, cattle and horses were used in mills , driving machines similar to those powered by humans in earlier times. According to Strabo ,
6696-403: The form of rising air currents). Mechanical energy is of particular importance in transportation , but also plays a role in many industrial processes such as cutting, grinding, crushing, and mixing. Mechanical heat engines convert heat into work via various thermodynamic processes. The internal combustion engine is perhaps the most common example of a mechanical heat engine in which heat from
6789-524: The free-piston principle that was possibly the first 4-cycle engine. The invention of an internal combustion engine which was later commercially successful was made during 1860 by Etienne Lenoir . In 1877, the Otto cycle was capable of giving a far higher power-to-weight ratio than steam engines and worked much better for many transportation applications such as cars and aircraft. The first commercially successful automobile, created by Karl Benz , added to
6882-469: The gas deposits directly to a solid at temperatures below 194.6855(30) K (−78.4645(30) °C) and the solid sublimes directly to a gas above this temperature. In its solid state, carbon dioxide is commonly called dry ice . Liquid carbon dioxide forms only at pressures above 0.51795(10) MPa (5.11177(99) atm); the triple point of carbon dioxide is 216.592(3) K (−56.558(3) °C) at 0.51795(10) MPa (5.11177(99) atm) (see phase diagram). The critical point
6975-437: The hand-held tool industry and continual attempts are being made to expand their use to the transportation industry. However, pneumatic motors must overcome efficiency deficiencies before being seen as a viable option in the transportation industry. A hydraulic motor derives its power from a pressurized liquid . This type of engine is used to move heavy loads and drive machinery. Carbon dioxide Carbon dioxide
7068-597: The harvestable yield of crops, with wheat, rice and soybean all showing increases in yield of 12–14% under elevated CO 2 in FACE experiments. Increased atmospheric CO 2 concentrations result in fewer stomata developing on plants which leads to reduced water usage and increased water-use efficiency . Studies using FACE have shown that CO 2 enrichment leads to decreased concentrations of micronutrients in crop plants. This may have knock-on effects on other parts of ecosystems as herbivores will need to eat more food to gain
7161-411: The heat of a combustion process. The internal combustion engine is an engine in which the combustion of a fuel (generally, fossil fuel ) occurs with an oxidizer (usually air) in a combustion chamber . In an internal combustion engine the expansion of the high temperature and high pressure gases, which are produced by the combustion, directly applies force to components of the engine, such as
7254-462: The interest in light and powerful engines. The lightweight gasoline internal combustion engine, operating on a four-stroke Otto cycle, has been the most successful for light automobiles, while the thermally more-efficient Diesel engine is used for trucks and buses. However, in recent years, turbocharged Diesel engines have become increasingly popular in automobiles, especially outside of the United States, even for quite small cars. In 1896, Karl Benz
7347-444: The majority of the carbon dioxide is not converted into carbonic acid, but remains as CO 2 molecules, not affecting the pH. The relative concentrations of CO 2 , H 2 CO 3 , and the deprotonated forms HCO − 3 ( bicarbonate ) and CO 2− 3 ( carbonate ) depend on the pH . As shown in a Bjerrum plot , in neutral or slightly alkaline water (pH > 6.5), the bicarbonate form predominates (>50%) becoming
7440-443: The most prevalent (>95%) at the pH of seawater. In very alkaline water (pH > 10.4), the predominant (>50%) form is carbonate. The oceans, being mildly alkaline with typical pH = 8.2–8.5, contain about 120 mg of bicarbonate per liter. Being diprotic , carbonic acid has two acid dissociation constants , the first one for the dissociation into the bicarbonate (also called hydrogen carbonate) ion ( HCO − 3 ): This
7533-645: The power output of smaller displacement engines that are lighter in weight and more fuel-efficient at normal cruise power.. Similar changes have been applied to smaller Diesel engines, giving them almost the same performance characteristics as gasoline engines. This is especially evident with the popularity of smaller diesel engine-propelled cars in Europe. Diesel engines produce lower hydrocarbon and CO 2 emissions, but greater particulate and NO x pollution, than gasoline engines. Diesel engines are also 40% more fuel efficient than comparable gasoline engines. In
7626-495: The presence of carbon dioxide in water also affects its electrical properties. When carbon dioxide dissolves in desalinated water, the electrical conductivity increases significantly from below 1 μS/cm to nearly 30 μS/cm. When heated, the water begins to gradually lose the conductivity induced by the presence of C O 2 {\displaystyle \mathrm {CO_{2}} } , especially noticeable as temperatures exceed 30 °C. The temperature dependence of
7719-499: The presence of sufficient oxygen, manifesting as dizziness, headache, visual and hearing dysfunction, and unconsciousness within a few minutes to an hour. Concentrations of more than 10% may cause convulsions, coma, and death. CO 2 levels of more than 30% act rapidly leading to loss of consciousness in seconds. Because it is heavier than air, in locations where the gas seeps from the ground (due to sub-surface volcanic or geothermal activity) in relatively high concentrations, without
7812-496: The products of their photosynthesis as internal food sources and as raw material for the biosynthesis of more complex organic molecules, such as polysaccharides , nucleic acids , and proteins. These are used for their own growth, and also as the basis of the food chains and webs that feed other organisms, including animals such as ourselves. Some important phototrophs, the coccolithophores synthesise hard calcium carbonate scales. A globally significant species of coccolithophore
7905-420: The same amount of protein. The concentration of secondary metabolites such as phenylpropanoids and flavonoids can also be altered in plants exposed to high concentrations of CO 2 . Plants also emit CO 2 during respiration, and so the majority of plants and algae, which use C3 photosynthesis , are only net absorbers during the day. Though a growing forest will absorb many tons of CO 2 each year,
7998-411: The same frequency and same energy, because of the symmetry of the molecule. When a molecule touches a surface or touches another molecule, the two bending modes can differ in frequency because the interaction is different for the two modes. Some of the vibrational modes are observed in the infrared (IR) spectrum : the antisymmetric stretching mode at wavenumber 2349 cm (wavelength 4.25 μm) and
8091-442: The thousands of kilowatts . Electric motors may be classified by the source of electric power, by their internal construction, and by their application. The physical principle of production of mechanical force by the interactions of an electric current and a magnetic field was known as early as 1821. Electric motors of increasing efficiency were constructed throughout the 19th century, but commercial exploitation of electric motors on
8184-535: The upper ocean and thereby promotes the absorption of CO 2 from the atmosphere. Carbon dioxide content in fresh air (averaged between sea-level and 10 kPa level, i.e., about 30 km (19 mi) altitude) varies between 0.036% (360 ppm) and 0.041% (412 ppm), depending on the location. In humans, exposure to CO 2 at concentrations greater than 5% causes the development of hypercapnia and respiratory acidosis . Concentrations of 7% to 10% (70,000 to 100,000 ppm) may cause suffocation, even in
8277-546: The water, or to the lungs from where it is exhaled. During active photosynthesis, plants can absorb more carbon dioxide from the atmosphere than they release in respiration. Carbon fixation is a biochemical process by which atmospheric carbon dioxide is incorporated by plants, algae and cyanobacteria into energy-rich organic molecules such as glucose , thus creating their own food by photosynthesis. Photosynthesis uses carbon dioxide and water to produce sugars from which other organic compounds can be constructed, and oxygen
8370-517: Was designed to power the Emma Mærsk , the largest container ship in the world when launched in 2006. This engine has a mass of 2,300 tonnes, and when running at 102 rpm (1.7 Hz) produces over 80 MW, and can use up to 250 tonnes of fuel per day. An engine can be put into a category according to two criteria: the form of energy it accepts in order to create motion, and the type of motion it outputs. Combustion engines are heat engines driven by
8463-436: Was granted a patent for his design of the first engine with horizontally opposed pistons. His design created an engine in which the corresponding pistons move in horizontal cylinders and reach top dead center simultaneously, thus automatically balancing each other with respect to their individual momentum. Engines of this design are often referred to as “flat” or “boxer” engines due to their shape and low profile. They were used in
8556-463: Was merely a water pump, with the engine being transported to the fire by horses. In modern usage, the term engine typically describes devices, like steam engines and internal combustion engines, that burn or otherwise consume fuel to perform mechanical work by exerting a torque or linear force (usually in the form of thrust ). Devices converting heat energy into motion are commonly referred to simply as engines . Examples of engines which exert
8649-464: Was often treated as a military secret. The word gin , as in cotton gin , is short for engine . Most mechanical devices invented during the Industrial Revolution were described as engines—the steam engine being a notable example. However, the original steam engines, such as those by Thomas Savery , were not mechanical engines but pumps. In this manner, a fire engine in its original form
#227772