A mid-ocean ridge ( MOR ) is a seafloor mountain system formed by plate tectonics . It typically has a depth of about 2,600 meters (8,500 ft) and rises about 2,000 meters (6,600 ft) above the deepest portion of an ocean basin . This feature is where seafloor spreading takes place along a divergent plate boundary . The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin.
52-634: Central Basin Spreading Center (CBSC), formerly Central Basin Fault, is a seafloor spreading center of the West Philippine Basin . It is a long, NW-SE-trending structure that is considered to have been the spreading center of the West Philippine Basin (WPB) from the Eocene to the middle Oligocene . It is a remnant spreading center, meaning that it is no longer active. However, it still displays many of
104-464: A common feature at oceanic spreading centers. A feature of the elevated ridges is their relatively high heat flow values, of about 1–10 μcal/cm s, or roughly 0.04–0.4 W/m . Most crust in the ocean basins is less than 200 million years old, which is much younger than the 4.54 billion year age of Earth . This fact reflects the process of lithosphere recycling into the Earth's mantle during subduction . As
156-411: A crustal thickness of 7 km (4.3 mi), this amounts to about 19 km (4.6 cu mi) of new ocean crust formed every year. Lithosphere A lithosphere (from Ancient Greek λίθος ( líthos ) 'rocky' and σφαίρα ( sphaíra ) 'sphere') is the rigid, outermost rocky shell of a terrestrial planet or natural satellite . On Earth , it
208-469: A location on a mid-ocean ridge above a base-level) is correlated with its age (age of the lithosphere where depth is measured). The depth-age relation can be modeled by the cooling of a lithosphere plate or mantle half-space. A good approximation is that the depth of the seafloor at a location on a spreading mid-ocean ridge is proportional to the square root of the age of the seafloor. The overall shape of ridges results from Pratt isostasy : close to
260-481: A ridge axis cools below Curie points of appropriate iron-titanium oxides, magnetic field directions parallel to the Earth's magnetic field are recorded in those oxides. The orientations of the field preserved in the oceanic crust comprise a record of directions of the Earth's magnetic field with time. Because the field has reversed directions at known intervals throughout its history, the pattern of geomagnetic reversals in
312-546: A ship of the Lamont–Doherty Earth Observatory of Columbia University , traversed the Atlantic Ocean, recording echo sounder data on the depth of the ocean floor. A team led by Marie Tharp and Bruce Heezen concluded that there was an enormous mountain chain with a rift valley at its crest, running up the middle of the Atlantic Ocean. Scientists named it the 'Mid-Atlantic Ridge'. Other research showed that
364-753: A subduction zone cannot subduct much further than about 100 km (62 mi) before resurfacing. As a result, continental lithosphere is not recycled at subduction zones the way oceanic lithosphere is recycled. Instead, continental lithosphere is a nearly permanent feature of the Earth. Geoscientists can directly study the nature of the subcontinental mantle by examining mantle xenoliths brought up in kimberlite , lamproite , and other volcanic pipes . The histories of these xenoliths have been investigated by many methods, including analyses of abundances of isotopes of osmium and rhenium . Such studies have confirmed that mantle lithospheres below some cratons have persisted for periods in excess of 3 billion years, despite
416-408: A subduction zone drags the rest of the plate along behind it. The slab pull mechanism is considered to be contributing more than the ridge push. A process previously proposed to contribute to plate motion and the formation of new oceanic crust at mid-ocean ridges is the "mantle conveyor" due to deep convection (see image). However, some studies have shown that the upper mantle ( asthenosphere )
468-448: Is 65,000 km (40,400 mi) long (several times longer than the Andes , the longest continental mountain range), and the total length of the oceanic ridge system is 80,000 km (49,700 mi) long. At the spreading center on a mid-ocean ridge, the depth of the seafloor is approximately 2,600 meters (8,500 ft). On the ridge flanks, the depth of the seafloor (or the height of
520-420: Is a global scale ion-exchange system. Hydrothermal vents at spreading centers introduce various amounts of iron , sulfur , manganese , silicon , and other elements into the ocean, some of which are recycled into the ocean crust. Helium-3 , an isotope that accompanies volcanism from the mantle, is emitted by hydrothermal vents and can be detected in plumes within the ocean. Fast spreading rates will expand
572-531: Is a good example of a marginal basin that formed through seafloor spreading . This Philippines -related article is a stub . You can help Misplaced Pages by expanding it . Mid-ocean ridge The production of new seafloor and oceanic lithosphere results from mantle upwelling in response to plate separation. The melt rises as magma at the linear weakness between the separating plates, and emerges as lava , creating new oceanic crust and lithosphere upon cooling. The first discovered mid-ocean ridge
SECTION 10
#1732852849831624-415: Is a thermal boundary layer for the convection in the mantle. The thickness of the mantle part of the oceanic lithosphere can be approximated as a thermal boundary layer that thickens as the square root of time. h ∼ 2 κ t {\displaystyle h\,\sim \,2\,{\sqrt {\kappa t}}} Here, h {\displaystyle h} is the thickness of
676-478: Is also associated with a number of other features, including oceanic plateaus and seamount chains . These features suggest that the CBSC formed in a complex tectonic environment, possibly involving a mantle plume . The study of the CBSC provides important insights into the formation and evolution of marginal basins. Marginal basins are small ocean basins that are formed on the margins of continents or island arcs. The CBSC
728-432: Is composed of the crust and the lithospheric mantle , the topmost portion of the upper mantle that behaves elastically on time scales of up to thousands of years or more. The crust and upper mantle are distinguished on the basis of chemistry and mineralogy . Earth's lithosphere, which constitutes the hard and rigid outer vertical layer of the Earth, includes the crust and the lithospheric mantle (or mantle lithosphere),
780-443: Is in a constant state of 'renewal' at the mid-ocean ridges by the processes of seafloor spreading and plate tectonics. New magma steadily emerges onto the ocean floor and intrudes into the existing ocean crust at and near rifts along the ridge axes. The rocks making up the crust below the seafloor are youngest along the axis of the ridge and age with increasing distance from that axis. New magma of basalt composition emerges at and near
832-417: Is no thicker than the crust, but oceanic lithosphere thickens as it ages and moves away from the mid-ocean ridge. The oldest oceanic lithosphere is typically about 140 kilometres (87 mi) thick. This thickening occurs by conductive cooling, which converts hot asthenosphere into lithospheric mantle and causes the oceanic lithosphere to become increasingly thick and dense with age. In fact, oceanic lithosphere
884-470: Is the result of changes in the volume of the ocean basins which are, in turn, affected by rates of seafloor spreading along the mid-ocean ridges. The 100 to 170 meters higher sea level of the Cretaceous Period (144–65 Ma) is partly attributed to plate tectonics because thermal expansion and the absence of ice sheets only account for some of the extra sea level. Seafloor spreading on mid-ocean ridges
936-440: Is too plastic (flexible) to generate enough friction to pull the tectonic plate along. Moreover, mantle upwelling that causes magma to form beneath the ocean ridges appears to involve only its upper 400 km (250 mi), as deduced from seismic tomography and observations of the seismic discontinuity in the upper mantle at about 400 km (250 mi). On the other hand, some of the world's largest tectonic plates such as
988-426: Is velocity of the lithospheric plate. Oceanic lithosphere is less dense than asthenosphere for a few tens of millions of years but after this becomes increasingly denser than asthenosphere. While chemically differentiated oceanic crust is lighter than asthenosphere, thermal contraction of the mantle lithosphere makes it more dense than the asthenosphere. The gravitational instability of mature oceanic lithosphere has
1040-616: The Gakkel Ridge in the Arctic Ocean and the Southwest Indian Ridge ). The spreading center or axis commonly connects to a transform fault oriented at right angles to the axis. The flanks of mid-ocean ridges are in many places marked by the inactive scars of transform faults called fracture zones . At faster spreading rates the axes often display overlapping spreading centers that lack connecting transform faults. The depth of
1092-569: The North American plate and South American plate are in motion, yet only are being subducted in restricted locations such as the Lesser Antilles Arc and Scotia Arc , pointing to action by the ridge push body force on these plates. Computer modeling of the plates and mantle motions suggest that plate motion and mantle convection are not connected, and the main plate driving force is slab pull. Increased rates of seafloor spreading (i.e.
SECTION 20
#17328528498311144-426: The ocean basins . Continental lithosphere is associated with continental crust (having a mean density of about 2.7 grams per cubic centimetre or 0.098 pounds per cubic inch) and underlies the continents and continental shelves. Oceanic lithosphere consists mainly of mafic crust and ultramafic mantle ( peridotite ) and is denser than continental lithosphere. Young oceanic lithosphere, found at mid-ocean ridges ,
1196-438: The Earth." They have been broadly accepted by geologists and geophysicists. These concepts of a strong lithosphere resting on a weak asthenosphere are essential to the theory of plate tectonics . The lithosphere can be divided into oceanic and continental lithosphere. Oceanic lithosphere is associated with oceanic crust (having a mean density of about 2.9 grams per cubic centimetre or 0.10 pounds per cubic inch) and exists in
1248-427: The asthenosphere at ocean trenches . Two processes, ridge-push and slab pull , are thought to be responsible for spreading at mid-ocean ridges. Ridge push refers to the gravitational sliding of the ocean plate that is raised above the hotter asthenosphere, thus creating a body force causing sliding of the plate downslope. In slab pull the weight of a tectonic plate being subducted (pulled) below an overlying plate at
1300-419: The asthenosphere deforms viscously and accommodates strain through plastic deformation . The thickness of the lithosphere is thus considered to be the depth to the isotherm associated with the transition between brittle and viscous behavior. The temperature at which olivine becomes ductile (~1,000 °C or 1,830 °F) is often used to set this isotherm because olivine is generally the weakest mineral in
1352-478: The axis because of decompression melting in the underlying Earth's mantle . The isentropic upwelling solid mantle material exceeds the solidus temperature and melts. The crystallized magma forms a new crust of basalt known as MORB for mid-ocean ridge basalt, and gabbro below it in the lower oceanic crust . Mid-ocean ridge basalt is a tholeiitic basalt and is low in incompatible elements . Hydrothermal vents fueled by magmatic and volcanic heat are
1404-490: The axis changes in a systematic way with shallower depths between offsets such as transform faults and overlapping spreading centers dividing the axis into segments. One hypothesis for different along-axis depths is variations in magma supply to the spreading center. Ultra-slow spreading ridges form both magmatic and amagmatic (currently lack volcanic activity) ridge segments without transform faults. Mid-ocean ridges exhibit active volcanism and seismicity . The oceanic crust
1456-518: The concept and introduced the term "lithosphere". The concept was based on the presence of significant gravity anomalies over continental crust, from which he inferred that there must exist a strong, solid upper layer (which he called the lithosphere) above a weaker layer which could flow (which he called the asthenosphere ). These ideas were expanded by the Canadian geologist Reginald Aldworth Daly in 1940 with his seminal work "Strength and Structure of
1508-408: The continental lithosphere are billions of years old. Geophysical studies in the early 21st century posit that large pieces of the lithosphere have been subducted into the mantle as deep as 2,900 kilometres (1,800 mi) to near the core-mantle boundary, while others "float" in the upper mantle. Yet others stick down into the mantle as far as 400 kilometres (250 mi) but remain "attached" to
1560-403: The continental plate above, similar to the extent of the old concept of "tectosphere" revisited by Jordan in 1988. Subducting lithosphere remains rigid (as demonstrated by deep earthquakes along Wadati–Benioff zone ) to a depth of about 600 kilometres (370 mi). Continental lithosphere has a range in thickness from about 40 kilometres (25 mi) to perhaps 280 kilometres (170 mi);
1612-407: The discovery of the worldwide extent of the mid-ocean ridge in the 1950s, geologists faced a new task: explaining how such an enormous geological structure could have formed. In the 1960s, geologists discovered and began to propose mechanisms for seafloor spreading . The discovery of mid-ocean ridges and the process of seafloor spreading allowed for Wegener's theory to be expanded so that it included
Central Basin Spreading Center - Misplaced Pages Continue
1664-437: The effect that at subduction zones, oceanic lithosphere invariably sinks underneath the overriding lithosphere, which can be oceanic or continental. New oceanic lithosphere is constantly being produced at mid-ocean ridges and is recycled back to the mantle at subduction zones. As a result, oceanic lithosphere is much younger than continental lithosphere: the oldest oceanic lithosphere is about 170 million years old, while parts of
1716-453: The features that are characteristic of spreading centers, such as a rift valley , axial ridges, and abyssal hills . The CBSC is divided into two segments: the eastern segment and the western segment. The eastern segment is characterized by slow-spreading features, such as a deep rift valley and nodal basins. The western segment is characterized by fast-spreading features, such as overlapping spreading centers and volcanic axial ridges. The CBSC
1768-469: The floor of the Atlantic, as it keeps spreading, is continuously tearing open and making space for fresh, relatively fluid and hot sima [rising] from depth". However, Wegener did not pursue this observation in his later works and his theory was dismissed by geologists because there was no mechanism to explain how continents could plow through ocean crust , and the theory became largely forgotten. Following
1820-532: The mid-ocean ridge causing basalt reactions with seawater to happen more rapidly. The magnesium/calcium ratio will be lower because more magnesium ions are being removed from seawater and consumed by the rock, and more calcium ions are being removed from the rock and released into seawater. Hydrothermal activity at the ridge crest is efficient in removing magnesium. A lower Mg/Ca ratio favors the precipitation of low-Mg calcite polymorphs of calcium carbonate ( calcite seas ). Slow spreading at mid-ocean ridges has
1872-596: The mid-ocean ridge from the South Atlantic into the Indian Ocean early in the twentieth century. Although the first-discovered section of the ridge system runs down the middle of the Atlantic Ocean, it was found that most mid-ocean ridges are located away from the center of other ocean basins. Alfred Wegener proposed the theory of continental drift in 1912. He stated: "the Mid-Atlantic Ridge ... zone in which
1924-402: The movement of oceanic crust as well as the continents. Plate tectonics was a suitable explanation for seafloor spreading, and the acceptance of plate tectonics by the majority of geologists resulted in a major paradigm shift in geological thinking. It is estimated that along Earth's mid-ocean ridges every year 2.7 km (1.0 sq mi) of new seafloor is formed by this process. With
1976-690: The ocean crust can be used as an indicator of age; given the crustal age and distance from the ridge axis, spreading rates can be calculated. Spreading rates range from approximately 10–200 mm/yr. Slow-spreading ridges such as the Mid-Atlantic Ridge have spread much less far (showing a steeper profile) than faster ridges such as the East Pacific Rise (gentle profile) for the same amount of time and cooling and consequent bathymetric deepening. Slow-spreading ridges (less than 40 mm/yr) generally have large rift valleys , sometimes as wide as 10–20 km (6.2–12.4 mi), and very rugged terrain at
2028-468: The ocean floor appears similar to the seam of a baseball . The mid-ocean ridge system thus is the longest mountain range on Earth, reaching about 65,000 km (40,000 mi). The mid-ocean ridges of the world are connected and form the Ocean Ridge, a single global mid-oceanic ridge system that is part of every ocean , making it the longest mountain range in the world. The continuous mountain range
2080-403: The oceanic crust and lithosphere moves away from the ridge axis, the peridotite in the underlying mantle lithosphere cools and becomes more rigid. The crust and the relatively rigid peridotite below it make up the oceanic lithosphere , which sits above the less rigid and viscous asthenosphere . The oceanic lithosphere is formed at an oceanic ridge, while the lithosphere is subducted back into
2132-419: The oceanic mantle lithosphere, κ {\displaystyle \kappa } is the thermal diffusivity (approximately 1.0 × 10 m /s or 6.5 × 10 sq ft/min) for silicate rocks, and t {\displaystyle t} is the age of the given part of the lithosphere. The age is often equal to L/V, where L is the distance from the spreading centre of mid-oceanic ridge , and V
Central Basin Spreading Center - Misplaced Pages Continue
2184-451: The opposite effect and will result in a higher Mg/Ca ratio favoring the precipitation of aragonite and high-Mg calcite polymorphs of calcium carbonate ( aragonite seas ). Experiments show that most modern high-Mg calcite organisms would have been low-Mg calcite in past calcite seas, meaning that the Mg/Ca ratio in an organism's skeleton varies with the Mg/Ca ratio of the seawater in which it
2236-574: The rate of expansion of the mid-ocean ridge) have caused the global ( eustatic ) sea level to rise over very long timescales (millions of years). Increased seafloor spreading means that the mid-ocean ridge will then expand and form a broader ridge with decreased average depth, taking up more space in the ocean basin. This displaces the overlying ocean and causes sea levels to rise. Sealevel change can be attributed to other factors ( thermal expansion , ice melting, and mantle convection creating dynamic topography ). Over very long timescales, however, it
2288-584: The ridge axis, there is a hot, low-density mantle supporting the oceanic crust. As the oceanic plate cools, away from the ridge axis, the oceanic mantle lithosphere (the colder, denser part of the mantle that, together with the crust, comprises the oceanic plates) thickens, and the density increases. Thus older seafloor is underlain by denser material and is deeper. Spreading rate is the rate at which an ocean basin widens due to seafloor spreading. Rates can be computed by mapping marine magnetic anomalies that span mid-ocean ridges. As crystallized basalt extruded at
2340-731: The ridge crest that can have relief of up to 1,000 m (3,300 ft). By contrast, fast-spreading ridges (greater than 90 mm/yr) such as the East Pacific Rise lack rift valleys. The spreading rate of the North Atlantic Ocean is ~ 25 mm/yr, while in the Pacific region, it is 80–145 mm/yr. The highest known rate is over 200 mm/yr in the Miocene on the East Pacific Rise. Ridges that spread at rates <20 mm/yr are referred to as ultraslow spreading ridges (e.g.,
2392-440: The ridge crest was seismically active and fresh lavas were found in the rift valley. Also, crustal heat flow was higher here than elsewhere in the Atlantic Ocean basin. At first, the ridge was thought to be a feature specific to the Atlantic Ocean. However, as surveys of the ocean floor continued around the world, it was discovered that every ocean contains parts of the mid-ocean ridge system. The German Meteor expedition traced
2444-431: The seafloor were analyzed by oceanographers Matthew Fontaine Maury and Charles Wyville Thomson and revealed a prominent rise in the seafloor that ran down the Atlantic basin from north to south. Sonar echo sounders confirmed this in the early twentieth century. It was not until after World War II , when the ocean floor was surveyed in more detail, that the full extent of mid-ocean ridges became known. The Vema ,
2496-601: The upper approximately 30 to 50 kilometres (19 to 31 mi) of typical continental lithosphere is crust. The crust is distinguished from the upper mantle by the change in chemical composition that takes place at the Moho discontinuity . The oldest parts of continental lithosphere underlie cratons , and the mantle lithosphere there is thicker and less dense than typical; the relatively low density of such mantle "roots of cratons" helps to stabilize these regions. Because of its relatively low density, continental lithosphere that arrives at
2548-524: The upper mantle. The lithosphere is subdivided horizontally into tectonic plates , which often include terranes accreted from other plates. The concept of the lithosphere as Earth's strong outer layer was described by the English mathematician A. E. H. Love in his 1911 monograph "Some problems of Geodynamics" and further developed by the American geologist Joseph Barrell , who wrote a series of papers about
2600-433: The uppermost part of the mantle that is not convecting. The lithosphere is underlain by the asthenosphere which is the weaker, hotter, and deeper part of the upper mantle that is able to convect. The lithosphere–asthenosphere boundary is defined by a difference in response to stress. The lithosphere remains rigid for very long periods of geologic time in which it deforms elastically and through brittle failure, while
2652-534: Was grown. The mineralogy of reef-building and sediment-producing organisms is thus regulated by chemical reactions occurring along the mid-ocean ridge, the rate of which is controlled by the rate of sea-floor spreading. The first indications that a ridge bisects the Atlantic Ocean basin came from the results of the British Challenger expedition in the nineteenth century. Soundings from lines dropped to
SECTION 50
#17328528498312704-513: Was the Mid-Atlantic Ridge , which is a spreading center that bisects the North and South Atlantic basins; hence the origin of the name 'mid-ocean ridge'. Most oceanic spreading centers are not in the middle of their hosting ocean basis but regardless, are traditionally called mid-ocean ridges. Mid-ocean ridges around the globe are linked by plate tectonic boundaries and the trace of the ridges across
#830169