41°56′27″N 48°22′47″E / 41.9408511°N 48.3796207°E / 41.9408511; 48.3796207
50-709: The KM ( Korabl Maket ) (Russian: Корабль-Макет, literally "Ship-maquette" or "Model-Ship"), known colloquially as the Caspian Sea Monster , was an experimental ground effect vehicle developed in the Soviet Union in the 1960s by the Central Hydrofoil Design Bureau . The KM began operation in 1966, and was continuously tested by the Soviet Navy until 1980 when it crashed into the Caspian Sea . The KM
100-441: A hovercraft . A ground-effect vehicle needs some forward velocity to produce lift dynamically, and the principal benefit of operating a wing in ground effect is to reduce its lift-dependent drag . The basic design principle is that the closer the wing operates to an external surface such as the ground, when it is said to be in ground effect , the less drag it experiences. An airfoil passing through air increases air pressure on
150-784: A 50-seat passenger GEV named the WSH-500. in 2013 Estonian transport company Sea Wolf Express planned to launch passenger service in 2019 between Helsinki and Tallinn , a distance of 87 km taking only half an hour, using a Russian-built ekranoplan. The company ordered 15 ekranoplans with maximum speed of 185 km/h and capacity of 12 passengers, built by Russian RDC Aqualines. In 2021 Brittany Ferries announced that they were looking into using REGENT (Regional Electric Ground Effect Naval Transport) ground effect craft " seagliders " for cross English Channel services. Southern Airways Express also placed firm orders for seagliders with intent to operate them along Florida's east coast. Around mid-2022,
200-427: A GEV, as compared to an aircraft of similar capacity, will improve its fuel efficiency and, up to a point, its speed. GEVs are also much faster than surface vessels of similar power, because they avoid drag from the water. On the water the aircraft-like construction of GEVs increases the risk of damage in collisions with surface objects. Furthermore, the limited number of egress points make it more difficult to evacuate
250-463: A craft was soon recognized, and Alexeyev received support and financial resources from Soviet leader Nikita Khrushchev . Some manned and unmanned prototypes were built, ranging up to eight tonnes in displacement . This led to the development of a 550-tonne military ekranoplan of 92 m (302 ft) length. The craft was dubbed the Caspian Sea Monster by U.S. intelligence experts, after
300-502: A crash caused by pilot error . There were no human casualties, but the KM was damaged and no attempts were made to save it, it being left to float before eventually sinking a week later. The KM was deemed too heavy to recover and has remained underwater at the crash site ever since, with no plans to build a second ever made. However, the KM later became the basis for the Lun -class ekranoplan developed by
350-537: A huge, unknown craft was spotted on satellite reconnaissance photos of the Caspian Sea area in the 1960s. With its short wings, it looked airplane-like in planform, but would probably be incapable of flight. Although it was designed to travel a maximum of 3 m (10 ft) above the sea, it was found to be most efficient at 20 m (66 ft), reaching a top speed of 300–400 knots (560–740 km/h) in research flights. The Soviet ekranoplan program continued with
400-468: A much higher speed. A GEV is sometimes characterized as a transition between a hovercraft and an aircraft , although this is not correct as a hovercraft is statically supported upon a cushion of pressurized air from an onboard downward-directed fan. Some GEV designs, such as the Russian Lun and Dingo , have used forced blowing under the wing by auxiliary engines to increase the high pressure area under
450-706: A need for reliable navigation. Minister Ustinov died in 1984, and the new Minister of Defence, Marshal Sokolov , cancelled funding for the program. Only three operational Orlyonok -class ekranoplans (with revised hull design) and one Lun -class ekranoplan remained at a naval base near Kaspiysk . Since the dissolution of the Soviet Union , ekranoplans have been produced by the Volga Shipyard in Nizhniy Novgorod . Smaller ekranoplans for non-military use have been under development. The CHDB had already developed
500-770: A previous period of nearly 10 years of research and development: Bigger concepts are: 25-seater, 32-seater, 60-seater, 80-seater and bigger up to the size of a passenger airplane. Since the 1980s GEVs have been primarily smaller craft designed for the recreational and civilian ferry markets. Germany , Russia and the United States have provided most of the activity with some development in Australia , China , Japan , Korea and Taiwan . In these countries and regions, small craft with up to ten seats have been built. Other larger designs such as ferries and heavy transports have been proposed but have not been carried to completion. Besides
550-707: A ship designer whereas Lippisch worked as an aeronautical engineer. The influence of Alexeyev and Lippisch remains noticeable in most GEVs seen today. Led by Alexeyev , the Soviet Central Hydrofoil Design Bureau ( Russian : ЦКБ СПК ) was the center of ground-effect craft development in the USSR. The vehicle came to be known as an ekranoplan ( Russian : экранопла́н , экран screen + план plane , from Russian : эффект экрана , literally screen effect , or ground effect in English). The military potential for such
SECTION 10
#1732858682665600-501: A specialist and insider of German airplane industry from 1963 and a colleague of Alexander Lippisch and Hanno Fischer, was founded with a fundamental knowledge of wing in ground effect physics, as well as results of fundamental tests under different conditions and designs having begun in 1960. For over 30 years, Jörg built and tested 15 different tandem-airfoil flairboats in different sizes and made of different materials. The following tandem-airfoil flairboat (TAF) types had been built after
650-422: Is a vehicle that is able to move over the surface by gaining support from the reactions of the air against the surface of the earth or water. Typically, it is designed to glide over a level surface (usually over the sea) by making use of ground effect , the aerodynamic interaction between the moving wing and the surface below. Some models can operate over any flat area such as frozen lakes or flat plains similar to
700-529: Is based. However, in 2005, the IMO classified the WISE or GEV under the category of ships. The International Maritime Organization recognizes three types of GEVs: At the time of writing, those classes only applied to craft carrying 12 passengers or more, and (as of 2019) there was disagreement between national regulatory agencies about whether these vehicles should be classified, and regulated, as aircraft or as boats. By
750-441: Is dangerous because the ground is uneven and the altitude called skimming permits no freedom of maneuver. But on large-sized aircraft, over water, the question may be attempted ..." By the 1960s, the technology started maturing, in large part due to the independent contributions of Rostislav Alexeyev in the Soviet Union and German Alexander Lippisch , working in the United States . Alexeyev worked from his background as
800-412: Is more difficult for GEVs with short production runs to overcome. For the vehicle to work, its hull needs to be stable enough longitudinally to be controllable yet not so stable that it cannot lift off the water. The bottom of the vehicle must be formed to avoid excessive pressures on landing and taking off without sacrificing too much lateral stability, and it must not create too much spray, which damages
850-485: Is the classification and legislation to be applied. The International Maritime Organization has studied the application of rules based on the International Code of Safety for High-Speed Craft (HSC code) which was developed for fast ships such as hydrofoils , hovercraft, catamarans and the like. The Russian Rules for classification and construction of small type A ekranoplans is a document upon which most GEV design
900-408: The helicopter . Unlike the hydrofoil , it does not have any contact with the surface of the water when in "flight". The ground-effect vehicle constitutes a unique class of transportation. The Boston-based (United States) company REGENT proposed an electric-powered high-wing design with a standard hull for water operations, but also incorporated fore- and aft-mounted hydrofoil units designed to lift
950-524: The 1920s, the ground effect phenomenon was well-known, as pilots found that their airplanes appeared to become more efficient as they neared the runway surface during landing. In 1934 the US National Advisory Committee for Aeronautics issued Technical Memorandum 771, Ground Effect on the Takeoff and Landing of Airplanes , which was a translation into English of a summary of French research on
1000-503: The Black Sea and Baltic Sea fleets. A few Orlyonoks served with the Soviet Navy from 1979 to 1992. In 1987, the 400-tonne Lun -class ekranoplan was built as an anti-ship missile launch platform. A second Lun , renamed Spasatel , was laid down as a rescue vessel, but was never finished. The two major problems that the Soviet ekranoplans faced were poor longitudinal stability and
1050-571: The Caspian Sea). It was designed at the Central Hydrofoil Design Bureau , by the chief designer Rostislav Alexeyev and the lead engineer V. Efimov, and manufactured at the Red Sormovo plant in Gorky (now Nizhny Novgorod ). The KM was among the earliest major ekranoplan (English: "screen plane") projects and was notable for its massive size and payload, becoming the largest aircraft in the world when it
SECTION 20
#17328586826651100-717: The Central Hydrofoil Design Bureau in the 1980s, which saw one example, the MD-160 , enter service with the Soviet Navy and later the Russian Navy before being decommissioned in the late 1990s. The KM remained the largest aircraft in the world during the entirety of its existence and is the second-largest aircraft ever built, behind the Antonov An-225 Mriya that flew for the first time in 1988, eight years after
1150-643: The FS-8 carried six persons. The FS-8 was to be developed by Fischer Flugmechanik for a Singapore-Australian joint venture called Flightship. Powered by a V8 Chevrolet automobile engine rated at 337 kW, the prototype made its first flight in February 2001 in the Netherlands. The company no longer exists but the prototype craft was bought by Wigetworks, a company based in Singapore and renamed as AirFish 8. In 2010, that vehicle
1200-687: The GEV in a shipyard in southern Iran. The GEV has two engines and no armament. In Singapore, Wigetworks obtained certification from Lloyd's Register for entry into class. On 31 March 2011, AirFish 8-001 became one of the first GEVs to be flagged with the Singapore Registry of Ships, one of the largest ship registries. Wigetworks partnered with National University of Singapore 's Engineering Department to develop higher capacity GEVs. Burt Rutan in 2011 and Korolev in 2015 showed GEV projects. In Korea, Wing Ship Technology Corporation developed and tested
1250-441: The KM's destruction. Data from The Osprey Encyclopedia of Russian Aircraft 1875–1995, Russia's Ekranoplans: The Caspian Sea Monster and other WiG Craft General characteristics Performance Ground effect vehicle A ground-effect vehicle ( GEV ), also called a wing-in-ground-effect (WIGE or WIG ), ground-effect craft , wingship , flarecraft or ekranoplan ( Russian : экранопла́н – "screenglider" ),
1300-538: The US Defense Advanced Research Projects Agency (DARPA) launched its Liberty Lifter project, with the goal of creating a low-cost seaplane that would use the ground-effect to extend its range. The program aims to carry 90 tons over 6,500 nautical miles (12,000 km), operate at sea without ground-based maintenance, all using low-cost materials. In May 2024, Ocean Glider announced a deal with UK-based investor MONTE to finance $ 145m of
1350-810: The United States Defense Advanced Research Projects Agency (DARPA) studied the Aerocon Dash 1.6 wingship . Universal Hovercraft developed a flying hovercraft, first flying a prototype in 1996. Since 1999, the company has offered plans, parts, kits and manufactured ground effect hovercraft called the Hoverwing. Iran deployed three squadrons of Bavar 2 two-seat GEVs in September 2010. This GEV carries one machine gun and surveillance gear, and incorporates features to reduce its radar signature. In October 2014, satellite images showed
1400-400: The ability of hovercraft or hydrofoils, which are closer to the water surface. Like conventional aircraft, greater power is needed for takeoff, and, like seaplanes, ground-effect vehicles must get on the step before they can accelerate to flight speed. Careful design, usually with multiple redesigns of hullforms, is required to get this right, which increases engineering costs. This obstacle
1450-621: The airframe and the engines. The Russian ekranoplans show evidence of fixes for these problems in the form of multiple chines on the forward part of the hull undersides and in the forward location of the jet engines. Finally, limited utility has kept production levels low enough that it has been impossible to amortize development costs sufficiently to make GEVs competitive with conventional aircraft. A 2014 study by students at NASA's Ames Research Center claims that use of GEVs for passenger travel could lead to cheaper flights, increased accessibility and less pollution. One obstacle to GEV development
1500-498: The craft out of the water during takeoff run, to facilitate lower liftoff speeds. Used by the Russian Rostislav Alexeyev for his ekranoplan. The wings are significantly shorter than those of comparable aircraft, and this configuration requires a high aft-placed horizontal tail to maintain stability. The pitch and altitude stability comes from the lift slope difference between a front low wing in ground-effect (commonly
1550-409: The development of appropriate design and structural configuration, automatic control and navigation systems have been developed. These include altimeters with high accuracy for low altitude flight and lesser dependence on weather conditions. "Phase radio altimeters " have become the choice for such applications beating laser altimeter , isotropic or ultrasonic altimeters . With Russian consultation,
Caspian Sea Monster - Misplaced Pages Continue
1600-681: The eight-seat Volga-2 in 1985, and Technologies and Transport is developing a smaller version called the Amphistar. Beriev proposed a large craft of the type, the Be-2500, as a "flying ship" cargo carrier, but nothing came of the project. In Germany, Lippisch was asked to build a very fast boat for American businessman Arthur A. Collins . In 1963 Lippisch developed the X-112 , a revolutionary design with reversed delta wing and T-tail. This design proved to be stable and efficient in ground effect, and even though it
1650-462: The first flight a bottle of champagne was broken against its nose, a tradition for the first voyage of a watercraft. On June 22, 1966, the completed KM began transportation along the Volga River to the testing grounds on the Caspian Sea near the town of Kaspiysk . It was transported from Gorky along the river in secret, covered in camouflage and moving only at night. The aircraft's first flight
1700-466: The main wing) and an aft, higher-located second wing nearly out of ground-effect (generally named a stabilizer). Developed by Alexander Lippisch , this wing allows stable flight in ground-effect through self-stabilization. This is the main Class B form of GEV. Tandem wings can have three configurations: Given similar hull size and power, and depending on its specific design, the lower lift-induced drag of
1750-455: The much larger wing on a transport aircraft, though it can do this only when close to the earth's surface. Once sufficient speed has built up, some GEVs may be capable of leaving ground effect and functioning as normal aircraft until they approach their destination. The distinguishing characteristic is that they are unable to land or take off without a significant amount of help from the ground effect cushion, and cannot climb until they have reached
1800-402: The particular wing. This is the primary reason gliders have long wings. Placing the same wing near a surface such as the water or the ground has the same effect as increasing the aspect ratio because the ground prevents wingtip vortices from expanding, but without having the complications associated with a long and slender wing, so that the short stubs on a GEV can produce just as much lift as
1850-421: The subject. The French author Maurice Le Sueur had added a suggestion based on this phenomenon: "Here the imagination of inventors is offered a vast field. The ground interference reduces the power required for level flight in large proportions, so here is a means of rapid and at the same time economic locomotion: Design an airplane which is always within the ground-interference zone. At first glance this apparatus
1900-442: The support of Minister of Defence Dmitriy Ustinov . It produced the most successful ekranoplan so far, the 125-tonne A-90 Orlyonok . These craft were originally developed as high-speed military transports and were usually based on the shores of the Caspian Sea and Black Sea . The Soviet Navy ordered 120 Orlyonok -class ekranoplans , but this figure was later reduced to fewer than 30 vessels, with planned deployment mainly in
1950-483: The two tail-mounted engines to power the craft during normal travel. The KM was undetectable to many radar systems, as it flew below the minimum altitude of detection . Despite technically being an aircraft , it was considered by the authorities to be closer to a boat and was assigned to the Soviet Navy , but operated by test pilots of the Soviet Air Forces . The KM was documented as a marine vessel and prior to
2000-407: The underside, while decreasing pressure across the top. The high and low pressures are maintained until they flow off the ends of the wings, where they form vortices which in turn are the major cause of lift-induced drag —normally a significant portion of the drag affecting an aircraft. The greater the span of a wing, the less induced drag created for each unit of lift and the greater the efficiency of
2050-738: The vehicle in an emergency. Since most GEVs are designed to operate from water, accidents and engine failure typically are less hazardous than in a land-based aircraft, but the lack of altitude control leaves the pilot with fewer options for avoiding collision, and to some extent that negates such benefits. Low altitude brings high-speed craft into conflict with ships, buildings and rising land, which may not be sufficiently visible in poor conditions to avoid. GEVs may be unable to climb over or turn sharply enough to avoid collisions, while drastic, low-level maneuvers risk contact with solid or water hazards beneath. Aircraft can climb over most obstacles, but GEVs are more limited. In high winds, take-off must be into
Caspian Sea Monster - Misplaced Pages Continue
2100-422: The wind, which takes the craft across successive lines of waves, causing heavy pounding, stressing the craft and creating an uncomfortable ride. In light winds, waves may be in any direction, which can make control difficult as each wave causes the vehicle to both pitch and roll. The lighter construction of GEVs makes their ability to operate in higher sea states less than that of conventional ships, but greater than
2150-423: The wing to assist the takeoff; however they differ from hovercraft in still requiring forward motion to generate sufficient lift to fly. Although the GEV may look similar to the seaplane and share many technical characteristics, it is generally not designed to fly out of ground effect. It differs from the hovercraft in lacking low-speed hover capability in much the same way that a fixed-wing airplane differs from
2200-419: Was 650 km/h (404 mph, 350 knots), although some sources claim up to 740 km/h (460 mph, 400 knots). The KM was at first seen as a promising vehicle specialized for use by military and rescue workers but its design caused many difficulties; progress slowed and Alexeyev moved on to other ekranoplan projects. It was tested on the Caspian Sea for 15 years until 1980, when it was destroyed following
2250-472: Was completed in 1966. The KM had a wingspan of 37.6 metres (123 ft); a length of 92 m (302 ft); a maximum take-off weight of 544 metric tonnes; and was designed to fly at an altitude of 5–10 metres (16–33 ft) to use the ground effect. The craft had ten Dobrynin RD-7 turbojets, with two tail-mounted and eight canard-mounted; the eight canard-mounted engines would shut off after takeoff, leaving
2300-560: Was developed during his consultancy period in South Africa. It was a simple and low-cost design of a first 4-seater tandem-airfoil flairboat completely constructed of aluminium. The prototype was in the SAAF Port Elizabeth Museum from 4 July 2007 until 2013, and is now in private use. Pictures of the museum show the boat after some years outside the museum and without protection against the sun. The consultancy of Günther Jörg,
2350-536: Was on October 16, 1966, performed by Vladimir Loginov and Rostislav Alexeyev himself, which was very unusual as most Soviet aircraft designers never piloted their own creations. All the work was conducted under patronage of the Ministry of Shipbuilding Industry. Testing showed the KM to have an optimum ( fuel efficient ) cruising speed of 430 km/h (267 mph, 232 knots), and a maximum operational speed of 500 km/h (311 mph, 270 knots). The maximum speed achieved
2400-540: Was registered as a ship in the Singapore Registry of Ships. The University of Duisburg-Essen is supporting an ongoing research project to develop the Hoverwing . German engineer Günther Jörg, who had worked on Alexeyev's first designs and was familiar with the challenges of GEV design, developed a GEV with two wings in a tandem arrangement, the Jörg-II. It was the third, manned, tandem-airfoil boat, named "Skimmerfoil", which
2450-650: Was successfully tested, Collins decided to stop the project and sold the patents to the German company Rhein Flugzeugbau (RFB), which further developed the inverse delta concept into the X-113 and the six-seat X-114 . These craft could be flown out of ground effect so that, for example, peninsulas could be overflown. Hanno Fischer took over the works from RFB and created his own company, Fischer Flugmechanik, which eventually completed two models. The Airfisch 3 carried two persons, and
2500-612: Was the largest and heaviest aircraft in the world from 1966 to 1988, and its surprise discovery by the United States and the subsequent attempts to determine its purpose became a distinctive event of espionage during the Cold War . The KM was an experimental aircraft developed from 1964 to 1966, during a time when the Soviet Union saw interest in ground effect vehicles —airplane-like vehicles that use ground effect to fly several meters above surfaces, primarily bodies of water (such as
#664335