Misplaced Pages

Anchor

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#821178

107-455: An anchor is a device, normally made of metal , used to secure a vessel to the bed of a body of water to prevent the craft from drifting due to wind or current . The word derives from Latin ancora , which itself comes from the Greek ἄγκυρα ( ankȳra ). Anchors can either be temporary or permanent. Permanent anchors are used in the creation of a mooring , and are rarely moved;

214-578: A plasma (physics) is a metallic conductor and the charged particles in a plasma have many properties in common with those of electrons in elemental metals, particularly for white dwarf stars. Metals are relatively good conductors of heat , which in metals is transported mainly by the conduction electrons. At higher temperatures the electrons can occupy slightly higher energy levels given by Fermi–Dirac statistics . These have slightly higher momenta ( kinetic energy ) and can pass on thermal energy. The empirical Wiedemann–Franz law states that in many metals

321-1176: A sailing ship Aftercastle Afterdeck Anchor Anchor windlass Apparent wind indicator Beakhead Bilge Bilgeboard Bitts Boom brake Bow or prow Bowsprit Cable Capstan Cathead Carpenter's walk Centreboard Chains Cockpit Companionway Crow's nest Daggerboard Deck Figurehead Forecastle Frame Gangway Gunwale Head Hold Hull Jackline Jibboom Keel Canting Kelson Leeboard Mast Orlop deck Outrigger Poop deck Port Porthole Quarter gallery Quarterdeck Rib Rudder Ship's wheel Skeg Stem Starboard Stern or poop Sternpost Strake Taffrail Tiller Top Transom Whipstaff Winch Retrieved from " https://en.wikipedia.org/w/index.php?title=Hawsehole&oldid=1110255243 " Categories : Shipbuilding Sailboat components Sailing ship components Nautical terminology Hidden categories: Articles with short description Short description

428-435: A semiconducting metalloid such as boron has an electrical conductivity 1.5 × 10 S/cm. With one exception, metallic elements reduce their electrical conductivity when heated. Plutonium increases its electrical conductivity when heated in the temperature range of around −175 to +125 °C, with anomalously large thermal expansion coefficient and a phase change from monoclinic to face-centered cubic near 100  °C. There

535-537: A 1933 design patented in the UK by mathematician Geoffrey Ingram Taylor . Plough anchors stow conveniently in a roller at the bow, and have been popular with cruising sailors and private boaters. Ploughs can be moderately good in all types of seafloor, though not exceptional in any. Contrary to popular belief, the CQR's hinged shank is not to allow the anchor to turn with direction changes rather than breaking out, but actually to prevent

642-663: A 1989 US Naval Sea Systems Command (NAVSEA) test and in an August 2014 holding power test that was conducted in the soft mud bottoms of the Chesapeake Bay. This claw-shaped anchor was designed by Peter Bruce from Scotland in the 1970s. Bruce gained his early reputation from the production of large-scale commercial anchors for ships and fixed installations such as oil rigs. It was later scaled down for small boats, and copies of this popular design abound. The Bruce and its copies, known generically as "claw type anchors", have been adopted on smaller boats (partly because they stow easily on

749-428: A bar in a breaking sea. Anchors achieve holding power either by "hooking" into the seabed , or weight, or a combination of the two. The weight of the anchor chain can be more than that of the anchor and is critical to proper holding. Permanent moorings use large masses (commonly a block or slab of concrete) resting on the seabed. Semi-permanent mooring anchors (such as mushroom anchors ) and large ship's anchors derive

856-454: A base metal as it is oxidized relatively easily, although it does not react with HCl. The term noble metal (also for elements) is commonly used in opposition to base metal . Noble metals are less reactive, resistant to corrosion or oxidation , unlike most base metals . They tend to be precious metals, often due to perceived rarity. Examples include gold, platinum, silver, rhodium , iridium, and palladium. In alchemy and numismatics ,

963-559: A bow roller) but they are most effective in larger sizes. Claw anchors are quite popular on charter fleets as they have a high chance to set on the first try in many bottoms. They have the reputation of not breaking out with tide or wind changes, instead slowly turning in the bottom to align with the force. Bruce anchors can have difficulty penetrating weedy bottoms and grass. They offer a fairly low holding-power-to-weight ratio and generally have to be oversized to compete with newer types. Three time circumnavigator German Rolf Kaczirek invented

1070-439: A concave fluke shaped like the blade of a shovel, with a shank attached parallel to the fluke, and the load applied toward the digging end. It is designed to dig into the bottom like a shovel, and dig deeper as more pressure is applied. The common challenge with all the scoop type anchors is that they set so well, they can be difficult to weigh. These are used where the vessel is permanently or semi-permanently sited, for example in

1177-485: A deadweight anchor over a mushroom is that if it does drag, it continues to provide its original holding force. The disadvantage of using deadweight anchors in conditions where a mushroom anchor could be used is that it needs to be around ten times the weight of the equivalent mushroom anchor. Auger anchors can be used to anchor permanent moorings, floating docks, fish farms, etc. These anchors, which have one or more slightly pitched self-drilling threads, must be screwed into

SECTION 10

#1732858143822

1284-443: A few—beryllium, chromium, manganese, gallium, and bismuth—are brittle. Arsenic and antimony, if admitted as metals, are brittle. Low values of the ratio of bulk elastic modulus to shear modulus ( Pugh's criterion ) are indicative of intrinsic brittleness. A material is brittle if it is hard for dislocations to move, which is often associated with large Burgers vectors and only a limited number of slip planes. A refractory metal

1391-403: A fluked anchor of this type, made of iron, which would have had a wooden stock mounted perpendicular to the shank and flukes to make the flukes contact the bottom at a suitable angle to hook or penetrate. The Admiralty Pattern anchor, or simply "Admiralty", also known as a "Fisherman", consists of a central shank with a ring or shackle for attaching the rode (the rope, chain, or cable connecting

1498-676: A hook. If there is much current, or if the vessel is moving while dropping the anchor, it may "kite" or "skate" over the bottom due to the large fluke area acting as a sail or wing. The FOB HP anchor designed in Brittany in the 1970s is a Danforth variant designed to give increased holding through its use of rounded flukes setting at a 30° angle. The Fortress is an American aluminum alloy Danforth variant that can be disassembled for storage and it features an adjustable 32° and 45° shank/fluke angle to improve holding capability in common sea bottoms such as hard sand and soft mud. This anchor performed well in

1605-510: A large rock as the primary element of their design. However, using pure weight to resist the forces of a storm works well only as a permanent mooring; a large enough rock would be nearly impossible to move to a new location. The ancient Greeks used baskets of stones, large sacks filled with sand, and wooden logs filled with lead. According to Apollonius Rhodius and Stephen of Byzantium , anchors were formed of stone, and Athenaeus states that they were also sometimes made of wood. Such anchors held

1712-418: A lightweight anchor for seaplanes, this design consists of two plough-like blades mounted to a shank, with a folding stock crossing through the crown of the anchor. Many manufacturers produce a plough-type anchor, so-named after its resemblance to an agricultural plough . All such anchors are copied from the original CQR ( Coastal Quick Release , or Clyde Quick Release , later rebranded as 'secure' by Lewmar),

1819-447: A load that is entirely horizontal, whilst an anchor rode made only of rope will never achieve a strictly horizontal pull. Metal A metal (from Ancient Greek μέταλλον ( métallon )  'mine, quarry, metal') is a material that, when polished or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. These properties are all associated with having electrons available at

1926-511: A lower atomic number) by neutron capture , with the two main modes of this repetitive capture being the s-process and the r-process . In the s-process ("s" stands for "slow"), singular captures are separated by years or decades, allowing the less stable nuclei to beta decay , while in the r-process ("rapid"), captures happen faster than nuclei can decay. Therefore, the s-process takes a more-or-less clear path: for example, stable cadmium-110 nuclei are successively bombarded by free neutrons inside

2033-447: A man who had risen from the lowest grade to officer was said to have "come in at the hawsehole". See also [ edit ] Hawsepiper References [ edit ] ^ "The Visual Dictionary, "Passenger Liner" " . ^ " Cathole at dictionary.com" . ^ E. Cobham Brewer (1894). Dictionary of Phrase and Fable . p. 1351. v t e Parts of

2140-463: A much higher fluke area to weight ratio than its predecessor. The designers also eliminated the sometimes troublesome hinge. It is a plough anchor with a rigid, arched shank. It is described as self-launching because it can be dropped from a bow roller simply by paying out the rode, without manual assistance. This is an oft copied design with the European Brake and Australian Sarca Excel being two of

2247-514: A real metal. In this respect they resemble degenerate semiconductors . This explains why the electrical properties of semimetals are partway between those of metals and semiconductors . There are additional types, in particular Weyl and Dirac semimetals . The classic elemental semimetallic elements are arsenic , antimony , bismuth , α- tin (gray tin) and graphite . There are also chemical compounds , such as mercury telluride (HgTe), and some conductive polymers . Metallic elements up to

SECTION 20

#1732858143822

2354-407: A result of a neutron star merger, thereby increasing the abundance of elements heavier than helium in the interstellar medium . When gravitational attraction causes this matter to coalesce and collapse new stars and planets are formed . The Earth's crust is made of approximately 25% of metallic elements by weight, of which 80% are light metals such as sodium, magnesium, and aluminium. Despite

2461-483: A role as investments and a store of value . Palladium and platinum, as of summer 2024, were valued at slightly less than half the price of gold, while silver is substantially less expensive. In electrochemistry, a valve metal is a metal which passes current in only one direction due to the formation of any insulating oxide later. There are many ceramic compounds which have metallic electrical conduction, but are not simple combinations of metallic elements. (They are not

2568-407: A significant portion of their holding power from their weight, while also hooking or embedding in the bottom. Modern anchors for smaller vessels have metal flukes that hook on to rocks on the bottom or bury themselves in soft seabed. The vessel is attached to the anchor by the rode (also called a cable or a warp ). It can be made of rope, chain or a combination of rope and chain. The ratio of

2675-412: A silt or mud bottom, since they rely upon suction and cohesion of the bottom material, which rocky or coarse sand bottoms lack. The holding power of this anchor is at best about twice its weight until it becomes buried, when it can be as much as ten times its weight. They are available in sizes from about 5 kg up to several tons. A deadweight is an anchor that relies solely on being a heavy weight. It

2782-422: A specialist service is normally needed to move or maintain them. Vessels carry one or more temporary anchors, which may be of different designs and weights. A sea anchor is a drag device, not in contact with the seabed, used to minimise drift of a vessel relative to the water. A drogue is a drag device used to slow or help steer a vessel running before a storm in a following or overtaking sea, or when crossing

2889-400: A star until they form cadmium-115 nuclei which are unstable and decay to form indium-115 (which is nearly stable, with a half-life 30 000 times the age of the universe). These nuclei capture neutrons and form indium-116, which is unstable, and decays to form tin-116, and so on. In contrast, there is no such path in the r-process. The s-process stops at bismuth due to the short half-lives of

2996-502: A support tug and pennant/pendant wire. Some examples are the Stevin range supplied by Vrijhof Ankers. Large plate anchors such as the Stevmanta are used for permanent moorings. The elements of anchoring gear include the anchor, the cable (also called a rode ), the method of attaching the two together, the method of attaching the cable to the ship, charts, and a method of learning the depth of

3103-428: A trip line from the crown, it is impossible to retrieve. Designed by yacht designer L. Francis Herreshoff , this is essentially the same pattern as an admiralty anchor, albeit with small diamond-shaped flukes or palms. The novelty of the design lay in the means by which it could be broken down into three pieces for stowage. In use, it still presents all the issues of the admiralty pattern anchor. Originally designed as

3210-489: A variety of other non-mass means of getting a grip on the bottom. One method of building a mooring is to use three or more conventional anchors laid out with short lengths of chain attached to a swivel, so no matter which direction the vessel moves, one or more anchors are aligned to resist the force. The mushroom anchor is suitable where the seabed is composed of silt or fine sand. It was invented by Robert Stevenson , for use by an 82-ton converted fishing boat, Pharos , which

3317-480: Is driven into the seabed. Permanent anchors come in a wide range of types and have no standard form. A slab of rock with an iron staple in it to attach a chain to would serve the purpose, as would any dense object of appropriate weight (for instance, an engine block ). Modern moorings may be anchored by augers , which look and act like oversized screws drilled into the seabed, or by barbed metal beams pounded in (or even driven in with explosives) like pilings, or by

Anchor - Misplaced Pages Continue

3424-432: Is a great tendency of the rode to foul the anchor as the vessel swings due to wind or current shifts. When this happens, the anchor may be pulled out of the bottom, and in some cases may need to be hauled up to be re-set. In the mid-19th century, numerous modifications were attempted to alleviate these problems, as well as improve holding power, including one-armed mooring anchors. The most successful of these patent anchors ,

3531-403: Is a metal that is very resistant to heat and wear. Which metals belong to this category varies; the most common definition includes niobium, molybdenum, tantalum, tungsten, and rhenium as well as their alloys. They all have melting points above 2000 °C, and a high hardness at room temperature. Several compounds such as titanium nitride are also described as refractory metals. A white metal

3638-611: Is any of a range of white-colored alloys with relatively low melting points used mainly for decorative purposes. In Britain, the fine art trade uses the term "white metal" in auction catalogues to describe foreign silver items which do not carry British Assay Office marks, but which are nonetheless understood to be silver and are priced accordingly. A heavy metal is any relatively dense metal, either single element or multielement. Magnesium , aluminium and titanium alloys are light metals of significant commercial importance. Their densities of 1.7, 2.7 and 4.5 g/cm range from 19 to 56% of

3745-480: Is composed mostly of iron, is thought to be the source of Earth's protective magnetic field. The core lies above Earth's solid inner core and below its mantle. If it could be rearranged into a column having a 5 m (54 sq ft) footprint it would have a height of nearly 700 light years. The magnetic field shields the Earth from the charged particles of the solar wind, and cosmic rays that would otherwise strip away

3852-611: Is due to the freely moving electrons which reflect light. Although most elemental metals have higher densities than nonmetals , there is a wide variation in their densities, lithium being the least dense (0.534 g/cm ) and osmium (22.59 g/cm ) the most dense. Some of the 6d transition metals are expected to be denser than osmium, but their known isotopes are too unstable for bulk production to be possible Magnesium, aluminium and titanium are light metals of significant commercial importance. Their respective densities of 1.7, 2.7, and 4.5 g/cm can be compared to those of

3959-620: Is evidence that this and comparable behavior in transuranic elements is due to more complex relativistic and spin interactions which are not captured in simple models. All of the metallic alloys as well as conducting ceramics and polymers are metals by the same definition; for instance titanium nitride has delocalized states at the Fermi level. They have electrical conductivities similar to those of elemental metals. Liquid forms are also metallic conductors or electricity, for instance mercury . In normal conditions no gases are metallic conductors. However,

4066-408: Is generally not compact and it may be awkward to stow unless a collapsing model is used. Grapnels rarely have enough fluke area to develop much hold in sand, clay, or mud. It is not unknown for the anchor to foul on its own rode, or to foul the tines with refuse from the bottom, preventing it from digging in. On the other hand, it is quite possible for this anchor to find such a good hook that, without

4173-544: Is no external voltage . When a voltage is applied some move a little faster in a given direction, some a little slower so there is a net drift velocity which leads to an electric current. This involves small changes in which wavefunctions the electrons are in, changing to those with the higher momenta. Quantum mechanics dictates that one can only have one electron in a given state, the Pauli exclusion principle . Therefore there have to be empty delocalized electron states (with

4280-507: Is not suited to rodes because it floats and is much weaker than nylon, being barely stronger than natural fibres. Some grades of polypropylene break down in sunlight and become hard, weak, and unpleasant to handle. Natural fibres such as manila or hemp are still used in developing nations but absorb a lot of water, are relatively weak, and rot, although they do give good handling grip and are often relatively cheap. Ropes that have little or no elasticity are not suitable as anchor rodes. Elasticity

4387-474: Is not. In the context of metals, an alloy is a substance having metallic properties which is composed of two or more elements . Often at least one of these is a metallic element; the term "alloy" is sometimes used more generally as in silicon–germanium alloys. An alloy may have a variable or fixed composition. For example, gold and silver form an alloy in which the proportions of gold or silver can be varied; titanium and silicon form an alloy TiSi 2 in which

Anchor - Misplaced Pages Continue

4494-440: Is partly a function of the fibre material and partly of the rope structure. All anchors should have chain at least equal to the boat's length. Some skippers prefer an all chain warp for greater security on coral or sharp edged rock bottoms. The chain should be shackled to the warp through a steel eye or spliced to the chain using a chain splice. The shackle pin should be securely wired or moused. Either galvanized or stainless steel

4601-575: Is positioned at the center of a cube of eight others. In fcc and hcp, each atom is surrounded by twelve others, but the stacking of the layers differs. Some metals adopt different structures depending on the temperature. Many other metals with different elements have more complicated structures, such as rock-salt structure in titanium nitride or perovskite (structure) in some nickelates. The electronic structure of metals means they are relatively good conductors of electricity . The electrons all have different momenta , which average to zero when there

4708-412: Is suitable for eyes and shackles, galvanised steel being the stronger of the two. Some skippers prefer to add a swivel to the rode. There is a school of thought that says these should not be connected to the anchor itself, but should be somewhere in the chain. However, most skippers connect the swivel directly to the anchor. Scope is the ratio of length of the rode to the depth of the water measured from

4815-425: Is the proportion of its matter made up of the heavier chemical elements. The strength and resilience of some metals has led to their frequent use in, for example, high-rise building and bridge construction , as well as most vehicles, many home appliances , tools, pipes, and railroad tracks. Precious metals were historically used as coinage , but in the modern era, coinage metals have extended to at least 23 of

4922-402: Is usually just a large block of concrete or stone at the end of the chain. Its holding power is defined by its weight underwater (i.e., taking its buoyancy into account) regardless of the type of seabed, although suction can increase this if it becomes buried. Consequently, deadweight anchors are used where mushroom anchors are unsuitable, for example in rock, gravel or coarse sand. An advantage of

5029-469: The Burgers vector of the dislocations are fairly small, which also means that the energy needed to produce one is small. In contrast, in an ionic compound like table salt the Burgers vectors are much larger and the energy to move a dislocation is far higher. Reversible elastic deformation in metals can be described well by Hooke's Law for the restoring forces, where the stress is linearly proportional to

5136-484: The Fermi level , as against nonmetallic materials which do not. Metals are typically ductile (can be drawn into wires) and malleable (they can be hammered into thin sheets). A metal may be a chemical element such as iron ; an alloy such as stainless steel ; or a molecular compound such as polymeric sulfur nitride . The general science of metals is called metallurgy , a subtopic of materials science ; aspects of

5243-415: The periodic table . If there are several, the most stable allotrope is considered. The situation changes with pressure: at extremely high pressures, all elements (and indeed all substances) are expected to metallize. Arsenic (As) has both a stable metallic allotrope and a metastable semiconducting allotrope at standard conditions. A similar situation affects carbon (C): graphite is metallic, but diamond

5350-539: The strain . A temperature change may lead to the movement of structural defects in the metal such as grain boundaries , point vacancies , line and screw dislocations , stacking faults and twins in both crystalline and non-crystalline metals. Internal slip , creep , and metal fatigue may also ensue. The atoms of simple metallic substances are often in one of three common crystal structures , namely body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close-packed (hcp). In bcc, each atom

5457-486: The vicinity of iron (in the periodic table) are largely made via stellar nucleosynthesis . In this process, lighter elements from hydrogen to silicon undergo successive fusion reactions inside stars, releasing light and heat and forming heavier elements with higher atomic numbers. Heavier elements are not usually formed this way since fusion reactions involving such nuclei would consume rather than release energy. Rather, they are largely synthesised (from elements with

SECTION 50

#1732858143822

5564-568: The Bügel Anker in the 1980s. Kaczirek wanted an anchor that was self-righting without necessitating a ballasted tip. Instead, he added a roll bar and switched out the plough share for a flat blade design. As none of the innovations of this anchor were patented, copies of it abound. Alain Poiraud of France introduced the scoop type anchor in 1996. Similar in design to the Bügel anchor, Poiraud's design features

5671-439: The Fermi energy. Many elements and compounds become metallic under high pressures, for example, iodine gradually becomes a metal at a pressure of between 40 and 170 thousand times atmospheric pressure . Sodium becomes a nonmetal at pressure of just under two million times atmospheric pressure, and at even higher pressures it is expected to become a metal again. When discussing the periodic table and some chemical properties

5778-460: The Trotman Anchor, introduced a pivot at the centre of the crown where the arms join the shank, allowing the "idle" upper arm to fold against the shank. When deployed the lower arm may fold against the shank tilting the tip of the fluke upwards, so each fluke has a tripping palm at its base, to hook on the bottom as the folded arm drags along the seabed, which unfolds the downward oriented arm until

5885-477: The addition of chromium , nickel , and molybdenum to carbon steels (more than 10%) results in stainless steels with enhanced corrosion resistance. Other significant metallic alloys are those of aluminum , titanium , copper , and magnesium . Copper alloys have been known since prehistory— bronze gave the Bronze Age its name—and have many applications today, most importantly in electrical wiring. The alloys of

5992-599: The air to form oxides over various timescales ( potassium burns in seconds while iron rusts over years) which depend upon whether the native oxide forms a passivation layer that acts as a diffusion barrier . Some others, like palladium , platinum , and gold , do not react with the atmosphere at all; gold can form compounds where it gains an electron (aurides, e.g. caesium auride ). The oxides of elemental metals are often basic . However, oxides with very high oxidation states such as CrO 3 , Mn 2 O 7 , and OsO 4 often have strictly acidic reactions; and oxides of

6099-503: The anchor is a set of tripping palms, projections that drag on the bottom, forcing the main flukes to dig in. Until the mid-20th century, anchors for smaller vessels were either scaled-down versions of admiralty anchors, or simple grapnels . As new designs with greater holding-power-to-weight ratios were sought, a great variety of anchor designs have emerged. Many of these designs are still under patent, and other types are best known by their original trademarked names. A traditional design,

6206-441: The anchor to the vessel is usually made up of chain, rope, or a combination of those. Large ships use only chain rode. Smaller craft might use a rope/chain combination or an all chain rode. All rodes should have some chain; chain is heavy but it resists abrasion from coral, sharp rocks, or shellfish beds, whereas a rope warp is susceptible to abrasion and can fail in a short time when stretched against an abrasive surface. The weight of

6313-510: The anchor. Before dropping the anchor, the fishing process is reversed, and the anchor is dropped from the end of the cathead. The stockless anchor, patented in England in 1821, represented the first significant departure in anchor design in centuries. Although their holding- power-to-weight ratio is significantly lower than admiralty pattern anchors, their ease of handling and stowage aboard large ships led to almost universal adoption. In contrast to

6420-447: The bottom type). Tripping palms at the crown act to tip the flukes into the seabed. The design is a burying variety, and once well set can develop high resistance. Its lightweight and compact flat design make it easy to retrieve and relatively easy to store; some anchor rollers and hawsepipes can accommodate a fluke-style anchor. A Danforth does not usually penetrate or hold in gravel or weeds. In boulders and coral it may hold by acting as

6527-400: The bottom, and this absorbs shock loads until the chain is straight, at which point the full load is taken by the anchor. Additional dissipation of shock loads can be achieved by fitting a snubber between the chain and a bollard or cleat on deck. This also reduces shock loads on the deck fittings, and the vessel usually lies more comfortably and quietly. Being strong and elastic, nylon rope is

SECTION 60

#1732858143822

6634-455: The bottom. The Admiralty Anchor is an entirely independent reinvention of a classical design, as seen in one of the Nemi ship anchors. This basic design remained unchanged for centuries, with the most significant changes being to the overall proportions, and a move from stocks made of wood to iron stocks in the late 1830s and early 1840s. Since one fluke always protrudes up from the set anchor, there

6741-410: The case of lightvessels or channel marker buoys . The anchor needs to hold the vessel in all weathers, including the most severe storm , but needs to be lifted only occasionally, at most – for example, only if the vessel is to be towed into port for maintenance. An alternative to using an anchor under these circumstances, especially if the anchor need never be lifted at all, may be to use a pile that

6848-454: The chain also helps keep the direction of pull on the anchor closer to horizontal, which improves holding, and absorbs part of snubbing loads. Where weight is not an issue, a heavier chain provides better holding by forming a catenary curve through the water and resting as much of its length on the bottom as would not be lifted by tension of the mooring load. Any changes to the tension are accommodated by additional chain being lifted or settling on

6955-445: The chemical elements. There is also extensive use of multi-element metals such as titanium nitride or degenerate semiconductors in the semiconductor industry. The history of refined metals is thought to begin with the use of copper about 11,000 years ago. Gold, silver, iron (as meteoric iron), lead, and brass were likewise in use before the first known appearance of bronze in the fifth millennium BCE. Subsequent developments include

7062-406: The densities of other structural metals, such as iron (7.9) and copper (8.9) and their alloys. The term base metal refers to a metal that is easily oxidized or corroded , such as reacting easily with dilute hydrochloric acid (HCl) to form a metal chloride and hydrogen . The term is normally used for the elements, and examples include iron, nickel , lead , and zinc. Copper is considered

7169-495: The detailed structure of the metal's ion lattice. Taking into account the positive potential caused by the arrangement of the ion cores enables consideration of the electronic band structure and binding energy of a metal. Various models are applicable, the simplest being the nearly free electron model . Modern methods such as density functional theory are typically used. The elements which form metals usually form cations through electron loss. Most will react with oxygen in

7276-458: The elaborate stowage procedures for earlier anchors, stockless anchors are simply hauled up until they rest with the shank inside the hawsepipes, and the flukes against the hull (or inside a recess in the hull called the Anchor Box). While there are numerous variations, stockless anchors consist of a set of heavy flukes connected by a pivot or ball and socket joint to a shank. Cast into the crown of

7383-429: The electronic and thermal properties are also within the scope of condensed matter physics and solid-state chemistry , it is a multidisciplinary topic. In colloquial use materials such as steel alloys are referred to as metals, while others such as polymers, wood or ceramics are nonmetallic materials . A metal conducts electricity at a temperature of absolute zero , which is a consequence of delocalized states at

7490-456: The elements from fermium (Fm) onwards are shown in gray because they are extremely radioactive and have never been produced in bulk. Theoretical and experimental evidence suggests that these uninvestigated elements should be metals, except for oganesson (Og) which DFT calculations indicate would be a semiconductor. Metallic Network covalent Molecular covalent Single atoms Unknown Background color shows bonding of simple substances in

7597-433: The f-block elements. They have a strong affinity for oxygen and mostly exist as relatively low-density silicate minerals. Chalcophile elements are mainly the less reactive d-block elements, and the period 4–6 p-block metals. They are usually found in (insoluble) sulfide minerals. Being denser than the lithophiles, hence sinking lower into the crust at the time of its solidification, the chalcophiles tend to be less abundant than

7704-490: The grapnel is merely a shank (no stock) with four or more tines, also known as a drag . It has a benefit in that, no matter how it reaches the bottom, one or more tines are aimed to set. In coral, or rock, it is often able to set quickly by hooking into the structure, but may be more difficult to retrieve. A grapnel is often quite light, and may have additional uses as a tool to recover gear lost overboard. Its weight also makes it relatively easy to move and carry, however its shape

7811-720: The higher momenta) available at the highest occupied energies as sketched in the Figure. In a semiconductor like silicon or a nonmetal like strontium titanate there is an energy gap between the highest filled states of the electrons and the lowest unfilled, so no accessible states with slightly higher momenta. Consequently, semiconductors and nonmetals are poor conductors, although they can carry some current when doped with elements that introduce additional partially occupied energy states at higher temperatures. The elemental metals have electrical conductivity values of from 6.9 × 10 S /cm for manganese to 6.3 × 10 S/cm for silver . In contrast,

7918-419: The highest point (usually the anchor roller or bow chock) to the seabed, making allowance for the highest expected tide. When making this ratio large enough, one can ensure that the pull on the anchor is as horizontal as possible. This will make it unlikely for the anchor to break out of the bottom and drag, if it was properly embedded in the seabed to begin with. When deploying chain, a large enough scope leads to

8025-436: The known examples of half-metals are oxides , sulfides , or Heusler alloys . A semimetal is a material with a small energy overlap between the bottom of the conduction band and the top of the valence band , but they do not overlap in momentum space . Unlike a regular metal, semimetals have charge carriers of both types (holes and electrons), although the charge carriers typically occur in much smaller numbers than in

8132-494: The length of rode to the water depth is known as the scope (see below). Holding ground is the area of sea floor that holds an anchor, and thus the attached ship or boat. Different types of anchor are designed to hold in different types of holding ground. Some bottom materials hold better than others; for instance, hard sand holds well, shell holds poorly. Holding ground may be fouled with obstacles. An anchorage location may be chosen for its holding ground. In poor holding ground, only

8239-482: The less electropositive metals such as BeO, Al 2 O 3 , and PbO, can display both basic and acidic properties. The latter are termed amphoteric oxides. The elements that form exclusively metallic structures under ordinary conditions are shown in yellow on the periodic table below. The remaining elements either form covalent network structures (light blue), molecular covalent structures (dark blue), or remain as single atoms (violet). Astatine (At), francium (Fr), and

8346-408: The lithophiles. On the other hand, gold is a siderophile, or iron-loving element. It does not readily form compounds with either oxygen or sulfur. At the time of the Earth's formation, and as the most noble (inert) of metallic elements, gold sank into the core due to its tendency to form high-density metallic alloys. Consequently, it is relatively rare. Some other (less) noble ones—molybdenum, rhenium,

8453-406: The location of potential dangers, as well as being useful in estimating the effects of weather and tide in the anchorage, is essential in choosing a good place to drop the hook. One can get by without referring to charts, but they are an important tool and a part of good anchoring gear, and a skilled mariner would not choose to anchor without them. The anchor rode (or "cable" or "warp") that connects

8560-407: The metallic alloys in use today, the alloys of iron ( steel , stainless steel , cast iron , tool steel , alloy steel ) make up the largest proportion both by quantity and commercial value. Iron alloyed with various proportions of carbon gives low-, mid-, and high-carbon steels, with increasing carbon levels reducing ductility and toughness. The addition of silicon will produce cast irons, while

8667-489: The more notable ones. Although it is a plough type anchor, it sets and holds reasonably well in hard bottoms. American Richard Danforth invented the Danforth Anchor in the 1940s for use aboard landing craft . It uses a stock at the crown to which two large flat triangular flukes are attached. The stock is hinged so the flukes can orient toward the bottom (and on some designs may be adjusted for an optimal angle depending on

8774-447: The most suitable as an anchor rode. Polyester (terylene) is stronger but less elastic than nylon. Both materials sink, so they avoid fouling other craft in crowded anchorages and do not absorb much water. Neither breaks down quickly in sunlight. Elasticity helps absorb shock loading, but causes faster abrasive wear when the rope stretches over an abrasive surface, like a coral bottom or a poorly designed chock. Polypropylene ("polyprop")

8881-401: The next two elements, polonium and astatine, which decay to bismuth or lead. The r-process is so fast it can skip this zone of instability and go on to create heavier elements such as thorium and uranium. Metals condense in planets as a result of stellar evolution and destruction processes. Stars lose much of their mass when it is ejected late in their lifetimes, and sometimes thereafter as

8988-493: The nitrogen. However, unlike most elemental metals, ceramic metals are often not particularly ductile. Their uses are widespread, for instance titanium nitride finds use in orthopedic devices and as a wear resistant coating. In many cases their utility depends upon there being effective deposition methods so they can be used as thin film coatings. There are many polymers which have metallic electrical conduction, typically associated with extended aromatic components such as in

9095-618: The older structural metals, like iron at 7.9 and copper at 8.9 g/cm . The most common lightweight metals are aluminium and magnesium alloys. Metals are typically malleable and ductile, deforming under stress without cleaving . The nondirectional nature of metallic bonding contributes to the ductility of most metallic solids, where the Peierls stress is relatively low allowing for dislocation motion, and there are also many combinations of planes and directions for plastic deformation . Due to their having close packed arrangements of atoms

9202-702: The other three metals have been developed relatively recently; due to their chemical reactivity they need electrolytic extraction processes. The alloys of aluminum, titanium, and magnesium are valued for their high strength-to-weight ratios; magnesium can also provide electromagnetic shielding . These materials are ideal for situations where high strength-to-weight ratio is more important than material cost, such as in aerospace and some automotive applications. Alloys specially designed for highly demanding applications, such as jet engines , may contain more than ten elements. Metals can be categorised by their composition, physical or chemical properties. Categories described in

9309-400: The overall scarcity of some heavier metals such as copper, they can become concentrated in economically extractable quantities as a result of mountain building, erosion, or other geological processes. Metallic elements are primarily found as lithophiles (rock-loving) or chalcophiles (ore-loving). Lithophile elements are mainly the s-block elements, the more reactive of the d-block elements, and

9416-420: The platinum group metals (ruthenium, rhodium, palladium, osmium, iridium, and platinum), germanium, and tin—can be counted as siderophiles but only in terms of their primary occurrence in the Earth (core, mantle, and crust), rather the crust. These otherwise occur in the crust, in small quantities, chiefly as chalcophiles (less so in their native form). The rotating fluid outer core of the Earth's interior, which

9523-547: The polymers indicated in the Figure. The conduction of the aromatic regions is similar to that of graphite, so is highly directional. A half-metal is any substance that acts as a conductor to electrons of one spin orientation, but as an insulator or semiconductor to those of the opposite spin. They were first described in 1983, as an explanation for the electrical properties of manganese -based Heusler alloys . Although all half-metals are ferromagnetic (or ferrimagnetic ), most ferromagnets are not half-metals. Many of

9630-401: The production of early forms of steel; the discovery of sodium —the first light metal —in 1809; the rise of modern alloy steels ; and, since the end of World War II, the development of more sophisticated alloys. Most metals are shiny and lustrous , at least when polished, or fractured. Sheets of metal thicker than a few micrometres appear opaque, but gold leaf transmits green light. This

9737-408: The ratio between thermal and electrical conductivities is proportional to temperature, with a proportionality constant that is roughly the same for all metals. The contribution of a metal's electrons to its heat capacity and thermal conductivity, and the electrical conductivity of the metal itself can be approximately calculated from the free electron model . However, this does not take into account

9844-415: The ratio of the two components is fixed (also known as an intermetallic compound ). Most pure metals are either too soft, brittle, or chemically reactive for practical use. Combining different ratios of metals and other elements in alloys modifies the properties to produce desirable characteristics, for instance more ductile, harder, resistant to corrosion, or have a more desirable color and luster. Of all

9951-414: The sale price of the metal(s) involved make it economically feasible to mine lower concentration sources. Hawsepipe (Redirected from Hawsepipe ) Nautical term [REDACTED] Hawsehole is a nautical term for a small hole in the hull of a ship through which hawsers may be passed. It is also known as a cat hole. In the (British) Royal Navy ,

10058-416: The same as cermets which are composites of a non-conducting ceramic and a conducting metal.) One set, the transition metal nitrides has significant ionic character to the bonding, so can be classified as both ceramics and metals. They have partially filled states at the Fermi level so are good thermal and electrical conductors, and there is often significant charge transfer from the transition metal atoms to

10165-544: The seabed with the use of a tool, so require access to the bottom, either at low tide or by use of a diver. Hence they can be difficult to install in deep water without special equipment. Weight for weight, augers have a higher holding than other permanent designs, and so can be cheap and relatively easily installed, although difficult to set in extremely soft mud. There is a need in the oil-and-gas industry to resist large anchoring forces when laying pipelines and for drilling vessels. These anchors are installed and removed using

10272-410: The seafloor. By contrast, modern efficient anchors tend to be "scoop" types that dig ever deeper. The Delta anchor was derived from the CQR. It was patented by Philip McCarron, James Stewart, and Gordon Lyall of British marine manufacturer Simpson-Lawrence Ltd in 1992. It was designed as an advance over the anchors used for floating systems such as oil rigs. It retains the weighted tip of the CQR but has

10379-481: The shank's weight from disrupting the fluke's orientation while setting. The hinge can wear out and may trap a sailor's fingers. Some later plough anchors have a rigid shank, such as the Lewmar's "Delta". A plough anchor has a fundamental flaw: like its namesake, the agricultural plough, it digs in but then tends to break out back to the surface. Plough anchors sometimes have difficulty setting at all, and instead skip across

10486-403: The ship and the anchor). At the other end of the shank there are two arms, carrying the flukes, while the stock is mounted to the shackle end, at ninety degrees to the arms. When the anchor lands on the bottom, it generally falls over with the arms parallel to the seabed. As a strain comes onto the rope, the stock digs into the bottom, canting the anchor until one of the flukes catches and digs into

10593-631: The subsections below include ferrous and non-ferrous metals; brittle metals and refractory metals ; white metals; heavy and light metals; base , noble , and precious metals as well as both metallic ceramics and polymers . The term "ferrous" is derived from the Latin word meaning "containing iron". This can include pure iron, such as wrought iron , or an alloy such as steel . Ferrous metals are often magnetic , but not exclusively. Non-ferrous metals and alloys lack appreciable amounts of iron. While nearly all elemental metals are malleable or ductile,

10700-474: The term base metal is contrasted with precious metal , that is, those of high economic value. Most coins today are made of base metals with low intrinsic value ; in the past, coins frequently derived their value primarily from their precious metal content; gold , silver , platinum , and palladium each have an ISO 4217 currency code. Currently they have industrial uses such as platinum and palladium in catalytic converters , are used in jewellery and also

10807-634: The term metal is often used to denote those elements which in pure form and at standard conditions are metals in the sense of electrical conduction mentioned above. The related term metallic may also be used for types of dopant atoms or alloying elements. In astronomy metal refers to all chemical elements in a star that are heavier than helium . In this sense the first four "metals" collecting in stellar cores through nucleosynthesis are carbon , nitrogen , oxygen , and neon . A star fuses lighter atoms, mostly hydrogen and helium, into heavier atoms over its lifetime. The metallicity of an astronomical object

10914-419: The tip of the fluke can engage the bottom. Handling and storage of these anchors requires special equipment and procedures. Once the anchor is hauled up to the hawsepipe , the ring end is hoisted up to the end of a timber projecting from the bow known as the cathead . The crown of the anchor is then hauled up with a heavy tackle until one fluke can be hooked over the rail. This is known as "catting and fishing"

11021-496: The upper atmosphere (including the ozone layer that limits the transmission of ultraviolet radiation). Metallic elements are often extracted from the Earth by mining ores that are rich sources of the requisite elements, such as bauxite . Ores are located by prospecting techniques, followed by the exploration and examination of deposits. Mineral sources are generally divided into surface mines , which are mined by excavation using heavy equipment, and subsurface mines . In some cases,

11128-467: The vessel merely by their weight and by their friction along the bottom. Iron was afterwards introduced for the construction of anchors, and an improvement was made by forming them with teeth, or "flukes", to fasten themselves into the bottom. This is the iconic anchor shape most familiar to non-sailors. This form has been used since antiquity. The Roman Nemi ships of the 1st century AD used this form. The Viking Ladby ship (probably 10th century) used

11235-639: The water. Vessels may carry a number of anchors: bower anchors are the main anchors used by a vessel and normally carried at the bow of the vessel. A kedge anchor is a light anchor used for warping an anchor , also known as kedging , or more commonly on yachts for mooring quickly or in benign conditions. A stream anchor , which is usually heavier than a kedge anchor , can be used for kedging or warping in addition to temporary mooring and restraining stern movement in tidal conditions or in waters where vessel movement needs to be restricted, such as rivers and channels. Charts are vital to good anchoring. Knowing

11342-474: The weight of an anchor and chain matters; in good holding ground, it is able to dig in, and the holding power can be significantly higher. The word "anchor" is sometimes used as British slang for the brakes on a car. The earliest anchors were probably rocks, and many rock anchors have been found dating from at least the Bronze Age . Pre-European Māori waka (canoes) used one or more hollowed stones, tied with flax ropes, as anchors. Many modern moorings still rely on

11449-539: Was used as a lightvessel between 1807 and 1810 near to Bell Rock whilst the lighthouse was being constructed. It was equipped with a 1.5-ton example. It is shaped like an inverted mushroom, the head becoming buried in the silt. A counterweight is often provided at the other end of the shank to lay it down before it becomes buried. A mushroom anchor normally sinks in the silt to the point where it has displaced its own weight in bottom material, thus greatly increasing its holding power. These anchors are suitable only for

#821178