Misplaced Pages

Bytham River

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#542457

96-696: The Bytham River is said to have been one of the great Pleistocene rivers of central and eastern England until it was destroyed by the advancing ice sheets of the Anglian Glaciation around 450,000 years ago. The river is named after Castle Bytham in Lincolnshire , where the watercourse is said to have crossed the Lincolnshire limestone hills in a valley now buried by Anglian till . West of that location, its catchment area included much of Warwickshire , Leicestershire and Derbyshire . East of that location,

192-585: A change from low-amplitude glacial cycles with a dominant periodicity of 41,000 years to asymmetric high-amplitude cycles dominated by a periodicity of 100,000 years. However, a 2020 study concluded that ice age terminations might have been influenced by obliquity since the Mid-Pleistocene Transition, which caused stronger summers in the Northern Hemisphere . Glaciation in the Pleistocene

288-574: A deviation from today's annual mean temperature, taken as zero. This sort of graph is based on another isotope ratio versus time. Ratios are converted to a percentage difference from the ratio found in standard mean ocean water (SMOW). The graph in either form appears as a waveform with overtones . One half of a period is a Marine isotopic stage (MIS). It indicates a glacial (below zero) or an interglacial (above zero). Overtones are stadials or interstadials. According to this evidence, Earth experienced 102 MIS stages beginning at about 2.588 Ma BP in

384-421: A few regions had been studied and the names were relatively few. Today the geologists of different nations are taking more of an interest in Pleistocene glaciology. As a consequence, the number of names is expanding rapidly and will continue to expand. Many of the advances and stadials remain unnamed. Also, the terrestrial evidence for some of them has been erased or obscured by larger ones, but evidence remains from

480-555: A precursor of the Waveney river, running across East Anglia. In the mid-2010s the existence of the Bytham was disputed. It was argued that an eastern section of the supposed river, flowing across central East Anglia, was indeed part of a pre-Anglian watercourse, but one which came from the north-west, through the Ancaster Gap in Lincolnshire. That "proto- Trent " river was severely disrupted by

576-513: A result of melting ice, the land has continued to rise yearly in Scandinavia, mostly in northern Sweden and Finland, where the land is rising at a rate of as much as 8–9 mm per year, or 1 m in 100 years. This is important for archaeologists, since a site that was coastal in the Nordic Stone Age now is inland and can be dated by its relative distance from the present shore. The term Würm

672-762: A still lesser extent, glaciers existed in Africa, for example in the High Atlas , the mountains of Morocco , the Mount Atakor massif in southern Algeria , and several mountains in Ethiopia . Just south of the equator, an ice cap of several hundred square kilometers was present on the east African mountains in the Kilimanjaro massif , Mount Kenya , and the Rwenzori Mountains , which still bear relic glaciers today. Glaciation of

768-568: A team of Russian scientists in collaboration with Princeton University announced that they had brought two female nematodes frozen in permafrost , from around 42,000 years ago, back to life. The two nematodes, at the time, were the oldest confirmed living animals on the planet. The evolution of anatomically modern humans took place during the Pleistocene. At the beginning of the Pleistocene Paranthropus species were still present, as well as early human ancestors, but during

864-594: Is derived from a river in the Alpine foreland, roughly marking the maximum glacier advance of this particular glacial period. The Alps were where the first systematic scientific research on ice ages was conducted by Louis Agassiz at the beginning of the 19th century. Here, the Würm glaciation of the LGP was intensively studied. Pollen analysis , the statistical analyses of microfossilized plant pollens found in geological deposits, chronicled

960-765: Is estimated that, at maximum glacial extent, 30% of the Earth's surface was covered by ice. In addition, a zone of permafrost stretched southward from the edge of the glacial sheet, a few hundred kilometres in North America , and several hundred in Eurasia . The mean annual temperature at the edge of the ice was −6 °C (21 °F); at the edge of the permafrost, 0 °C (32 °F). Each glacial advance tied up huge volumes of water in continental ice sheets 1,500 to 3,000 metres (4,900–9,800 ft) thick, resulting in temporary sea-level drops of 100 metres (300 ft) or more over

1056-454: Is no systematic correspondence between pluvials to glacials, however. Moreover, regional pluvials do not correspond to each other globally. For example, some have used the term "Riss pluvial" in Egyptian contexts. Any coincidence is an accident of regional factors. Only a few of the names for pluvials in restricted regions have been stratigraphically defined. The sum of transient factors acting at

SECTION 10

#1732844125543

1152-578: The Ice Age ) is the geological epoch that lasted from c.  2.58 million to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations . Before a change was finally confirmed in 2009 by the International Union of Geological Sciences , the cutoff of the Pleistocene and the preceding Pliocene was regarded as being 1.806 million years Before Present (BP). Publications from earlier years may use either definition of

1248-638: The Alpine ice sheet on the Alps . Scattered domes stretched across Siberia and the Arctic shelf. The northern seas were ice-covered. South of the ice sheets large lakes accumulated because outlets were blocked and the cooler air slowed evaporation. When the Laurentide Ice Sheet retreated, north-central North America was completely covered by Lake Agassiz . Over a hundred basins, now dry or nearly so, were overflowing in

1344-921: The Central Rocky Mountains ), Wisconsinan or Wisconsin (in central North America), Devensian (in the British Isles), Midlandian (in Ireland), Würm (in the Alps ), Mérida (in Venezuela ), Weichselian or Vistulian (in Northern Europe and northern Central Europe), Valdai in Russia and Zyryanka in Siberia , Llanquihue in Chile , and Otira in New Zealand. The geochronological Late Pleistocene includes

1440-639: The Himalayas , and other formerly glaciated regions around the world. The glaciations that occurred during this glacial period covered many areas, mainly in the Northern Hemisphere and to a lesser extent in the Southern Hemisphere. They have different names, historically developed and depending on their geographic distributions: Fraser (in the Pacific Cordillera of North America), Pinedale (in

1536-521: The ICS timescale, the Pleistocene is divided into four stages or ages , the Gelasian , Calabrian , Chibanian (previously the unofficial "Middle Pleistocene"), and Upper Pleistocene (unofficially the "Tarantian"). In addition to these international subdivisions, various regional subdivisions are often used. In 2009 the International Union of Geological Sciences (IUGS) confirmed a change in time period for

1632-520: The Isthmus of Panama , causing a faunal interchange between the two regions and changing ocean circulation patterns, with the onset of glaciation in the Northern Hemisphere occurring around 2.7 million years ago. During the Early Pleistocene (2.58–0.8 Ma), archaic humans of the genus Homo originated in Africa and spread throughout Afro-Eurasia . The end of the Early Pleistocene is marked by

1728-542: The Last Glacial Maximum occurring between 26,000 and 20,000 years ago. While the general pattern of cooling and glacier advance around the globe was similar, local differences make it difficult to compare the details from continent to continent (see picture of ice core data below for differences). The most recent cooling, the Younger Dryas , began around 12,800 years ago and ended around 11,700 years ago, also marking

1824-591: The Late Pleistocene . The LGP is part of a larger sequence of glacial and interglacial periods known as the Quaternary glaciation which started around 2,588,000 years ago and is ongoing. The glaciation and the current Quaternary Period both began with the formation of the Arctic ice cap . The Antarctic ice sheet began to form earlier, at about 34 Mya, in the mid- Cenozoic ( Eocene–Oligocene extinction event ), and

1920-660: The Laurentide Ice Sheet . Charles Lyell introduced the term "Pleistocene" in 1839 to describe strata in Sicily that had at least 70% of their molluscan fauna still living today. This distinguished it from the older Pliocene Epoch , which Lyell had originally thought to be the youngest fossil rock layer. He constructed the name "Pleistocene" ('most new' or 'newest') from the Greek πλεῖστος ( pleīstos ) 'most' and καινός ( kainós ( Latinized as cænus ) 'new'). This contrasts with

2016-585: The Lesotho Highlands and parts of the Drakensberg . The development of glaciers was likely aided in part due to shade provided by adjacent cliffs. Various moraines and former glacial niches have been identified in the eastern Lesotho Highlands a few kilometres west of the Great Escarpment , at altitudes greater than 3,000 m on south-facing slopes. Studies suggest that the annual average temperature in

SECTION 20

#1732844125543

2112-593: The Mid-Pleistocene Transition , with the cyclicity of glacial cycles changing from 41,000-year cycles to asymmetric 100,000-year cycles, making the climate variation more extreme. The Late Pleistocene witnessed the spread of modern humans outside of Africa as well as the extinction of all other human species. Humans also spread to the Australian continent and the Americas for the first time, co-incident with

2208-697: The Owen Stanley Range , and the Saruwaged Range . Mount Giluwe in the Central Cordillera had a "more or less continuous ice cap covering about 188 km and extending down to 3200-3500 m". In Western New Guinea , remnants of these glaciers are still preserved atop Puncak Jaya and Ngga Pilimsit . Small glaciers developed in a few favorable places in Southern Africa during the last glacial period. These small glaciers would have been located in

2304-635: The Ruwenzori Range in east and central Africa were larger. Glaciers existed in the mountains of Ethiopia and to the west in the Atlas Mountains . In the northern hemisphere, many glaciers fused into one. The Cordilleran Ice Sheet covered the North American northwest; the east was covered by the Laurentide . The Fenno-Scandian ice sheet rested on northern Europe , including much of Great Britain;

2400-688: The Sierra Nevada in northern California . In northern Eurasia, the Scandinavian ice sheet once again reached the northern parts of the British Isles , Germany , Poland , and Russia, extending as far east as the Taymyr Peninsula in western Siberia. The maximum extent of western Siberian glaciation was reached by about 18,000 to 17,000 BP, later than in Europe (22,000–18,000 BP). Northeastern Siberia

2496-702: The Upper Mississippi River , which in turn was formed during an earlier glacial period. In its retreat, the Wisconsin episode glaciation left terminal moraines that form Long Island , Block Island , Cape Cod , Nomans Land , Martha's Vineyard , Nantucket , Sable Island , and the Oak Ridges Moraine in south-central Ontario, Canada. In Wisconsin itself, it left the Kettle Moraine . The drumlins and eskers formed at its melting edge are landmarks of

2592-564: The grooves left by these glaciers can be easily observed. In southwestern Saskatchewan and southeastern Alberta, a suture zone between the Laurentide and Cordilleran ice sheets formed the Cypress Hills , which is the northernmost point in North America that remained south of the continental ice sheets. The Great Lakes are the result of glacial scour and pooling of meltwater at the rim of

2688-576: The isostatically depressed area, a temporary marine incursion that geologists dub the Yoldia Sea . Then, as postglacial isostatic rebound lifted the region about 9500 BP, the deepest basin of the Baltic became a freshwater lake, in palaeological contexts referred to as Ancylus Lake , which is identifiable in the freshwater fauna found in sediment cores. The lake was filled by glacial runoff, but as worldwide sea level continued rising, saltwater again breached

2784-477: The last glacial period ended about 10,000 years ago. Over 11 major glacial events have been identified, as well as many minor glacial events. A major glacial event is a general glacial excursion, termed a "glacial." Glacials are separated by "interglacials". During a glacial, the glacier experiences minor advances and retreats. The minor excursion is a "stadial"; times between stadials are "interstadials". These events are defined differently in different regions of

2880-588: The woolly rhinoceros , various giraffids , such as the Sivatherium ; ground sloths , Irish elk , cave lions , cave bears , Gomphotheres , American lions , dire wolves , and short-faced bears , began late in the Pleistocene and continued into the Holocene. Neanderthals also became extinct during this period. At the end of the last ice age, cold-blooded animals, smaller mammals like wood mice , migratory birds, and swifter animals like whitetail deer had replaced

2976-739: The Alpine foreland . Local ice fields or small ice sheets could be found capping the highest massifs of the Pyrenees , the Carpathian Mountains , the Balkan Mountains , the Caucasus , and the mountains of Turkey and Iran . In the Himalayas and the Tibetan Plateau , there is evidence that glaciers advanced considerably, particularly between 47,000 and 27,000 BP, but the exact ages, as well as

Bytham River - Misplaced Pages Continue

3072-542: The Anglian glaciation. It has further been suggested that a western section of the supposed "Bytham river" was part of a post -Anglian watercourse which flowed SW-NE from Warwickshire to the North Sea via The Wash . That "proto- Soar " river was also modified by glaciation, but in that case by the later Wolstonian ice advance. Those western and eastern sections never linked up to form a "Bytham river". Another study asserted that

3168-764: The Bytham River slowed past Warren Hill [in Norfolk] towards its delta on what is now the East Anglian coast, it deposited sediments on the edge of the huge north-facing bay, into which the Rhine also flowed. The sites of Norton Subcourse in Norfolk and nearby Pakefield, just over the border in Suffolk, were probably both related to the Bytham, and they record a time when the climate of Britain was balmy and Mediterranean, and this part of East Anglia

3264-424: The Bytham flowed across what is now the Fen Basin to Shouldham, then southward to Mildenhall, then eastward across East Anglia . It met the Proto-Thames in a delta near what is now the Norfolk/Suffolk border and flowed into the North Sea . Britain was then joined to the Continent by a land bridge and the Bytham joined the North Sea somewhere beyond the northern end of that land bridge. Chris Stringer writes: "As

3360-524: The Center for Arctic Gas Hydrate, Environment and Climate at the University of Tromsø , published a study in June 2017 describing over a hundred ocean sediment craters, some 3,000 m wide and up to 300 m deep, formed by explosive eruptions of methane from destabilized methane hydrates , following ice-sheet retreat during the LGP, around 12,000 years ago. These areas around the Barents Sea still seep methane today. The study hypothesized that existing bulges containing methane reservoirs could eventually have

3456-489: The Early Pleistocene Gelasian . Early Pleistocene stages were shallow and frequent. The latest were the most intense and most widely spaced. By convention, stages are numbered from the Holocene, which is MIS1. Glacials receive an even number and interglacials receive an odd number. The first major glacial was MIS2-4 at about 85–11 ka BP. The largest glacials were 2, 6, 12, and 16. The warmest interglacials were 1, 5, 9 and 11. For matching of MIS numbers to named stages, see under

3552-409: The Earth's surface is cyclical: climate, ocean currents and other movements, wind currents, temperature, etc. The waveform response comes from the underlying cyclical motions of the planet, which eventually drag all the transients into harmony with them. The repeated glaciations of the Pleistocene were caused by the same factors. The Mid-Pleistocene Transition , approximately one million years ago, saw

3648-474: The Greenland climate was dry during the LGP, with precipitation reaching perhaps only 20% of today's value. The name Mérida glaciation is proposed to designate the alpine glaciation that affected the central Venezuelan Andes during the Late Pleistocene. Two main moraine levels have been recognized - one with an elevation of 2,600–2,700 m (8,500–8,900 ft), and another with an elevation of 3,000–3,500 m (9,800–11,500 ft). The snow line during

3744-570: The LGP as the Devensian . Irish geologists, geographers, and archaeologists refer to the Midlandian glaciation, as its effects in Ireland are largely visible in the Irish Midlands . The name Devensian is derived from the Latin Dēvenses , people living by the Dee ( Dēva in Latin), a river on the Welsh border near which deposits from the period are particularly well represented. The effects of this glaciation can be seen in many geological features of England, Wales, Scotland, and Northern Ireland . Its deposits have been found overlying material from

3840-505: The North American Laurentide ice sheet. At the height of glaciation, the Bering land bridge potentially permitted migration of mammals, including people, to North America from Siberia . It radically altered the geography of North America north of the Ohio River . At the height of the Wisconsin episode glaciation, ice covered most of Canada, the Upper Midwest , and New England , as well as parts of Montana and Washington . On Kelleys Island in Lake Erie or in New York's Central Park ,

3936-479: The North American west. Lake Bonneville , for example, stood where Great Salt Lake now does. In Eurasia, large lakes developed as a result of the runoff from the glaciers. Rivers were larger, had a more copious flow, and were braided . African lakes were fuller, apparently from decreased evaporation. Deserts, on the other hand, were drier and more extensive. Rainfall was lower because of the decreases in oceanic and other evaporation. It has been estimated that during

Bytham River - Misplaced Pages Continue

4032-434: The Pleistocene to 2.58 Ma, results in the inclusion of all the recent repeated glaciations within the Pleistocene. Radiocarbon dating is considered to be inaccurate beyond around 50,000 years ago. Marine isotope stages (MIS) derived from Oxygen isotopes are often used for giving approximate dates. Pleistocene non-marine sediments are found primarily in fluvial deposits , lakebeds, slope and loess deposits as well as in

4128-436: The Pleistocene's overall climate could be characterised as a continuous El Niño with trade winds in the south Pacific weakening or heading east, warm air rising near Peru , warm water spreading from the west Pacific and the Indian Ocean to the east Pacific, and other El Niño markers. Pleistocene climate was marked by repeated glacial cycles in which continental glaciers pushed to the 40th parallel in some places. It

4224-430: The Pleistocene, changing the start date from 1.806 to 2.588 million years BP, and accepted the base of the Gelasian as the base of the Pleistocene, namely the base of the Monte San Nicola GSSP . The start date has now been rounded down to 2.580 million years BP. The IUGS has yet to approve a type section , Global Boundary Stratotype Section and Point (GSSP), for the upper Pleistocene/Holocene boundary ( i.e.

4320-605: The Pleistocene, the East Antarctic Ice Sheet thinned by at least 500 meters, and that thinning since the Last Glacial Maximum is less than 50 meters and probably started after ca 14 ka. During the 2.5 million years of the Pleistocene, numerous cold phases called glacials ( Quaternary ice age ), or significant advances of continental ice sheets, in Europe and North America, occurred at intervals of approximately 40,000 to 100,000 years. The long glacial periods were separated by more temperate and shorter interglacials which lasted about 10,000–15,000 years. The last cold episode of

4416-411: The Pleistocene, the plates upon which they sit probably having moved no more than 100 km (62 mi) relative to each other since the beginning of the period. In glacial periods, the sea level would drop by up to 120 m (390 ft) lower than today during peak glaciation, exposing large areas of the present continental shelf as dry land. According to Mark Lynas (through collected data),

4512-410: The Polish River Vistula or its German name Weichsel). Evidence suggests that the ice sheets were at their maximum size for only a short period, between 25,000 and 13,000 BP. Eight interstadials have been recognized in the Weichselian, including the Oerel, Glinde, Moershoofd, Hengelo, and Denekamp. Correlation with isotope stages is still in process. During the glacial maximum in Scandinavia, only

4608-437: The Southern Hemisphere was less extensive. Ice sheets existed in the Andes ( Patagonian Ice Sheet ), where six glacier advances between 33,500 and 13,900 BP in the Chilean Andes have been reported. Antarctica was entirely glaciated, much like today, but unlike today the ice sheet left no uncovered area. In mainland Australia only a very small area in the vicinity of Mount Kosciuszko was glaciated, whereas in Tasmania glaciation

4704-452: The Wisconsin episode. It began about 30,000 years ago, reached its greatest advance 21,000 years ago, and ended about 10,000 years ago. In northwest Greenland, ice coverage attained a very early maximum in the LGP around 114,000. After this early maximum, ice coverage was similar to today until the end of the last glacial period. Towards the end, glaciers advanced once more before retreating to their present extent. According to ice core data,

4800-525: The appearance of Homo sapiens about 300,000 years ago. Artifacts associated with modern human behavior are unambiguously attested starting 40,000–50,000 years ago. According to mitochondrial timing techniques, modern humans migrated from Africa after the Riss glaciation in the Middle Palaeolithic during the Eemian Stage , spreading all over the ice-free world during the late Pleistocene. A 2005 study posits that humans in this migration interbred with archaic human forms already outside of Africa by

4896-409: The articles for those names. Both marine and continental faunas were essentially modern but with many more large land mammals such as Mammoths , Mastodons , Diprotodons , Smilodons , tigers , lions , Aurochs , short-faced bears , giant sloths , species within Gigantopithecus and others. Isolated landmasses such as Australia , Madagascar , New Zealand and islands in the Pacific saw

SECTION 50

#1732844125543

4992-400: The dramatic changes in the European environment during the Würm glaciation. During the height of Würm glaciation, c.  24,000  – c.  10,000  BP, most of western and central Europe and Eurasia was open steppe-tundra, while the Alps presented solid ice fields and montane glaciers. Scandinavia and much of Britain were under ice. During the Würm, the Rhône Glacier covered

5088-539: The end of the LGP and the Pleistocene epoch. It was followed by the Holocene , the current geological epoch . The LGP is often colloquially referred to as the "last ice age", though the term ice age is not strictly defined, and on a longer geological perspective, the last few million years could be termed a single ice age given the continual presence of ice sheets near both poles. Glacials are somewhat better defined, as colder phases during which glaciers advance, separated by relatively warm interglacials . The end of

5184-501: The entire surface of the Earth. During interglacial times, such as at present, drowned coastlines were common, mitigated by isostatic or other emergent motion of some regions. The effects of glaciation were global. Antarctica was ice-bound throughout the Pleistocene as well as the preceding Pliocene. The Andes were covered in the south by the Patagonian ice cap. There were glaciers in New Zealand and Tasmania . The current decaying glaciers of Mount Kenya , Mount Kilimanjaro , and

5280-672: The evolution of large birds and even reptiles such as the Elephant bird , moa , Haast's eagle , Quinkana , Megalania and Meiolania . The severe climatic changes during the Ice Age had major impacts on the fauna and flora. With each advance of the ice, large areas of the continents became depopulated, and plants and animals retreating southwards in front of the advancing glacier faced tremendous stress. The most severe stress resulted from drastic climatic changes, reduced living space, and curtailed food supply. A major extinction event of large mammals ( megafauna ), which included mammoths , mastodons , saber-toothed cats , glyptodons ,

5376-444: The extinction of most large-bodied animals in these regions. The aridification and cooling trends of the preceding Neogene were continued in the Pleistocene. The climate was strongly variable depending on the glacial cycle, with the sea levels being up to 120 metres (390 ft) lower than present at peak glaciation, allowing the connection of Asia and North America via Beringia and the covering of most of northern North America by

5472-423: The formation of a single contiguous ice sheet on the Tibetan Plateau, is controversial. Other areas of the Northern Hemisphere did not bear extensive ice sheets, but local glaciers were widespread at high altitudes. Parts of Taiwan , for example, were repeatedly glaciated between 44,250 and 10,680 BP as well as the Japanese Alps . In both areas, maximum glacier advance occurred between 60,000 and 30,000 BP. To

5568-414: The glacial range, which have their own glacial history depending on latitude, terrain and climate. There is a general correspondence between glacials in different regions. Investigators often interchange the names if the glacial geology of a region is in the process of being defined. However, it is generally incorrect to apply the name of a glacial in one region to another. For most of the 20th century, only

5664-450: The historical terminology was established. Corresponding to the terms glacial and interglacial, the terms pluvial and interpluvial are in use (Latin: pluvia , rain). A pluvial is a warmer period of increased rainfall; an interpluvial is of decreased rainfall. Formerly a pluvial was thought to correspond to a glacial in regions not iced, and in some cases it does. Rainfall is cyclical also. Pluvials and interpluvials are widespread. There

5760-445: The immediately preceding Pliocene ("newer", from πλείων ( pleíōn , "more") and kainós ) and the immediately subsequent Holocene ("wholly new" or "entirely new", from ὅλος ( hólos , "whole") and kainós ) epoch , which extends to the present time. The Pleistocene has been dated from 2.580 million (±0.005) to 11,700 years BP with the end date expressed in radiocarbon years as 10,000 carbon-14 years BP. It covers most of

5856-552: The large amounts of material moved about by glaciers. Less common are cave deposits, travertines and volcanic deposits (lavas, ashes). Pleistocene marine deposits are found primarily in shallow marine basins mostly (but with important exceptions) in areas within a few tens of kilometres of the modern shoreline. In a few geologically active areas such as the Southern California coast, Pleistocene marine deposits may be found at elevations of several hundred metres. The modern continents were essentially at their present positions during

SECTION 60

#1732844125543

5952-447: The last glacial advance was lowered approximately 1,200 m (3,900 ft) below the present snow line, which is 3,700 m (12,100 ft). The glaciated area in the Cordillera de Mérida was about 600 km (230 sq mi); this included these high areas, from southwest to northeast: Páramo de Tamá, Páramo Batallón, Páramo Los Conejos, Páramo Piedras Blancas, and Teta de Niquitao. Around 200 km (77 sq mi) of

6048-444: The last glacial maximum, the Patagonian ice sheet extended over the Andes from about 35°S to Tierra del Fuego at 55°S. The western part appears to have been very active, with wet basal conditions, while the eastern part was cold-based. Cryogenic features such as ice wedges , patterned ground , pingos , rock glaciers , palsas , soil cryoturbation , and solifluction deposits developed in unglaciated extra-Andean Patagonia during

6144-401: The last glacial period, which was about 10,000 years ago, is often called the end of the ice age, although extensive year-round ice persists in Antarctica and Greenland . Over the past few million years, the glacial-interglacial cycles have been "paced" by periodic variations in the Earth's orbit via Milankovitch cycles . The LGP has been intensively studied in North America, northern Eurasia,

6240-411: The late Pleistocene, incorporating archaic human genetic material into the modern human gene pool. Last glacial period The Last Glacial Period ( LGP ), also known as the Last glacial cycle , occurred from the end of the Last Interglacial to the beginning of the Holocene , c.  115,000  – c.  11,700 years ago, and thus corresponds to most of the timespan of

6336-442: The late glacial (Weichselian) and the immediately preceding penultimate interglacial ( Eemian ) period. Canada was almost completely covered by ice, as was the northern part of the United States , both blanketed by the huge Laurentide Ice Sheet . Alaska remained mostly ice free due to arid climate conditions. Local glaciations existed in the Rocky Mountains and the Cordilleran ice sheet and as ice fields and ice caps in

6432-415: The latest period of repeated glaciation , up to and including the Younger Dryas cold spell. The end of the Younger Dryas has been dated to about 9700 BCE (11,700 calendar years BP). The end of the Younger Dryas is the official start of the current Holocene Epoch . Although it is considered an epoch, the Holocene is not significantly different from previous interglacial intervals within the Pleistocene. In

6528-401: The lower Connecticut River Valley . In the Sierra Nevada , three stages of glacial maxima, sometimes incorrectly called ice ages , were separated by warmer periods. These glacial maxima are called, from oldest to youngest, Tahoe, Tenaya, and Tioga. The Tahoe reached its maximum extent perhaps about 70,000 years ago. Little is known about the Tenaya. The Tioga was the least severe and last of

6624-420: The lower Palaeolithic they disappeared, and the only hominin species found in fossilic records is Homo erectus for much of the Pleistocene. Acheulean lithics appear along with Homo erectus , some 1.8 million years ago, replacing the more primitive Oldowan industry used by A. garhi and by the earliest species of Homo . The Middle Paleolithic saw more varied speciation within Homo , including

6720-448: The main Wisconsin glacial advance. The upper level probably represents the last glacial advance (Late Wisconsin). The Llanquihue glaciation takes its name from Llanquihue Lake in southern Chile , which is a fan-shaped piedmont glacial lake. On the lake's western shores, large moraine systems occur, of which the innermost belong to the LGP. Llanquihue Lake's varves are a node point in southern Chile's varve geochronology . During

6816-430: The massive Missoula Floods . USGS geologists estimate that the cycle of flooding and reformation of the lake lasted an average of 55 years and that the floods occurred about 40 times over the 2,000-year period starting 15,000 years ago. Glacial lake outburst floods such as these are not uncommon today in Iceland and other places. The Wisconsin glacial episode was the last major advance of continental glaciers in

6912-478: The megafauna and migrated north. Late Pleistocene bighorn sheep were more slender and had longer legs than their descendants today. Scientists believe that the change in predator fauna after the late Pleistocene extinctions resulted in a change of body shape as the species adapted for increased power rather than speed. The extinctions hardly affected Africa but were especially severe in North America where native horses and camels were wiped out. In July 2018,

7008-502: The mountains of Southern Africa was about 6 °C colder than at present, in line with temperature drops estimated for Tasmania and southern Patagonia during the same time. This resulted in an environment of relatively arid periglaciation without permafrost , but with deep seasonal freezing on south-facing slopes. Periglaciation in the eastern Drakensberg and Lesotho Highlands produced solifluction deposits and blockfields ; including blockstreams and stone garlands. Scientists from

7104-472: The period. The end of the Pleistocene corresponds with the end of the last glacial period and also with the end of the Paleolithic age used in archaeology . The name is a combination of Ancient Greek πλεῖστος ( pleîstos ) 'most' and καινός ( kainós ; Latinized as cænus ) 'new'. At the end of the preceding Pliocene, the previously isolated North and South American continents were joined by

7200-719: The preceding Ipswichian stage and lying beneath those from the following Holocene , which is the current stage. This is sometimes called the Flandrian interglacial in Britain. The latter part of the Devensian includes pollen zones I–IV, the Allerød oscillation and Bølling oscillation , and the Oldest Dryas , Older Dryas , and Younger Dryas cold periods. Alternative names include Weichsel glaciation or Vistulian glaciation (referring to

7296-543: The proglacial rivers' shifting and redepositing gravels. Beneath the surface, they had profound and lasting influence on geothermal heat and the patterns of deep groundwater flow. The Pinedale (central Rocky Mountains) or Fraser (Cordilleran ice sheet) glaciation was the last of the major glaciations to appear in the Rocky Mountains in the United States. The Pinedale lasted from around 30,000 to 10,000 years ago, and

7392-417: The ratio of O to O (two isotopes of oxygen ) by mass (measured by a mass spectrometer ) present in the calcite of oceanic core samples is used as a diagnostic of ancient ocean temperature change and therefore of climate change. Cold oceans are richer in O , which is included in the tests of the microorganisms ( foraminifera ) contributing the calcite. A more recent version of

7488-517: The receding ice. When the enormous mass of the continental ice sheet retreated, the Great Lakes began gradually moving south due to isostatic rebound of the north shore. Niagara Falls is also a product of the glaciation, as is the course of the Ohio River, which largely supplanted the prior Teays River . With the assistance of several very broad glacial lakes, it released floods through the gorge of

7584-403: The recent period of repeated glaciations. The name Plio-Pleistocene has, in the past, been used to mean the last ice age. Formerly, the boundary between the two epochs was drawn at the time when the foraminiferal species Hyalinea baltica first appeared in the marine section at La Castella, Calabria, Italy. However, the revised definition of the Quaternary , by pushing back the start date of

7680-700: The refutation of the existence of the Bytham is itself "contradicted by an abundance of evidence", and that sand and gravel deposits of the proto-Soar in Leicestershire could "only have been emplaced by a river flowing eastward across East Anglia" (ie, according to this study, by a large, pre -Anglian river, the Bytham). 52°31′34″N 1°44′35″E  /  52.526°N 1.743°E  / 52.526; 1.743 Pleistocene The Pleistocene ( / ˈ p l aɪ s t ə ˌ s iː n , - s t oʊ -/ PLY -stə-seen, -⁠stoh- ; referred to colloquially as

7776-399: The same fate. During the last glacial period, Antarctica was blanketed by a massive ice sheet, much as it is today. The ice covered all land areas and extended into the ocean onto the middle and outer continental shelf. Counterintuitively though, according to ice modeling done in 2002, ice over central East Antarctica was generally thinner than it is today. British geologists refer to

7872-407: The sampling process makes use of modern glacial ice cores. Although less rich in O than seawater, the snow that fell on the glacier year by year nevertheless contained O and O in a ratio that depended on the mean annual temperature. Temperature and climate change are cyclical when plotted on a graph of temperature versus time. Temperature coordinates are given in the form of

7968-466: The sill about 8000 BP, forming a marine Littorina Sea , which was followed by another freshwater phase before the present brackish marine system was established. "At its present state of development, the marine life of the Baltic Sea is less than about 4000 years old", Drs. Thulin and Andrushaitis remarked when reviewing these sequences in 2003. Overlying ice had exerted pressure on the Earth's surface. As

8064-632: The sole factor responsible for the variations in climate since they explain neither the long-term cooling trend over the Plio-Pleistocene nor the millennial variations in the Greenland Ice Cores known as Dansgaard-Oeschger events and Heinrich events. Milankovitch pacing seems to best explain glaciation events with periodicity of 100,000, 40,000, and 20,000 years. Such a pattern seems to fit the information on climate change found in oxygen isotope cores. In oxygen isotope ratio analysis, variations in

8160-421: The study of cyclical climate changes. The glacials in the following tables show historical usages, are a simplification of a much more complex cycle of variation in climate and terrain, and are generally no longer used. These names have been abandoned in favour of numeric data because many of the correlations were found to be either inexact or incorrect and more than four major glacials have been recognised since

8256-476: The surrounding ice sheets. According to the sediment composition retrieved from deep-sea cores , even times of seasonally open waters must have occurred. Outside the main ice sheets, widespread glaciation occurred on the highest mountains of the Alpide belt . In contrast to the earlier glacial stages, the Würm glaciation was composed of smaller ice caps and mostly confined to valley glaciers, sending glacial lobes into

8352-588: The term Late Cenozoic Ice Age is used to include this early phase with the current glaciation. The previous ice age within the Quaternary is the Penultimate Glacial Period , which ended about 128,000 years ago, was more severe than the Last Glacial Period in some areas such as Britain, but less severe in others. The last glacial period saw alternating episodes of glacier advance and retreat with

8448-447: The total glaciated area was in the Sierra Nevada de Mérida , and of that amount, the largest concentration, 50 km (19 sq mi), was in the areas of Pico Bolívar , Pico Humboldt [4,942 m (16,214 ft)], and Pico Bonpland [4,983 m (16,348 ft)]. Radiocarbon dating indicates that the moraines are older than 10,000 BP, and probably older than 13,000 BP. The lower moraine level probably corresponds to

8544-622: The upper boundary). The proposed section is the North Greenland Ice Core Project ice core 75° 06' N 42° 18' W. The lower boundary of the Pleistocene Series is formally defined magnetostratigraphically as the base of the Matuyama (C2r) chronozone , isotopic stage 103. Above this point there are notable extinctions of the calcareous nannofossils : Discoaster pentaradiatus and Discoaster surculus . The Pleistocene covers

8640-537: The western parts of Jutland were ice-free, and a large part of what is today the North Sea was dry land connecting Jutland with Britain (see Doggerland ). The Baltic Sea , with its unique brackish water , is a result of meltwater from the Weichsel glaciation combining with saltwater from the North Sea when the straits between Sweden and Denmark opened. Initially, when the ice began melting about 10,300 BP, seawater filled

8736-713: The whole western Swiss plateau, reaching today's regions of Solothurn and Aargau. In the region of Bern, it merged with the Aar glacier. The Rhine Glacier is currently the subject of the most detailed studies. Glaciers of the Reuss and the Limmat advanced sometimes as far as the Jura. Montane and piedmont glaciers formed the land by grinding away virtually all traces of the older Günz and Mindel glaciation, by depositing base moraines and terminal moraines of different retraction phases and loess deposits, and by

8832-513: Was a fertile estuarine plain." The Anglian ice advance which followed, with its ice front reaching at least as far south as London and Birmingham, overrode all or most of the Bytham's catchment area. The course of the river was severed in the region of the Fen Basin. Following the ice retreat, the Bytham's remaining western section became part of the Trent catchment, and its remaining eastern section became

8928-543: Was a series of glacials and interglacials, stadials and interstadials, mirroring periodic climate changes. The main factor at work in climate cycling is now believed to be Milankovitch cycles . These are periodic variations in regional and planetary solar radiation reaching the Earth caused by several repeating changes in the Earth's motion. The effects of Milankovitch cycles were enhanced by various positive feedbacks related to increases in atmospheric carbon dioxide concentrations and Earth's albedo. Milankovitch cycles cannot be

9024-458: Was at its greatest extent between 23,500 and 21,000 years ago. This glaciation was somewhat distinct from the main Wisconsin glaciation, as it was only loosely related to the giant ice sheets and was instead composed of mountain glaciers, merging into the Cordilleran ice sheet. The Cordilleran ice sheet produced features such as glacial Lake Missoula , which broke free from its ice dam, causing

9120-461: Was more widespread. An ice sheet formed in New Zealand, covering all of the Southern Alps, where at least three glacial advances can be distinguished. Local ice caps existed in the highest mountains of the island of New Guinea , where temperatures were 5 to 6 °C colder than at present. The main areas of Papua New Guinea where glaciers developed during the LGP were the Central Cordillera ,

9216-501: Was not covered by a continental-scale ice sheet. Instead, large, but restricted, icefield complexes covered mountain ranges within northeast Siberia, including the Kamchatka-Koryak Mountains. The Arctic Ocean between the huge ice sheets of America and Eurasia was not frozen throughout, but like today, probably was covered only by relatively shallow ice, subject to seasonal changes and riddled with icebergs calving from

#542457