The Buk Bijela Hydro Power Plant is proposed hydroelectric power plant (HPP) on the Drina River in Bosnia and Herzegovina .
44-523: If built, the 57 m high concrete gravity dam will be one of the largest hydropower plants in the country, with an installed electric capacity of 93 MW and an expected annual generation of 322 GWh. The dam and its associated power station will be built on the upper course of the Drina River , in the municipality of Foča , about 12 km upstream the town of the same name, in Republika Srpska . The site
88-425: A fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus, the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. The pressure difference results in
132-409: A fluid ), Archimedes' principle may be stated thus in terms of forces: Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object —with the clarifications that for a sunken object the volume of displaced fluid is the volume of the object, and for a floating object on a liquid, the weight of the displaced liquid is the weight of
176-472: A volume integral with the help of the Gauss theorem : where V is the measure of the volume in contact with the fluid, that is the volume of the submerged part of the body, since the fluid does not exert force on the part of the body which is outside of it. The magnitude of buoyancy force may be appreciated a bit more from the following argument. Consider any object of arbitrary shape and volume V surrounded by
220-531: A cooperation with Serbia , which committed in July 2019 to invest €153.5 million in several hydropower projects including Buk Bijela. The project has been under harsh scrutiny of local and national communities and various NGO's from Bosnia and Herzegovina , Montenegro and abroad, due which is postponed and could eventually be abandoned. This project was a matter of inter-state agreement between Bosnia and Herzegovina and Montenegro . It would certainly destroy one of
264-501: A function of inertia. Buoyancy can exist without gravity in the presence of an inertial reference frame, but without an apparent "downward" direction of gravity or other source of acceleration, buoyancy does not exist. The center of buoyancy of an object is the center of gravity of the displaced volume of fluid. Archimedes' principle is named after Archimedes of Syracuse , who first discovered this law in 212 BC. For objects, floating and sunken, and in gases as well as liquids (i.e.
308-449: A liquid. The force the liquid exerts on an object within the liquid is equal to the weight of the liquid with a volume equal to that of the object. This force is applied in a direction opposite to gravitational force, that is of magnitude: where ρ f is the density of the fluid, V disp is the volume of the displaced body of liquid, and g is the gravitational acceleration at the location in question. If this volume of liquid
352-452: A measurement in air because the error is usually insignificant (typically less than 0.1% except for objects of very low average density such as a balloon or light foam). A simplified explanation for the integration of the pressure over the contact area may be stated as follows: Consider a cube immersed in a fluid with the upper surface horizontal. The sides are identical in area, and have the same depth distribution, therefore they also have
396-413: A net upward force on the object. The magnitude of the force is proportional to the pressure difference, and (as explained by Archimedes' principle ) is equivalent to the weight of the fluid that would otherwise occupy the submerged volume of the object, i.e. the displaced fluid. For this reason, an object whose average density is greater than that of the fluid in which it is submerged tends to sink. If
440-403: A situation of fluid statics such that Archimedes principle is applicable, and is thus the sum of the buoyancy force and the object's weight If the buoyancy of an (unrestrained and unpowered) object exceeds its weight, it tends to rise. An object whose weight exceeds its buoyancy tends to sink. Calculation of the upwards force on a submerged object during its accelerating period cannot be done by
484-459: A total capacity of 224 MW, annual power generation of 871 GWh and an overall cost of €390 million. The project is being developed by Elektroprivreda Republike Srpske (ERS) , to which the Republika Srpska government has granted a 50 year concession . As of 2018, the estimated cost of the project was close to €200 million. Construction could last 5 or 6 years. A first project for the site
SECTION 10
#1732851801121528-405: Is also known as upthrust. Suppose a rock's weight is measured as 10 newtons when suspended by a string in a vacuum with gravity acting upon it. Suppose that when the rock is lowered into water, it displaces water of weight 3 newtons. The force it then exerts on the string from which it hangs would be 10 newtons minus the 3 newtons of buoyancy force: 10 − 3 = 7 newtons. Buoyancy reduces
572-408: Is altered to apply to continua , but the principles remain the same. Examples of buoyancy driven flows include the spontaneous separation of air and water or oil and water. Buoyancy is a function of the force of gravity or other source of acceleration on objects of different densities, and for that reason is considered an apparent force, in the same way that centrifugal force is an apparent force as
616-416: Is at constant depth, so the pressure is constant. Therefore, the integral of the pressure over the area of the horizontal bottom surface of the cube is the hydrostatic pressure at that depth multiplied by the area of the bottom surface. Similarly, the downward force on the cube is the pressure on the top surface integrated over its area. The surface is at constant depth, so the pressure is constant. Therefore,
660-467: Is directly proportional to the volume of the displaced fluid (if the surrounding fluid is of uniform density). In simple terms, the principle states that the buoyancy force on an object is equal to the weight of the fluid displaced by the object, or the density of the fluid multiplied by the submerged volume times the gravitational acceleration, g. Thus, among completely submerged objects with equal masses, objects with greater volume have greater buoyancy. This
704-457: Is how apparent weight is defined. If the object would otherwise float, the tension to restrain it fully submerged is: When a sinking object settles on the solid floor, it experiences a normal force of: Another possible formula for calculating buoyancy of an object is by finding the apparent weight of that particular object in the air (calculated in Newtons), and apparent weight of that object in
748-550: Is just 10 km from the border with Montenegro , and 21 km downstream the existing 360 MW Mratinje dam , built on a headwater of the Drina. Buk Bijela HPP is part of a broader plan to use the hydropower potential of the Drina river and its tributary Sutjeska river , the Upper Drina hydropower project , that also includes three smaller plants (44 MW Foča, 43 MW Paunci, and 44 MW Sutjeska), for
792-470: Is replaced by a solid body of exactly the same shape, the force the liquid exerts on it must be exactly the same as above. In other words, the "buoyancy force" on a submerged body is directed in the opposite direction to gravity and is equal in magnitude to Though the above derivation of Archimedes principle is correct, a recent paper by the Brazilian physicist Fabio M. S. Lima brings a more general approach for
836-474: Is that their large concrete structures are susceptible to destabilising uplift pressures relative to the surrounding soil. Uplift pressures can be reduced by internal and foundation drainage systems. During construction, the exothermic curing of concrete can generate large amounts of heat. The poorly-conductive concrete then traps this heat in the dam structure for decades, expanding the plastic concrete and leaving it susceptible to cracking while cooling. It
880-401: Is the case if the object is restrained or if the object sinks to the solid floor. An object which tends to float requires a tension restraint force T in order to remain fully submerged. An object which tends to sink will eventually have a normal force of constraint N exerted upon it by the solid floor. The constraint force can be tension in a spring scale measuring its weight in the fluid, and
924-406: Is the designer's task to ensure this does not occur. Gravity dams are built by first cutting away a large part of the land in one section of a river, allowing water to fill the space and be stored. Once the land has been cut away, the soil has to be tested to make sure it can support the weight of the dam and the water. It is important to make sure the soil will not erode over time, which would allow
SECTION 20
#1732851801121968-425: Is the mass density of the fluid. Taking the pressure as zero at the surface, where z is zero, the constant will be zero, so the pressure inside the fluid, when it is subject to gravity, is So pressure increases with depth below the surface of a liquid, as z denotes the distance from the surface of the liquid into it. Any object with a non-zero vertical depth will have different pressures on its top and bottom, with
1012-457: The Archimedes principle alone; it is necessary to consider dynamics of an object involving buoyancy. Once it fully sinks to the floor of the fluid or rises to the surface and settles, Archimedes principle can be applied alone. For a floating object, only the submerged volume displaces water. For a sunken object, the entire volume displaces water, and there will be an additional force of reaction from
1056-406: The apparent weight of objects that have sunk completely to the sea floor. It is generally easier to lift an object up through the water than it is to pull it out of the water. Assuming Archimedes' principle to be reformulated as follows, then inserted into the quotient of weights, which has been expanded by the mutual volume yields the formula below. The density of the immersed object relative to
1100-509: The balloon will drift towards the inside of the curve. The equation to calculate the pressure inside a fluid in equilibrium is: where f is the force density exerted by some outer field on the fluid, and σ is the Cauchy stress tensor . In this case the stress tensor is proportional to the identity tensor: Here δ ij is the Kronecker delta . Using this the above equation becomes: Assuming
1144-419: The biggest danger to gravity dams and that is why, every year and after every major earthquake, they must be tested for cracks, durability, and strength. Although gravity dams are expected to last anywhere from 50–150 years, they need to be maintained and regularly replaced. Buoyancy Buoyancy ( / ˈ b ɔɪ ən s i , ˈ b uː j ən s i / ), or upthrust is a net upward force exerted by
1188-399: The car's acceleration (i.e., towards the rear). The balloon is also pulled this way. However, because the balloon is buoyant relative to the air, it ends up being pushed "out of the way", and will actually drift in the same direction as the car's acceleration (i.e., forward). If the car slows down, the same balloon will begin to drift backward. For the same reason, as the car goes round a curve,
1232-480: The current one, with an installed capacity of 450 MW. In May 2019, Banja Luka District Court cancelled the environmental permit for Buk Bijela HPP, ruling on a complaint filed by CEE Bankwatch Network . Despite this decision, Republic Srpska's Prime Minister Radovan Višković stated in January 2020 that the official start of preparatory works would soon be announced. Project implementation could be accelerated thanks to
1276-607: The dam can begin. Usually gravity dams are built out of a strong material such as concrete or stone blocks, and are built into a triangular shape to provide the most support. The most common classification of gravity dams is by the materials composing the structure: Composite dams are a combination of concrete and embankment dams . Construction materials of composite dams are the same used for concrete and embankment dams. Gravity dams can be classified by plan (shape): Gravity dams can be classified with respect to their structural height: Gravity dams are built to withstand some of
1320-418: The density of the fluid can easily be calculated without measuring any volumes: (This formula is used for example in describing the measuring principle of a dasymeter and of hydrostatic weighing .) Example: If you drop wood into water, buoyancy will keep it afloat. Example: A helium balloon in a moving car. During a period of increasing speed, the air mass inside the car moves in the direction opposite to
1364-401: The evaluation of the buoyant force exerted by any fluid (even non-homogeneous) on a body with arbitrary shape. Interestingly, this method leads to the prediction that the buoyant force exerted on a rectangular block touching the bottom of a container points downward! Indeed, this downward buoyant force has been confirmed experimentally. The net force on the object must be zero if it is to be
Buk Bijela Hydroelectric Power Station - Misplaced Pages Continue
1408-415: The foundation. Gravity dams are designed so that each section of the dam is stable and independent of any other dam section. Gravity dams generally require stiff rock foundations of high bearing strength (slightly weathered to fresh), although in rare cases, they have been built on soil. Stability of the dam primarily arises from the range of normal force angles viably generated by the foundation. Also,
1452-477: The last remaining and most important habitats of Danube salmon ( Hucho hucho) in the world, along with the magnificent canyon of the Tara River , which is why this project encountered major opposition in both countries. Gravity dam A gravity dam is a dam constructed from concrete or stone masonry and designed to hold back water by using only the weight of the material and its resistance against
1496-415: The object is less dense than the liquid, the force can keep the object afloat. This can occur only in a non-inertial reference frame , which either has a gravitational field or is accelerating due to a force other than gravity defining a "downward" direction. Buoyancy also applies to fluid mixtures, and is the most common driving force of convection currents. In these cases, the mathematical modelling
1540-406: The object. More tersely: buoyant force = weight of displaced fluid. Archimedes' principle does not consider the surface tension (capillarity) acting on the body, but this additional force modifies only the amount of fluid displaced and the spatial distribution of the displacement , so the principle that buoyancy = weight of displaced fluid remains valid. The weight of the displaced fluid
1584-410: The outer force field is conservative, that is it can be written as the negative gradient of some scalar valued function: Then: Therefore, the shape of the open surface of a fluid equals the equipotential plane of the applied outer conservative force field. Let the z -axis point downward. In this case the field is gravity, so Φ = − ρ f gz where g is the gravitational acceleration, ρ f
1628-418: The pressure on the bottom being greater. This difference in pressure causes the upward buoyancy force. The buoyancy force exerted on a body can now be calculated easily, since the internal pressure of the fluid is known. The force exerted on the body can be calculated by integrating the stress tensor over the surface of the body which is in contact with the fluid: The surface integral can be transformed into
1672-432: The same pressure distribution, and consequently the same total force resulting from hydrostatic pressure, exerted perpendicular to the plane of the surface of each side. There are two pairs of opposing sides, therefore the resultant horizontal forces balance in both orthogonal directions, and the resultant force is zero. The upward force on the cube is the pressure on the bottom surface integrated over its area. The surface
1716-471: The solid floor. In order for Archimedes' principle to be used alone, the object in question must be in equilibrium (the sum of the forces on the object must be zero), therefore; and therefore showing that the depth to which a floating object will sink, and the volume of fluid it will displace, is independent of the gravitational field regardless of geographic location. It can be the case that forces other than just buoyancy and gravity come into play. This
1760-412: The stiff nature of a gravity dam structure endures differential foundation settlement poorly, as it can crack the dam structure. The main advantage to gravity dams over embankments is the scour -resistance of concrete, which protects against damage from minor over-topping flows. Unexpected large over-topping flows are still a problem, as they can scour dam foundations. A disadvantage of gravity dams
1804-485: The strongest earthquakes . Even though the foundation of a gravity dam is built to support the weight of the dam and all the water, it is quite flexible in that it absorbs a large amount of energy and sends it into the Earth's crust. It needs to be able to absorb the energy from an earthquake because, if the dam were to break, it would send a mass amount of water rushing downstream and destroy everything in its way. Earthquakes are
Buk Bijela Hydroelectric Power Station - Misplaced Pages Continue
1848-473: The water (in Newtons). To find the force of buoyancy acting on the object when in air, using this particular information, this formula applies: The final result would be measured in Newtons. Air's density is very small compared to most solids and liquids. For this reason, the weight of an object in air is approximately the same as its true weight in a vacuum. The buoyancy of air is neglected for most objects during
1892-493: The water to cut a way around or under the dam. Sometimes the soil is sufficient to achieve these goals; however, other times it requires conditioning by adding support rocks which will bolster the weight of the dam and water. There are three different tests that can be done to determine the foundation's support strength: the Westergaard, Eulerian, and Lagrangian approaches. Once the foundation is suitable to build on, construction of
1936-545: Was presented in 1974, in order to address the persistent electric shortfall in fastly-growing Yugoslavia . In 1975, the public electric utility company Elektroprivreda Bosne i Hercegovine submitted a $ 70 million loan demand to the International Bank for Reconstruction and Development , to help finance the $ 242.5 million project. It should be emphasized that the Buk Bijela hydropower project was at that time much larger than
#120879