104-547: The Centaurus was the final development of the Bristol Engine Company 's series of sleeve valve radial aircraft engines . The Centaurus is an 18-cylinder, two-row design that eventually delivered over 3,000 hp (2,200 kW). The engine was introduced into service late in the Second World War and was one of the most powerful aircraft piston engines to see service. Like other Bristol sleeve valve engines,
208-642: A tandem rotor civil helicopter. The result was the 13-seat Type 173 , which made its first flight in Filton in 1952. Five examples were built for evaluation purposes. Although no airlines ordered the Type 173, it led to military designs, of which the Type 192 went into service with the RAF as the Belvedere . First flying in 1958, 26 were built in total. Pursuing the idea of a civil tandem rotor helicopter, Hafner and his team developed
312-553: A 50% share of the new company, with Hawker Siddeley group holding the other 50%. In 1966, Bristol Siddeley was purchased by Rolls-Royce , leaving the latter as the only major aero-engine company in Britain. From 1967, Bristol Siddeley's operations became the "Bristol Engine Division" and the "Small Engine Division" of Rolls-Royce, identified separately from Rolls-Royce's existing "Aero Engine Division". A number of Bristol Siddeley engines continued to be developed under Rolls-Royce including
416-627: A Hawker Sea Fury powered by a Bristol Centaurus engine until it was destroyed in an accident on 28 April 2021 whilst attempting a forced landing following a failure and seizure of its Bristol Centaurus XVIII engine: https://assets.publishing.service.gov.uk/media/628cd96cd3bf7f1f47c65ebc/Hawker_Sea_Fury_T_Mk_20_G-RNHF_07-22.pdf Preserved Bristol Centaurus engines are on public display at the following museums: Data from British Piston Engines and Their Aircraft Related development Comparable engines Related lists Bristol Aeroplane Company The Bristol Aeroplane Company , originally
520-593: A US car dealer who sold British sports cars, commissioned the Bristol Car Division to build a sports car for the US market, called the Arnolt-Bristol . It is estimated that about 177 were built before production ceased in 1958. In 1960, Sir George White was instrumental in preventing the car division being lost during the wider company's merger with BAC. Accordingly, Bristol Cars Limited was formed, and remained within
624-526: A car’s exhaust note, while a supercharged engine maintains the louder exhaust note of a normally aspirated car. Turbocharged engines are more prone to heat soak of the intake air (since turbocharging can place the hot exhaust components near the intake air system), although this can be overcome through the use of an intercooler . The majority of aircraft engines used during World War II used mechanically driven superchargers because they had some significant manufacturing advantages over turbochargers. However,
728-585: A civil engine with two-speed full/medium supercharger modified from the Centaurus 58. Centaurus 630 – 2,450 hp (1,830 kW), civil engine with single-speed medium supercharger, a front cover suitable for braking propeller, front ignition, 150 hp (110 kW) accessory drive, improved sleeve timing and dynamic suspension mounting. The Centaurus 631 was a Centaurus 630 with torquemeter-type reduction gear. Centaurus 660 – 2,625 hp (1,957 kW), civil engine with two-speed full/medium supercharger,
832-520: A dynamic compressor are: Common methods of driving a supercharger include: Fuels with a higher octane rating are better able to resist autoignition and detonation . As a result, the amount of boost supplied by the superchargers could be increased, resulting in an increase in engine output. The development of 100-octane aviation fuel, pioneered in the USA in the 1930s, enabled the use of higher boost pressures to be used on high-performance aviation engines and
936-403: A front cover suitable for braking propeller, front ignition, 150 hp (110 kW) accessory drive, improved sleeve timing and dynamic suspension mounting. The Centaurus 161 was a Centaurus 160 with torquemeter-type reduction gear. The Centaurus 165 was a Centaurus 161 with improved power section and methanol/water fittings. Centaurus 170 – 2,625 hp (1,957 kW), a development of
1040-519: A front cover suitable for braking propeller, front ignition, 150 hp (110 kW) accessory drive, improved sleeve timing and dynamic suspension mounting. The Centaurus 661 was a Centaurus 660 with torquemeter-type reduction gear. The Centaurus 662 was a Centaurus 660 with methanol/water injection for improved takeoff power, the Centaurus 663 was a Centaurus 662 with torquemeter-type reduction gear. Note: The Royal Navy Historic Flight operated
1144-612: A large turboprop-powered airliner, known as the Britannia . Capable of traversing transatlantic routes, it proved a commercial success; both it and the Freighter were produced in quantity during the 1950s. However, sales of the Britannia were poor and only 82 were built, primarily due to its protracted development; having been ordered by BOAC on 28 July 1949 and first flown on 16 August 1952, it did not enter service until 1 February 1957. Bristol
SECTION 10
#17328446720651248-415: A limiting factor in engine performance. Extreme temperatures can cause pre-ignition or knocking , which reduces performance and can cause engine damage. The risk of pre-ignition/knocking increases with higher ambient air temperatures and higher boost levels. Turbocharged engines use energy from the exhaust gas that would normally be wasted, compared with a supercharger which mechanically draws power from
1352-537: A modified Centaurus 57 with single-speed medium supercharger. The Centaurus 71 was a lightened Centaurus 70 with torquemeter -type reduction gear and 150 hp (110 kW) accessory drive. Centaurus 100 – 2,470 hp (1,840 kW), a modified Centaurus 57 with two-speed full/medium supercharger and methanol/water injector. The Centaurus 130 was a civil model, modified from the Centaurus 100 with single-speed medium supercharger. Centaurus 160 – 2,625 hp (1,957 kW), two-speed full/medium supercharger,
1456-503: A much larger design, the Type 194. This was in an advanced state of design when the Bristol Helicopter Division was merged, as a result of government influence, with the helicopter interests of other British aircraft manufacturers ( Westland , Fairey and Saunders-Roe ) to form Westland Helicopters in 1960. When the competing Westland Westminster was cancelled, the management of the combined company allowed development of
1560-567: A narrow range of load/speed/boost, for which the system must be specifically designed. Positive displacement pumps deliver a nearly fixed volume of air per revolution of the compressor (except for leakage, which typically has a reduced effect at higher engine speeds). The most common type of positive-displacement superchargers is the Roots-type supercharger . Other types include the rotary-screw , sliding vane and scroll-type superchargers. The rating system for positive-displacement superchargers
1664-468: A nominal 150-octane rating. Using such fuels, aero engines like the Rolls-Royce Merlin 66 and Daimler-Benz DB 605 DC produced power outputs of up to 2,000 hp (1,500 kW). One disadvantage of forced induction (i.e. supercharging or turbocharging) is that compressing the intake air increases its temperature. For an internal combustion engine, the temperature of the intake air becomes
1768-561: A number of their B.E.2 two-seater reconnaissance aircraft. However, pressure from the pilots of the RFC and Royal Naval Air Service (RNAS) led to orders being placed for a new aircraft manufactured by Bristol, known as the Scout . In 1915, Barnwell returned from France, his skills as pilot being considered to be of much less value than his ability as a designer. At this time Leslie Frise , newly graduated from Bristol University's engineering department,
1872-523: A school was established on 2,248 acres (9.10 km ) of land leased from the War Office . By 1914 308 of the 664 Royal Aero Club certificates issued had been earned at the company's schools. The company's initial manufacturing venture was to be a licensed and improved version of an aircraft manufactured in France by société Zodiac , a biplane designed by Gabriel Voisin . This aircraft had been exhibited at
1976-475: A successful design by Henri Farman whose dimensions had been published in the aeronautical press. These drawings were produced in little over a week, and Sir George promptly authorised the construction of twenty examples. The first aircraft to be completed was taken to Larkhill for flight trials, where it performed its first flight on 20 July 1910, piloted by Maurice Edmonds. The aircraft proved entirely satisfactory during flight tests. The first batch equipped
2080-505: A total displacement of 426 cu in (7.0 L)). However, because 6–71 is the engine's designation rather than that of the blower, the actual displacement of the blower is less; for example, a 6–71 blower pumps 339 cu in (5.6 L) per revolution. Other supercharger manufacturers have produced blowers rated up to 16–71. Dynamic compressors rely on accelerating the air to high speed and then exchanging that velocity for pressure by diffusing or slowing it down. Major types of
2184-476: A two-stage inter-cooled supercharger with a more compact layout. Nonetheless, turbochargers were useful in high-altitude bombers and some fighter aircraft due to the increased high altitude performance and range. Turbocharged piston engines are also subject to many of the same operating restrictions as those of gas turbine engines. Turbocharged engines also require frequent inspections of their turbochargers and exhaust systems to search for possible damage caused by
SECTION 20
#17328446720652288-457: Is that a supercharger is a form of forced induction that is mechanically powered (usually by a belt from the engine's crankshaft ), as opposed to a turbocharger , which is powered by the kinetic energy of the exhaust gases. However, up until the mid-20th century, a turbocharger was called a "turbosupercharger" and was considered a type of supercharger. The first supercharged engine was built in 1878, with usage in aircraft engines beginning in
2392-430: Is that the intake air is warmer than at high altitude. Warmer air reduces the threshold at which engine knocking can occur, especially in supercharged or turbocharged engines. Methods to cool the intake air at ground level include intercoolers/aftercoolers , anti-detonant injection , two-speed superchargers and two-stage superchargers. In supercharged engines which use a carburetor , a partially-open throttle reduces
2496-417: Is too large for the engine displacement. For this reason, supercharged engines are common in applications where throttle response is a key concern, such as drag racing and tractor pulling competitions. A disadvantage of supercharging is that the engine must withstand the net power output of the engine plus the power to drive the supercharger. Additionally, turbochargers provide sound-dampening properties to
2600-550: Is usually based on their capacity per revolution . In the case of the Roots blower, the GMC rating pattern is typical. The GMC rating is based on how many two-stroke cylinders - and the size of those cylinders - that it is designed to scavenge , with GMC's model range including 2–71, 3–71, 4–71 and 6–71 blowers. The 6–71 blower, for example, is designed to scavenge six cylinders of 71 cu in (1.2 L) each, resulting in an engine with
2704-658: The 1925 Delage , and the 1926 Bugatti Type 35C . Amongst the most famous supercharged cars is the Bentley 4½ Litre ("Blower Bentley"), which was introduced in 1929. In 1935, the development of screw-type superchargers reached a milestone when Swedish engineer Alf Lysholm patented a design for a rotary-screw compressor with five female and four male rotors. In the 21st century, supercharged production car engines have become less common, as manufacturers have shifted to turbocharging to achieve higher fuel economy and power outputs. For example, Mercedes-Benz's Kompressor engines of
2808-776: The Blackburn Firebrand and Beverley . The engine also entered service after the war in a civilian airliner, the Airspeed Ambassador and was also used in the Bristol Brabazon I Mark 1 prototype aircraft until the Brabazon trans-Atlantic airliner programme was cancelled. The eight Centaurus engines were to be replaced with eight Bristol Proteus gas turbines on the Mark II giving a 100 mph (160 km/h) faster cruising speed at 10,000 ft (3,000 m) higher altitude. By
2912-552: The Bristol Tramways and Carriage Company , along with his son Stanley and his brother Samuel, to commercially exploit the fast-growing aviation sector. Sir George met with the American aviation pioneer Wilbur Wright in France in 1909 by chance, during which he became aware of aviation's business potential. Unlike many aviation companies of the era, which were started by enthusiasts with little financial backing, British and Colonial
3016-674: The British and Colonial Aeroplane Company , was both one of the first and one of the most important British aviation companies, designing and manufacturing both airframes and aircraft engines . Notable aircraft produced by the company include the 'Boxkite' , the Bristol Fighter , the Bulldog , the Blenheim , the Beaufighter , and the Britannia , and much of the preliminary work which led to Concorde
3120-642: The First World War . At the outbreak of war in August 1914, Britain's military forces possessed just over a hundred aircraft and the Royal Flying Corps (RFC) consisted of only seven squadrons equipped with a miscellany of aircraft types, none of them armed. Official War Office policy was to purchase only aircraft designed by the Royal Aircraft Establishment (RAE), and Bristol had already built
3224-578: The Lockheed Constellation , and the C-124 Globemaster II . In the 1985 and 1986 World Rally Championships, Lancia ran the Delta S4 , which incorporated both a belt-driven supercharger and exhaust-driven turbocharger. The design used a complex series of bypass valves in the induction and exhaust systems as well as an electromagnetic clutch so that, at low engine speeds, a boost was derived from
Bristol Centaurus - Misplaced Pages Continue
3328-703: The Olympus turbojet – including the joint development Bristol started with Snecma for Concorde – and the Pegasus . The astronomical names favoured by Bristol indicated their heritage in a Rolls-Royce lineup named after British rivers . The Bristol Aeroplane Company's Helicopter Division had its roots in 1944, when the helicopter designer Raoul Hafner , released from the Airborne Forces Experimental Establishment (AFEE), came to Bristol along with some members of his team. Under Hafner's direction,
3432-671: The Type 200 (a competitor of the Hawker Siddeley Trident ) and its derivatives, the Type 201 and Type 205. None of these designs were built. In 1959, Bristol was forced by Government policy to merge its aircraft interests with English Electric , Hunting Aircraft , and Vickers-Armstrongs to form the British Aircraft Corporation (BAC). Bristol formed a holding company which held a 20 per cent share of BAC, while English Electric and Vickers held 40 per cent each. In 1966,
3536-563: The USAAF . The Beaufighter was derived from the Beaufort torpedo bomber, itself a derivative of the Blenheim. In 1940, shadow factories were set up at Weston-super-Mare for the production of Beaufighters, and underground at Hawthorn, near Corsham , Wiltshire, for engine manufacture. Construction in the former stone quarry at Hawthorn took longer than expected and little production was achieved before
3640-514: The gas turbine and a pre-turbine section of the exhaust system. The size of the ducting alone was a serious design consideration. For example, both the F4U Corsair and the P-47 Thunderbolt used the same radial engine , but the large barrel-shaped fuselage of the turbocharged P-47 was needed because of the amount of ducting to and from the turbocharger in the rear of the aircraft. The F4U used
3744-398: The 1.6 litre Mercedes 6/25 hp and 2.6 litre Mercedes 10/40 hp , both of which began production in 1923. They were marketed as Kompressor models, a term which was used for various models until 2012. Supercharged racing cars from around this time included the 1923 Fiat 805-405 , the 1923 Miller 122 the 1924 Alfa Romeo P2 , the 1924 Grand Prix season car from Sunbeam,
3848-409: The 1910s and usage in car engines beginning in the 1920s. In piston engines used by aircraft, supercharging was often used to compensate for the lower air density at high altitudes. Supercharging is less commonly used in the 21st century, as manufacturers have shifted to turbochargers to reduce fuel consumption and increase power outputs. There are two main families of superchargers defined according to
3952-512: The American 3,347.9 cu in (54.9 L) Wright R-3350 Duplex-Cyclone large radial, making the Centaurus one of the largest aircraft piston engines to enter production, while that of the Hercules was 2,363 cu in (38.7 L). The nearly 40 per cent higher capacity was achieved by increasing the stroke from 6.5 to 7 inches (165 to 178 mm) and by changing to two rows of nine cylinders instead of two rows of seven. The diameter of
4056-520: The Bristol Tramway Company. Additionally, key personnel for the new business were recruited from the Bristol Tramway Company, including the chief engineer and works manager, George Challenger . Flying schools were established at Brooklands , Surrey, which was then the centre of activity for British aviation, where Bristol rented a hangar; and at Larkhill on Salisbury Plain where, in June 1910,
4160-827: The Bristol holding company which held 20 per cent of BAC and 50 per cent of Bristol Siddeley engines was acquired by Rolls-Royce . Bristol also had the following holdings and subsidiary companies at this time:- Bristol Aerojet (50 per cent) – Bristol Aeroplane Co Australia – Bristol DE Mexico SA (78 per cent) – Motores Bristol De Cuba SA – Bristol Aeroplane Co of Canada – Bristol Aero Industries Ltd – Bristol Aeroplane Co USA – Spartan Air Services Ltd (46.5 per cent) – Bristol Aeroplane Co New Zealand – Bristol Aircraft Services Ltd – Bristol Aeroplane Plastics Ltd – SECA (30 per cent) – Short Bros & Harland (15.25 per cent) – SVENSK-ENGELSK Aero Service AB – TABSA (25 per cent) – Westland Aircraft Ltd (10 per cent). The Canadian Bristol group of companies
4264-445: The Centaurus 160 with single-speed medium supercharger. The Centaurus 171 was a Centaurus 170 with torquemeter-type reduction gear. The Centaurus 173 was a Centaurus 171 with methanol/water injection and accessory drive. The Centaurus 175 was a Centaurus 173 with modified valve port timings and reduced boost. Centaurus 373 – 2,370 hp (1,770 kW), a modified Centaurus 173. Centaurus 568 – 2,470 hp (1,840 kW),
Bristol Centaurus - Misplaced Pages Continue
4368-576: The Centaurus IX with methanol/water fittings. Centaurus XII – 2,300 hp (1,700 kW), was a development of the Centaurus IV with twin-turbine entry supercharger, redesigned propeller reduction gear and Hobson- RAE injector and vertically mounted starter motor . The Centaurus XV was a development of the Centaurus VII with flexible mounting. Centaurus XVIII – 2,470 hp (1,840 kW),
4472-483: The Centaurus was based on the design knowledge acquired from an earlier design, in this case the Bristol Perseus cylinder. The Centaurus used 18 Perseus cylinders. The same cylinder was in use in the contemporary 14-cylinder Hercules , which was being brought into production when the design of the Centaurus started. The Centaurus had a cylinder swept volume of 3,272 cu in (53.6 L), nearly as much as
4576-510: The Centaurus was only just over 6 per cent greater than the Hercules in spite of its much greater swept volume. The cylinder heads had an indentation like an inverted top hat, which was finned, but it was difficult to get air down into this hollow to adequately cool the head. During development, Bristol contacted ICI Metals Division , Birmingham, to enquire whether a copper-chromium alloy with higher thermal conductivity would have sufficient high temperature strength to be used for this purpose. With
4680-403: The Filton complex. Sir George retired in 1973 and Tony Crook purchased his share, becoming sole proprietor and managing director. Pre-fabricated buildings, marine craft and plastic and composite materials were also amongst the company's early post-war activities; these side-ventures were independently sold off. Bristol was involved in the post-war renaissance of British civilian aircraft, which
4784-467: The German engines being significantly larger in displacement. Two-stage superchargers were also always two-speed. After the air was compressed in the low-pressure stage , the air flowed through a heat exchanger (" intercooler ") where it was cooled before being compressed again by the high-pressure stage and then possibly also aftercooled in another heat exchanger. While superchargers were highly used in
4888-517: The Jupiter engine eventually proved enormously successful; indeed, during the inter-war period, the aero-engine division was more successful than the parent company and Bristol came to dominate the market for air-cooled radial engines . Apart from providing engines for almost all Bristol's aircraft designs, the Jupiter and its successors powered an enormous number of aircraft built by other manufacturers. Bristol's most successful aircraft during this period
4992-585: The Mexican Government to be installed in training schools throughout Mexico. Malcolm Roebuck was hired from Alfred Herbert Ltd along with William Walford Webb Woodward to supervise this project. In 1977, BAC was nationalised, along with Scottish Aviation and Hawker Siddeley , to form British Aerospace (BAe), which later became part of the now-privatised BAE Systems . The Canadian unit was acquired by Rolls-Royce Holdings and sold in 1997 to current owner Magellan Aerospace . A small number of records from
5096-649: The Paris Aero Salon in 1909 and Sir George had been impressed by the quality of its construction. Accordingly, a single example was purchased and shipped to England to be shown at the Aero Show at Olympia in March 1910, and construction of five more begun at the company's Filton works. It was then transported to Brooklands for flight trials, where it immediately became apparent that the type had an unsatisfactory wing-section and lacked sufficient power; even though Bristol fitted
5200-602: The Spitfire and Hurricane planes powered by the Rolls-Royce Merlin engine were equipped largely with single-stage and single-speed superchargers. In 1942, two-speed two-stage supercharging with aftercooling was applied to the Rolls Royce Merlin 61 aero engine. The improved performance allowed the aircraft they powered to maintain a crucial advantage over the German aircraft they opposed throughout World War II, despite
5304-640: The Type 194 to continue, but it too failed to find a market. The Helicopter Division started out at the main Bristol Aeroplane Company site in Filton, but from 1955 it was moved to the Oldmixon factory in Weston-Super-Mare , which had built Blenheims during the War. The factory is now the site of The Helicopter Museum . Bristol did not systematically assign project type numbers until 1923, starting with
SECTION 50
#17328446720655408-500: The Type 90 Berkeley. In that year, they also retrospectively assigned type numbers in chronological order to all projects, built or not, from August 1914 onwards. Thus the Scouts A and B did not get a type number but the Scout C did and was the Type 1. The final Bristol project, numbered Type 225, was an unbuilt 1962 STOL transport. Of these 225 Types, 117 were built. This list does not include
5512-492: The United States patented the design for an air mover for use in blast furnaces and other industrial applications. This air mover and Birmingham's ventilation compressor both used designs similar to that of the later Roots-type superchargers . In March of 1878, German engineer Heinrich Krigar obtained the first patent for a screw-type compressor. The design was a two-lobe rotor assembly with identically-shaped rotors, however
5616-403: The air density at 30,000 ft (9,100 m) is 1 ⁄ 3 of that at sea level, resulting in 1 ⁄ 3 as much fuel being able to be burnt in a naturally aspirated engine, therefore the power output would be greatly reduced. A supercharger/turbocharger can be thought of either as artificially increasing the density of the air by compressing it or as forcing more air than normal into
5720-445: The aircraft with a new set of wings, it only achieved a single brief hop on 28 May 1910, after which work on the type was abandoned. Since the machine had been sold with a 'guarantee to fly', Sir George succeeded in getting 15,000 francs compensation from Zodiac. After this failure, the company decided to embark upon designing its own aircraft to serve as a successor. Drawings were prepared by George Challenger for an aircraft based on
5824-451: The basis for the Bristol 400 . Vehicle production was conducted at Patchway , Bristol. The engine developed for the Bristol 400 found its way into many successful motor cars manufactured by other companies, such as Cooper , Frazer Nash and AC and, in 1954 and 1955 , powered the Bristol 450 sports prototype to class victories in the 24 Hours of Le Mans race. In 1953, S.H. Arnolt,
5928-582: The benefit to the operational range was given a much higher priority to American aircraft because of a less predictable requirement on the operational range and having to travel far from their home bases. Consequently, turbochargers were mainly employed in American aircraft engines such as the Allison V-1710 and the Pratt & Whitney R-2800 , which were comparably heavier when turbocharged, and required additional ducting of expensive high-temperature metal alloys in
6032-450: The company developed the new Bristol Perseus line of radials based on the sleeve valve principle, which developed into some of the most powerful piston engines in the world and continued to be sold into the 1960s. In 1956, the division was renamed Bristol Aero Engines and then merged with Armstrong Siddeley in 1958 to form Bristol Siddeley as a counterpart of the airframe-producing company mergers that formed BAC. Bristol retained
6136-410: The cylinder every time the piston moves down on the intake stroke. Since a supercharger is usually designed to produce a given amount of boost at high altitudes (where the air density is lower), the supercharger is often oversized for low altitude. To prevent excessive boost levels, it is important to monitor the intake manifold pressure at low altitude. As the aircraft climbs and the air density drops,
6240-450: The design did not reach production. Also in 1878, Scottish engineer Dugald Clerk designed the first supercharger which was used with an engine. This supercharger was used with a two-stroke gas engine. Gottlieb Daimler received a German patent for supercharging an internal combustion engine in 1885. Louis Renault patented a centrifugal supercharger in France in 1902. The world's first series-produced cars with superchargers were
6344-516: The design engineer for this project, and took over as Bristol's chief designer when Coandă left the company in October 1914. Barnwell went on to become one of the world's foremost aeronautical engineers, and worked for the company until his death in 1938. The company expanded rapidly, establishing a second factory at the Brislington tramway works; the firm employed a total of 200 people by the outbreak of
SECTION 60
#17328446720656448-426: The division produced two successful designs that were sold in quantity. The first, designated the Type 171 , had a shaky start after the wooden rotor blades of the second prototype failed on its first flight in 1949. Nevertheless, the Type 171, called Sycamore in military service, was sold to air forces around the world and 178 were built in total. After the Type 171, the Bristol Helicopter Division started work on
6552-765: The early 2000s (such as the C 230 Kompressor straight-four, C 32 AMG V6, and CL 55 AMG V8 engines) were replaced around 2010 by turbocharged engines in models such as the C 250 and CL 65 AMG models. However, there are exceptions, such as the Audi 3.0 TFSI supercharged V6 (introduced in 2009) and the Jaguar AJ-V8 supercharged V8 (upgraded to the Gen III version in 2009). In the 1930s, two-speed drives were developed for superchargers for aero engines providing more flexible aircraft operation. The arrangement also entailed more complexity of manufacturing and maintenance. The gears connected
6656-409: The early history of this company are held within the papers of Sir George White at Bristol Archives (Ref. 35810/GW/T) ( online catalogue ). Other records at Bristol Record Office include the papers of Lionel Harris, an engineer at the Bristol Aeroplane Company in the 1940s (Ref. 42794) ( online catalogue ) The Bristol Engine Company was originally a separate entity, Cosmos Engineering , formed from
6760-573: The end of the war in Europe, around 2,500 examples of the Centaurus had been produced by Bristol. The 373 was the most powerful version of the Centaurus and was intended for the Blackburn Beverley transport aircraft. Using direct fuel injection, it achieved a remarkable 3,220 hp (2,400 kW), but was never fitted. A projected enlarged capacity version of the Centaurus was designed by Sir Roy Fedden ; cylinders were produced for this engine, but it
6864-412: The engine. Therefore turbocharged engines usually produce more power and better fuel economy than supercharged engines. However, turbochargers can suffer from turbo lag (especially at lower RPM), where the exhaust gas flow is initially insufficient to spin the turbocharger and achieve the desired boost level, thus leading to a delay in the throttle response . This is often a result of a turbo charge which
6968-726: The extreme heat and pressure of the turbochargers. Such damage was a prominent problem in the early models of the American Boeing B-29 Superfortress high-altitude bombers used in the Pacific Theater of Operations during 1944–45. Turbocharged piston engines continued to be used in a large number of postwar airplanes, such as the B-50 Superfortress , the KC-97 Stratofreighter , the Boeing 377 Stratocruiser ,
7072-460: The former chief instructor at the Blériot flying school at Hendon : he was later joined by Gordon England . In January 1912 Romanian aircraft engineer Henri Coandă was appointed as the company's chief designer. During early 1912 a highly secret separate design office, known as the " X-Department ", was set up to work on Dennistoun Burney 's ideas for naval aircraft. Frank Barnwell was taken on as
7176-566: The huge re-armament ordered by the British Government in May of that year. Bristol's most important contribution to the expansion of the RAF at this time was the Blenheim light bomber. In August 1938, Frank Barnwell was killed flying a light aircraft of his own design; Barnwell was succeeded as Bristol's Chief Designer by Leslie Frise . By the time war broke out in 1939, the Bristol works at Filton were
7280-457: The largest displacement aviation radial engine ever placed in quantity production. Centaurus I – 2,000 hp (1,500 kW), two-speed full/medium supercharger and left-hand tractor drive. Run on 100 octane fuel. Centaurus IV – 2,300 hp (1,700 kW), two-speed medium/full supercharger and rigid mounting. Centaurus V – 2,500 hp (1,900 kW), two-speed full/medium supercharger with cropped impellers . The Centaurus VI
7384-417: The largest single aircraft manufacturing unit in the world, with a floor area of nearly 25 hectares (2,691,000 square feet). During the Second World War , Bristol's most important aircraft was the Beaufighter heavy two-seat multirole aircraft, a long-range fighter, night fighter , ground attack aircraft and torpedo bomber . The type was used extensively by the RAF, other Commonwealth air forces and by
7488-477: The late 1950s, the company undertook supersonic transport (SST) project studies, the Type 223 , which were later to contribute to Concorde . A research aircraft, the Type 188 , was constructed in the 1950s to test the feasibility of stainless steel as a material in a Mach 2.0 airframe. By the time the aircraft flew in 1962, the company was already part of BAC. In parallel with these supersonic studies, several subsonic designs were schemed in this period, including
7592-666: The method of gas transfer: positive displacement and dynamic superchargers. Positive displacement superchargers deliver an almost constant level of boost pressure increase at all engine speeds, while dynamic superchargers cause the boost pressure to rise exponentially with engine speed (above a certain threshold). Another family of supercharger, albeit rarely used, is the pressure wave supercharger . Roots blowers (a positive displacement design) tend to be only 40–50% efficient at high boost levels, compared with 70-85% for dynamic superchargers. Lysholm-style blowers (a rotary-screw design) can be nearly as efficient as dynamic superchargers over
7696-444: The mid-1900s and during WWII , they have largely fallen out of use in modern piston-driven aircraft . This can largely be attributed to the higher temperature and lighter alloys that make turbochargers more efficient than superchargers, as well as the lower maintenance due to less moving parts. Due to the reduced air density at higher altitudes, supercharging and turbocharging have often been used in aircraft engines. For example,
7800-543: The name 'Bristol' and this was formalized in 1920, when British and Colonial was liquidated and its assets transferred to the Bristol Aeroplane Company, Ltd . During this time the company, acting under pressure from the Air Ministry , bought the aero-engine division of the bankrupt Cosmos Engineering Company , based in the Bristol suburb of Fishponds , to form the nucleus of a new aero-engine operation. There
7904-474: The post-war rapid contraction of military orders, Cosmos Engineering went bankrupt and the Air Ministry let it be known that it would be a good idea if the Bristol Aeroplane Company purchased it. The Jupiter competed with the Armstrong Siddeley Jaguar through the 1920s but Bristol put more effort into their design and, by 1929, the Jupiter was clearly superior. In the 1930s, and led by Roy Fedden,
8008-512: The pre-First World War automobile company Brazil-Straker . In 1917, Cosmos was asked to investigate air-cooled radial engines and, under Roy Fedden , produced what became the Cosmos Mercury , a 14-cylinder two-row (helical) radial, which they launched in 1918. This engine saw little use but the simpler nine-cylinder version known as the Bristol Jupiter was clearly a winning design. With
8112-437: The same cylinder volume and using the new material, the horsepower per cylinder was raised from 110 hp (82 kW) to 220 hp (160 kW). Bristol maintained the Centaurus from type-testing in 1938, but production did not start until 1942, owing to the need to get the Hercules into production and improve the reliability of the entire engine line. Nor was there any real need for the larger engine at this early point in
8216-528: The site closed in 1945. The company's war-time headquarters was located in the Royal West of England Academy , Clifton, Bristol. When the war ended, Bristol set up a separate helicopter division in the Weston-super-Mare factory, under helicopter pioneer Raoul Hafner . This facility was taken over by Westland in 1960. Other post-war projects included Bristol Cars , which used pre-war BMW designs as
8320-448: The supercharger to the engine using a system of hydraulic clutches, which were initially manually engaged or disengaged by the pilot with a control in the cockpit. At low altitudes, the low-speed gear would be used, to prevent excessive boost levels. At higher altitudes, the supercharger could be switched to a higher gear to compensate for the reduced intake air density. In the Battle of Britain
8424-497: The supercharger. In the middle of the rev range, a boost was derived from both systems, while at the highest revs the system disconnected the drive from the supercharger and isolated the associated ducting. This was done in an attempt to exploit the advantages of each of the charging systems while removing the disadvantages. In turn, this approach brought greater complexity and affected the car's reliability in WRC events, as well as increasing
8528-457: The throttle can be progressively opened to obtain the maximum safe power level for a given altitude. The altitude at which the throttle reaches full open and the engine is still producing full rated power is known as the critical altitude . Above the critical altitude, engine power output will reduce as the supercharger can no longer fully compensate for the decreasing air density. Another issue encountered at low altitudes (such as at ground level)
8632-498: The two training schools, as well as serving as demonstration machines; the aircraft, which gained the nickname of the Boxkite , went on to become a commercial success, a total of 76 being constructed. Many served in the company's flying schools and examples were sold to the War Office as well as a number of foreign governments. Although satisfactory by the standards of the day, the Boxkite
8736-406: The unbuilt "paper aeroplanes"; it does include the pre-August 1914 aircraft. Bristol Engine designs include: Original series: Sleeve-valve engines: Turbines' Supercharger In an internal combustion engine , a supercharger compresses the intake gas, forcing more air into the engine in order to produce more power for a given displacement . The current categorization
8840-557: The war, when most military aircraft designs had a requirement for engines of about 1,000 hp (746 kW). The Hercules power of about 1,500 hp (1,119 kW) was better suited to the existing airframes. The Centaurus did not enter service until near the end of the war, first appearing on the Vickers Warwick . Other wartime, or postwar, uses included the Bristol Brigand and Buckmaster , Hawker Tempest and Sea Fury and
8944-537: The weight of engine ancillaries in the finished design. Twincharged engines have occasionally been used in production cars, such as the 2005-2013 Volkswagen 1.4 litre and the 2017-present Volvo B4204T43/B4204T48 2.0 litre four-cylinder engines. In 1849, G. Jones of Birmingham, England began manufacturing a lobe pump compressor to provide ventilation for coal mines. In 1860, the Roots Blower Company (founded by brothers Philander and Francis Marion Roots) in
9048-504: Was already a good working relationship between Bristol Aircraft and Cosmos, the Cosmos Jupiter having been first flown in a prototype Bristol Badger in May 1919. For £15,000 Bristol got the Cosmos design team, headed by Roy Fedden , along with a small number of completed engines and tooling. Although it was to be several years before Bristol showed any profit from the aero engine division,
9152-641: Was also involved in helicopter development, with the Belvedere and Sycamore going into quantity production. Another post-war activity was missile development, culminating in the production of the Bloodhound anti-aircraft missile. Upon introduction, the Bloodhound was the RAF's only long range transportable surface-to-air missile. Bristol Aero Engines produced a range of rocket motors and ramjets for missile propulsion. The guided weapons division eventually became part of Matra BAe Dynamics Alenia ( MBDA ). In
9256-461: Was carried out by the company. In 1956 its major operations were split into Bristol Aircraft and Bristol Aero Engines . In 1959, Bristol Aircraft merged with several major British aircraft companies to form the British Aircraft Corporation (BAC) and Bristol Aero Engines merged with Armstrong Siddeley to form Bristol Siddeley . BAC went on to become a founding component of the nationalised British Aerospace , now BAE Systems . Bristol Siddeley
9360-465: Was formerly MacDonald Brothers Aircraft, and was the largest of the subsidiaries and the group's only airframe plant. Bristol de Mexico, S.A. de CV. (Central Airport, Mexico City), overhauled piston engines for South American operators. Bristol de Mexico S.A. obtained a license to manufacture Alfred Herbert Ltd machine tools in 1963 and commenced assembling their centre lathes in 1963. They also commenced building their own design of small engine lathes for
9464-552: Was largely inspired by the Brabazon Committee report of 1943–5. In 1949, the Brabazon airliner prototype, at the time one of the largest aircraft in the world, first flew. This project was deemed to be a step in the wrong direction, gaining little interest from military or civilian operators, resulting in the Brabazon being ultimately cancelled in 1953. At the same time as the termination, Bristol decided to focus on development of
9568-571: Was limited by War Office prejudice against monoplanes and only 130 were built. It was considered that its relatively high landing speed of 50 mph made it unsuitable for use under the field conditions of the Western Front, and the type's active service was limited to the Near East. By the end of the war, the company employed over 3,000 at its production works, which were split between Filton and Brislington. Its products had always been referred to by
9672-570: Was never built. Known as the Bristol Orion, a name used previously for a variant of the Jupiter engine and later re-used for a turboprop , this development was also a two-row, 18 cylinder sleeve valve engine, with the displacement increased to 4,142 cu in (67,875.2 cm) [6.25 in × 7.5 in (159 mm × 191 mm)], nearly as large as the American Pratt & Whitney R-4360 Wasp Major four-row, 28-cylinder radial,
9776-426: Was not capable of much further development and work soon was started on two new designs, a small tractor configuration biplane and a monoplane . Both of these were exhibited at the 1911 Aero Show at Olympia but neither was flown successfully. At this time, both Challenger and Low left the company to join the newly established aircraft division of the armament firm Vickers . Their place was taken by Pierre Prier ,
9880-413: Was noted for its preference for steel airframes, using members built up from high-tensile steel strip rolled into flanged sections rather than the light alloys more generally used in aircraft construction. On 15 June 1935, the Bristol Aeroplane Company became a public limited company . By this time, the company had a payroll of 4,200, mostly in the engine factory, and was well positioned to take advantage of
9984-554: Was purchased by Rolls-Royce in 1966, who continued to develop and market Bristol-designed engines. The BAC works were in Filton , about 4 miles (6 km) north of Bristol city centre. BAE Systems , Airbus , Rolls-Royce , MBDA and GKN still have a presence at the Filton site where the Bristol Aeroplane Company was located. The British and Colonial Aeroplane Company, Ltd was founded in February 1910 by Sir George White , chairman of
10088-416: Was recruited by Barnwell. In 1916, the company's founder Sir George died; he was succeeded in managing the company by his son Stanley. The first project that was worked on by Barnwell after his return, the Bristol T.T.A. , was designed in response to a War Office requirement for a two-seat fighter intended to conduct home defence operations against Zeppelin raids. This was not successful but, in 1916, work
10192-468: Was similar to the Centaurus V with master connecting rods in cylinder numbers 7 and 8. The Centaurus VIII was similar to the Centaurus VI with methanol/water fittings. Centaurus VII – 2,400 hp (1,800 kW), two-speed medium/full supercharger and rigid mounting. Centaurus IX – 2,500 hp (1,900 kW), and Centaurus XI were similar to the Centaurus VII. The Centaurus X was similar to
10296-578: Was similar to the Centaurus XV. Centaurus XX – 2,360 hp (1,760 kW), a dual-installation engine for the Bristol Brabazon , similar to the Centaurus 57. Centaurus 57 – 2,470 hp (1,840 kW), a development of the Centaurus XII with modified supercharger and injector. The Centaurus 58 was a modified Centaurus 57, and the Centaurus 59 was a modified Centaurus 58 with a flexible mounting. Centaurus 70 – 2,470 hp (1,840 kW),
10400-534: Was started on the Bristol F.2A , which was developed into the highly successful F.2B Fighter , one of the outstanding aircraft of the 1914–18 war and a mainstay of the RAF during the 1920s. More than 5,300 of the type were produced and the Fighter remained in service until 1931. Another aircraft designed at this time was the Bristol Monoplane Scout . Although popular with pilots, the success of this aircraft
10504-542: Was the Bristol Bulldog fighter, which formed the mainstay of Royal Air Force (RAF) fighter force between 1930 and 1937, when the Bulldog was retired from front line service. Since the Bulldog had started life as a private venture rather than an Air Ministry-sponsored prototype it could be sold to other countries, and Bulldogs were exported to, among others, Denmark, Estonia, Finland, and Australia. During this time, Bristol
10608-498: Was the largest of the overseas subsidiaries. The group undertook aircraft handling and servicing at Dorval Airport , Montreal. Vancouver Airport was the base for Bristol Aero Engines (Western), Ltd., one of the Canadian company's four operating subsidiaries. Work at Vancouver included the overhaul of Pratt and Whitney and Wright engines for the R.C.A.F. and commercial operators. Bristol Aircraft (Western), Ltd (Stevenson Field, Winnipeg)
10712-551: Was used to vastly increase the power output for several speed record airplanes. Military use of high-octane fuels began in early 1940 when 100-octane fuel was delivered to the British Royal Air Force fighting in World War II. The German Luftwaffe also had supplies of a similar fuel. Increasing the octane rating became a major focus of aero engine development for the remainder of the war, with later fuels having up to
10816-471: Was well funded from its outset. Sir George chose to establish a separate company from the Bristol Tramway Company, as the venture might be seen as too risky by many shareholders, and the new company's working capital of £25,000 was subscribed entirely by Sir George, his brother, and his son. The affairs of the two companies were closely connected, and the company's first premises were a pair of former tram sheds used for aircraft manufacture at Filton leased from
#64935