Misplaced Pages

Biosynthesis

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Biosynthesis , i.e., chemical synthesis occurring in biological contexts, is a term most often referring to multi-step, enzyme - catalyzed processes where chemical substances absorbed as nutrients (or previously converted through biosynthesis) serve as enzyme substrates , with conversion by the living organism either into simpler or more complex products . Examples of biosynthetic pathways include those for the production of amino acids , lipid membrane components, and nucleotides , but also for the production of all classes of biological macromolecules , and of acetyl-coenzyme A , adenosine triphosphate , nicotinamide adenine dinucleotide and other key intermediate and transactional molecules needed for metabolism . Thus, in biosynthesis, any of an array of compounds , from simple to complex, are converted into other compounds, and so it includes both the catabolism and anabolism (building up and breaking down) of complex molecules (including macromolecules ). Biosynthetic processes are often represented via charts of metabolic pathways . A particular biosynthetic pathway may be located within a single cellular organelle (e.g., mitochondrial fatty acid synthesis pathways), while others involve enzymes that are located across an array of cellular organelles and structures (e.g., the biosynthesis of glycosylated cell surface proteins).

#514485

101-488: Elements of biosynthesis include: precursor compounds, chemical energy (e.g. ATP ), and catalytic enzymes which may need coenzymes (e.g. NADH , NADPH ). These elements create monomers , the building blocks for macromolecules. Some important biological macromolecules include: proteins , which are composed of amino acid monomers joined via peptide bonds , and DNA molecules, which are composed of nucleotides joined via phosphodiester bonds . Biosynthesis occurs due to

202-505: A bilayer structure of phospholipids. The phospholipid molecule is amphipathic ; it contains a hydrophilic polar head and a hydrophobic nonpolar tail. The phospholipid heads interact with each other and aqueous media, while the hydrocarbon tails orient themselves in the center, away from water. These latter interactions drive the bilayer structure that acts as a barrier for ions and molecules. There are various types of phospholipids; consequently, their synthesis pathways differ. However,

303-429: A carboxyl group "head" and a hydrocarbon chain "tail". These fatty acids create larger components, which in turn incorporate noncovalent interactions to form the lipid bilayer. Fatty acid chains are found in two major components of membrane lipids: phospholipids and sphingolipids . A third major membrane component, cholesterol , does not contain these fatty acid units. The foundation of all biomembranes consists of

404-593: A precursor is a compound that participates in a chemical reaction that produces another compound. In biochemistry , the term "precursor" often refers more specifically to a chemical compound preceding another in a metabolic pathway , such as a protein precursor . In 1988, the United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances introduced detailed provisions and requirements relating

505-466: A primer with a free 3'OH in which to incorporate nucleotides. In order for DNA replication to occur, a replication fork is created by enzymes called helicases which unwind the DNA helix. Topoisomerases at the replication fork remove supercoils caused by DNA unwinding, and single-stranded DNA binding proteins maintain the two single-stranded DNA templates stabilized prior to replication. DNA synthesis

606-453: A purine or pyrimidine base with a glycosidic bond and a phosphate group at the 5' location of the sugar. The DNA nucleotides adenosine and guanosine consist of a purine base attached to a ribose sugar with a glycosidic bond. In the case of RNA nucleotides deoxyadenosine and deoxyguanosine , the purine bases are attached to a deoxyribose sugar with a glycosidic bond. The purine bases on DNA and RNA nucleotides are synthesized in

707-535: A century, chemists regarded "fats" as only simple lipids made of fatty acids and glycerol (glycerides), but new forms were described later. Theodore Gobley (1847) discovered phospholipids in mammalian brain and hen egg, called by him as " lecithins ". Thudichum discovered in human brain some phospholipids ( cephalin ), glycolipids ( cerebroside ) and sphingolipids ( sphingomyelin ). The terms lipoid, lipin, lipide and lipid have been used with varied meanings from author to author. In 1912, Rosenbloom and Gies proposed

808-445: A charged tRNA that is ready to add amino acids to the growing polypeptide chain. In addition to binding an amino acid, tRNA has a three nucleotide unit called an anticodon that base pairs with specific nucleotide triplets on the mRNA called codons ; codons encode a specific amino acid. This interaction is possible thanks to the ribosome, which serves as the site for protein synthesis. The ribosome possesses three tRNA binding sites:

909-446: A class of molecules called sterols . Sterols have four fused rings and a hydroxyl group . Cholesterol is a particularly important molecule. Not only does it serve as a component of lipid membranes, it is also a precursor to several steroid hormones, including cortisol , testosterone , and estrogen . Cholesterol is synthesized from acetyl CoA . The pathway is shown below: More generally, this synthesis occurs in three stages, with

1010-408: A complicated family of compounds that share a common structural feature, a sphingoid base backbone that is synthesized de novo from the amino acid serine and a long-chain fatty acyl CoA, then converted into ceramides , phosphosphingolipids, glycosphingolipids and other compounds. The major sphingoid base of mammals is commonly referred to as sphingosine . Ceramides (N-acyl-sphingoid bases) are

1111-415: A cycle of reactions that add the acetyl group, reduce it to an alcohol, dehydrate it to an alkene group and then reduce it again to an alkane group. The enzymes of fatty acid biosynthesis are divided into two groups, in animals and fungi all these fatty acid synthase reactions are carried out by a single multifunctional protein, while in plant plastids and bacteria separate enzymes perform each step in

SECTION 10

#1732855432515

1212-417: A diverse family of molecules composed of one or more sugar residues linked via a glycosidic bond to the sphingoid base. Examples of these are the simple and complex glycosphingolipids such as cerebrosides and gangliosides . Sterols, such as cholesterol and its derivatives, are an important component of membrane lipids, along with the glycerophospholipids and sphingomyelins. Other examples of sterols are

1313-425: A dynamic lipid-bilayer matrix as revealed by magnetic resonance and electron microscope studies. A biological membrane is a form of lamellar phase lipid bilayer . The formation of lipid bilayers is an energetically preferred process when the glycerophospholipids described above are in an aqueous environment. This is known as the hydrophobic effect . In an aqueous system, the polar heads of lipids align towards

1414-644: A fatty acid contains a double bond, there is the possibility of either a cis or trans geometric isomerism , which significantly affects the molecule's configuration . Cis -double bonds cause the fatty acid chain to bend, an effect that is compounded with more double bonds in the chain. Three double bonds in 18-carbon linolenic acid , the most abundant fatty-acyl chains of plant thylakoid membranes , render these membranes highly fluid despite environmental low-temperatures, and also makes linolenic acid give dominating sharp peaks in high resolution 13-C NMR spectra of chloroplasts. This in turn plays an important role in

1515-471: A glycerol core linked to two fatty acid-derived "tails" by ester linkages and to one "head" group by a phosphate ester linkage. While glycerophospholipids are the major component of biological membranes, other non-glyceride lipid components such as sphingomyelin and sterols (mainly cholesterol in animal cell membranes) are also found in biological membranes. In plants and algae, the galactosyldiacylglycerols, and sulfoquinovosyldiacylglycerol, which lack

1616-457: A major subclass of sphingoid base derivatives with an amide -linked fatty acid. The fatty acids are typically saturated or mono-unsaturated with chain lengths from 16 to 26 carbon atoms. The major phosphosphingolipids of mammals are sphingomyelins (ceramide phosphocholines), whereas insects contain mainly ceramide phosphoethanolamines and fungi have phytoceramide phosphoinositols and mannose -containing headgroups. The glycosphingolipids are

1717-469: A phosphate group, are important components of membranes of chloroplasts and related organelles and are among the most abundant lipids in photosynthetic tissues, including those of higher plants, algae and certain bacteria. Plant thylakoid membranes have the largest lipid component of a non-bilayer forming monogalactosyl diglyceride (MGDG), and little phospholipids; despite this unique lipid composition, chloroplast thylakoid membranes have been shown to contain

1818-454: A polar head and nonpolar tails. Unlike phospholipids, sphingolipids have a sphingosine backbone. Sphingolipids exist in eukaryotic cells and are particularly abundant in the central nervous system . For example, sphingomyelin is part of the myelin sheath of nerve fibers. Sphingolipids are formed from ceramides that consist of a fatty acid chain attached to the amino group of a sphingosine backbone. These ceramides are synthesized from

1919-538: A primary component of cellular membranes and binding sites for intra- and intercellular proteins, some glycerophospholipids in eukaryotic cells, such as phosphatidylinositols and phosphatidic acids are either precursors of or, themselves, membrane-derived second messengers . Typically, one or both of these hydroxyl groups are acylated with long-chain fatty acids, but there are also alkyl-linked and 1Z-alkenyl-linked ( plasmalogen ) glycerophospholipids, as well as dialkylether variants in archaebacteria. Sphingolipids are

2020-635: A process called fatty acid synthesis . They are made of a hydrocarbon chain that terminates with a carboxylic acid group; this arrangement confers the molecule with a polar , hydrophilic end, and a nonpolar, hydrophobic end that is insoluble in water. The fatty acid structure is one of the most fundamental categories of biological lipids and is commonly used as a building-block of more structurally complex lipids. The carbon chain, typically between four and 24 carbons long, may be saturated or unsaturated , and may be attached to functional groups containing oxygen , halogens , nitrogen , and sulfur . If

2121-625: A process called translation . During translation, genetic material called mRNA is read by ribosomes to generate a protein polypeptide chain. This process requires transfer RNA (tRNA) which serves as an adaptor by binding amino acids on one end and interacting with mRNA at the other end; the latter pairing between the tRNA and mRNA ensures that the correct amino acid is added to the chain. Protein synthesis occurs in three phases: initiation, elongation, and termination. Prokaryotic ( archaeal and bacterial ) translation differs from eukaryotic translation ; however, this section will mostly focus on

SECTION 20

#1732855432515

2222-421: A quinonoid core of non-isoprenoid origin. Vitamin E and vitamin K , as well as the ubiquinones , are examples of this class. Prokaryotes synthesize polyprenols (called bactoprenols ) in which the terminal isoprenoid unit attached to oxygen remains unsaturated, whereas in animal polyprenols ( dolichols ) the terminal isoprenoid is reduced. Saccharolipids describe compounds in which fatty acids are linked to

2323-452: A risk factor for cardiovascular disease . Fats that are good for one may be turned into trans fats by improper cooking methods that result in overcooking the lipids. A few studies have suggested that total dietary fat intake is linked to an increased risk of obesity. and diabetes; Others, including the Women's Health Initiative Dietary Modification Trial, an eight-year study of 49,000 women,

2424-503: A series of chemical reactions. For these reactions to take place, the following elements are necessary: In the simplest sense, the reactions that occur in biosynthesis have the following format: Some variations of this basic equation which will be discussed later in more detail are: Many intricate macromolecules are synthesized in a pattern of simple, repeated structures. For example, the simplest structures of lipids are fatty acids . Fatty acids are hydrocarbon derivatives; they contain

2525-677: A sugar backbone, forming structures that are compatible with membrane bilayers. In the saccharolipids, a monosaccharide substitutes for the glycerol backbone present in glycerolipids and glycerophospholipids. The most familiar saccharolipids are the acylated glucosamine precursors of the Lipid ;A component of the lipopolysaccharides in Gram-negative bacteria . Typical lipid A molecules are disaccharides of glucosamine, which are derivatized with as many as seven fatty-acyl chains. The minimal lipopolysaccharide required for growth in E. coli

2626-492: A twelve-step reaction mechanism present in most single-celled organisms. Higher eukaryotes employ a similar reaction mechanism in ten reaction steps. Purine bases are synthesized by converting phosphoribosyl pyrophosphate (PRPP) to inosine monophosphate (IMP), which is the first key intermediate in purine base biosynthesis. Further enzymatic modification of IMP produces the adenosine and guanosine bases of nucleotides. Other DNA and RNA nucleotide bases that are linked to

2727-407: Is steroid biosynthesis . Here, the isoprene units are joined together to make squalene and then folded up and formed into a set of rings to make lanosterol . Lanosterol can then be converted into other steroids such as cholesterol and ergosterol. Beta oxidation is the metabolic process by which fatty acids are broken down in the mitochondria or in peroxisomes to generate acetyl-CoA . For

2828-926: Is Kdo 2 -Lipid A, a hexa-acylated disaccharide of glucosamine that is glycosylated with two 3-deoxy-D-manno-octulosonic acid (Kdo) residues. Polyketides are synthesized by polymerization of acetyl and propionyl subunits by classic enzymes as well as iterative and multimodular enzymes that share mechanistic features with the fatty acid synthases . They comprise many secondary metabolites and natural products from animal, plant, bacterial, fungal and marine sources, and have great structural diversity. Many polyketides are cyclic molecules whose backbones are often further modified by glycosylation , methylation , hydroxylation , oxidation , or other processes. Many commonly used antimicrobial , antiparasitic , and anticancer agents are polyketides or polyketide derivatives, such as erythromycins , tetracyclines , avermectins , and antitumor epothilones . Eukaryotic cells feature

2929-410: Is a two-step reaction which involves the conversion of UMP to UTP . Phosphate addition to UMP is catalyzed by a kinase enzyme. The enzyme CTP synthase catalyzes the next reaction step: the conversion of UTP to CTP by transferring an amino group from glutamine to uridine; this forms the cytosine base of CTP. The mechanism, which depicts the reaction UTP + ATP + glutamine ⇔ CTP + ADP + glutamate,

3030-464: Is a vital part of the cell signaling . Lipid signaling may occur via activation of G protein-coupled or nuclear receptors , and members of several different lipid categories have been identified as signaling molecules and cellular messengers . These include sphingosine-1-phosphate , a sphingolipid derived from ceramide that is a potent messenger molecule involved in regulating calcium mobilization, cell growth, and apoptosis; diacylglycerol and

3131-419: Is also important in biological systems, particularly with respect to sight. Other major lipid classes in the fatty acid category are the fatty esters and fatty amides. Fatty esters include important biochemical intermediates such as wax esters , fatty acid thioester coenzyme A derivatives, fatty acid thioester ACP derivatives and fatty acid carnitines. The fatty amides include N-acyl ethanolamines , such as

Biosynthesis - Misplaced Pages Continue

3232-517: Is always pronounced (ɪd). In 1947, T. P. Hilditch defined "simple lipids" as greases and waxes (true waxes, sterols, alcohols). Lipids have been classified into eight categories by the Lipid MAPS consortium as follows: Fatty acyls, a generic term for describing fatty acids, their conjugates and derivatives, are a diverse group of molecules synthesized by chain-elongation of an acetyl-CoA primer with malonyl-CoA or methylmalonyl-CoA groups in

3333-416: Is an area of study within biophysics . Micelles and bilayers form in the polar medium by a process known as the hydrophobic effect. When dissolving a lipophilic or amphiphilic substance in a polar environment, the polar molecules (i.e., water in an aqueous solution) become more ordered around the dissolved lipophilic substance, since the polar molecules cannot form hydrogen bonds to the lipophilic areas of

3434-415: Is an oversupply of dietary carbohydrate, the excess carbohydrate is converted to triglycerides. This involves the synthesis of fatty acids from acetyl-CoA and the esterification of fatty acids in the production of triglycerides, a process called lipogenesis . Fatty acids are made by fatty acid synthases that polymerize and then reduce acetyl-CoA units. The acyl chains in the fatty acids are extended by

3535-447: Is below: Cytosine is a nucleotide that is present in both DNA and RNA. However, uracil is only found in RNA. Therefore, after UTP is synthesized, it is must be converted into a deoxy form to be incorporated into DNA. This conversion involves the enzyme ribonucleoside triphosphate reductase . This reaction that removes the 2'-OH of the ribose sugar to generate deoxyribose is not affected by

3636-441: Is catalyzed by the enzyme phosphoserine phosphatase , which dephosphorylates L-phosphoserine to yield L-serine . There are two known pathways for the biosynthesis of glycine. Organisms that use ethanol and acetate as the major carbon source utilize the glyconeogenic pathway to synthesize glycine . The other pathway of glycine biosynthesis is known as the glycolytic pathway. This pathway converts serine synthesized from

3737-402: Is catalyzed by the enzyme pyrroline-5-carboxylate synthase (P5CS), which catalyzes the reduction of the ϒ-carboxyl group of L-glutamate 5-phosphate. This results in the formation of glutamate semialdehyde, which spontaneously cyclizes to pyrroline-5-carboxylate. Pyrroline-5-carboxylate is further reduced by the enzyme pyrroline-5-carboxylate reductase (P5CR) to yield a proline amino acid. In

3838-408: Is composed of nucleotides that are joined by phosphodiester bonds . DNA synthesis , which takes place in the nucleus , is a semiconservative process, which means that the resulting DNA molecule contains an original strand from the parent structure and a new strand. DNA synthesis is catalyzed by a family of DNA polymerases that require four deoxynucleoside triphosphates, a template strand , and

3939-410: Is converted to phosphatidate via the addition of another fatty acid chain contributed by a second acyl CoA; all of these steps are catalyzed by the glycerol phosphate acyltransferase enzyme. Phospholipid synthesis continues in the endoplasmic reticulum, and the biosynthesis pathway diverges depending on the components of the particular phospholipid. Like phospholipids, these fatty acid derivatives have

4040-438: Is in the form of triglycerides, cholesterol, and phospholipids. Some dietary fat is necessary to facilitate absorption of fat-soluble vitamins ( A , D , E , and K ) and carotenoids . Humans and other mammals have a dietary requirement for certain essential fatty acids, such as linoleic acid (an omega-6 fatty acid ) and alpha-linolenic acid (an omega-3 fatty acid) because they cannot be synthesized from simple precursors in

4141-444: Is initiated by the RNA polymerase primase , which makes an RNA primer with a free 3'OH. This primer is attached to the single-stranded DNA template, and DNA polymerase elongates the chain by incorporating nucleotides; DNA polymerase also proofreads the newly synthesized DNA strand. During the polymerization reaction catalyzed by DNA polymerase, a nucleophilic attack occurs by the 3'OH of

Biosynthesis - Misplaced Pages Continue

4242-544: Is made discontinuously in Okazaki fragments and grows away from the replication fork. Okazaki fragments are covalently joined by DNA ligase to form a continuous strand. Then, to complete DNA replication, RNA primers are removed, and the resulting gaps are replaced with DNA and joined via DNA ligase. A protein is a polymer that is composed from amino acids that are linked by peptide bonds . There are more than 300 amino acids found in nature of which only twenty two, known as

4343-468: Is responsible for synthesizing thymine residues from dUMP to dTMP . This reaction transfers a methyl group onto the uracil base of dUMP to generate dTMP. The thymidylate synthase reaction, dUMP + 5,10-methylenetetrahydrofolate ⇔ dTMP + dihydrofolate, is shown to the right. Although there are differences between eukaryotic and prokaryotic DNA synthesis, the following section denotes key characteristics of DNA replication shared by both organisms. DNA

4444-429: Is synthesized by an ATP-dependent addition of an amino group onto aspartate; asparagine synthetase catalyzes the addition of nitrogen from glutamine or soluble ammonia to aspartate to yield asparagine. The diaminopimelic acid biosynthetic pathway of lysine belongs to the aspartate family of amino acids. This pathway involves nine enzyme-catalyzed reactions that convert aspartate to lysine. Protein synthesis occurs via

4545-417: The acylation of sphingosine. The biosynthetic pathway for sphingosine is found below: As the image denotes, during sphingosine synthesis, palmitoyl CoA and serine undergo a condensation reaction which results in the formation of 3-dehydrosphinganine. This product is then reduced to form dihydrospingosine, which is converted to sphingosine via the oxidation reaction by FAD . This lipid belongs to

4646-418: The bile acids and their conjugates, which in mammals are oxidized derivatives of cholesterol and are synthesized in the liver. The plant equivalents are the phytosterols , such as β-sitosterol , stigmasterol , and brassicasterol ; the latter compound is also used as a biomarker for algal growth. The predominant sterol in fungal cell membranes is ergosterol . Sterols are steroids in which one of

4747-470: The cannabinoid neurotransmitter anandamide . Glycerolipids are composed of mono-, di-, and tri-substituted glycerols , the best-known being the fatty acid triesters of glycerol, called triglycerides . The word "triacylglycerol" is sometimes used synonymously with "triglyceride". In these compounds, the three hydroxyl groups of glycerol are each esterified, typically by different fatty acids. Because they function as an energy store, these lipids comprise

4848-508: The carotenoids , are made by the assembly and modification of isoprene units donated from the reactive precursors isopentenyl pyrophosphate and dimethylallyl pyrophosphate . These precursors can be made in different ways. In animals and archaea , the mevalonate pathway produces these compounds from acetyl-CoA, while in plants and bacteria the non-mevalonate pathway uses pyruvate and glyceraldehyde 3-phosphate as substrates. One important reaction that uses these activated isoprene donors

4949-403: The citric acid cycle and the electron transport chain . Hence the citric acid cycle can start at acetyl-CoA when fat is being broken down for energy if there is little or no glucose available. The energy yield of the complete oxidation of the fatty acid palmitate is 106 ATP. Unsaturated and odd-chain fatty acids require additional enzymatic steps for degradation. Most of the fat found in food

5050-790: The cosmetic and food industries , and in nanotechnology . Lipids may be broadly defined as hydrophobic or amphiphilic small molecules; the amphiphilic nature of some lipids allows them to form structures such as vesicles , multilamellar/ unilamellar liposomes , or membranes in an aqueous environment. Biological lipids originate entirely or in part from two distinct types of biochemical subunits or "building-blocks": ketoacyl and isoprene groups. Using this approach, lipids may be divided into eight categories: fatty acyls , glycerolipids , glycerophospholipids , sphingolipids , saccharolipids , and polyketides (derived from condensation of ketoacyl subunits); and sterol lipids and prenol lipids (derived from condensation of isoprene subunits). Although

5151-548: The phosphatidylinositol phosphates (PIPs), involved in calcium-mediated activation of protein kinase C ; the prostaglandins , which are one type of fatty-acid derived eicosanoid involved in inflammation and immunity ; the steroid hormones such as estrogen , testosterone and cortisol , which modulate a host of functions such as reproduction, metabolism and blood pressure; and the oxysterols such as 25-hydroxy-cholesterol that are liver X receptor agonists . Phosphatidylserine lipids are known to be involved in signaling for

SECTION 50

#1732855432515

5252-480: The progestogens as well as the glucocorticoids and mineralocorticoids . The secosteroids , comprising various forms of vitamin D , are characterized by cleavage of the B ring of the core structure. Prenol lipids are synthesized from the five-carbon-unit precursors isopentenyl diphosphate and dimethylallyl diphosphate , which are produced mainly via the mevalonic acid (MVA) pathway. The simple isoprenoids (linear alcohols, diphosphates, etc.) are formed by

5353-517: The proteinogenic amino acids , are the building blocks for protein. Only green plants and most microbes are able to synthesize all of the 20 standard amino acids that are needed by all living species. Mammals can only synthesize ten of the twenty standard amino acids. The other amino acids, valine , methionine , leucine , isoleucine , phenylalanine , lysine , threonine and tryptophan for adults and histidine , and arginine for babies are obtained through diet. The general structure of

5454-472: The N-acetyl-L-ornithine. The acetyl group of acetylornithine is removed by the enzyme acetylornithinase (AO) or ornithine acetyltransferase (OAT), and this yields ornithine . Then, the enzymes citrulline and argininosuccinate convert ornithine to arginine. There are two distinct lysine biosynthetic pathways: the diaminopimelic acid pathway and the α-aminoadipate pathway . The most common of

5555-542: The Nurses' Health Study, and the Health Professionals Follow-up Study, revealed no such links. None of these studies suggested any connection between percentage of calories from fat and risk of cancer, heart disease, or weight gain. The Nutrition Source, a website maintained by the department of nutrition at the T. H. Chan School of Public Health at Harvard University , summarizes the current evidence on

5656-413: The amino acid lysine , which is derived from α-ketoglutarate . The biosynthesis of glutamate and glutamine is a key step in the nitrogen assimilation discussed above. The enzymes GOGAT and GDH catalyze the nitrogen assimilation reactions. In bacteria, the enzyme glutamate 5-kinase initiates the biosynthesis of proline by transferring a phosphate group from ATP onto glutamate. The next reaction

5757-544: The aminoacyl site (A site), the peptidyl site (P site), and the exit site (E site). There are numerous codons within an mRNA transcript, and it is very common for an amino acid to be specified by more than one codon; this phenomenon is called degeneracy . In all, there are 64 codons, 61 of each code for one of the 20 amino acids, while the remaining codons specify chain termination. As previously mentioned, translation occurs in three phases: initiation, elongation, and termination. Precursor (chemistry) In chemistry ,

5858-568: The amphiphile. So in an aqueous environment, the water molecules form an ordered " clathrate " cage around the dissolved lipophilic molecule. The formation of lipids into protocell membranes represents a key step in models of abiogenesis , the origin of life. Triglycerides, stored in adipose tissue, are a major form of energy storage both in animals and plants. They are a major source of energy in aerobic respiration. The complete oxidation of fatty acids releases about 38 kJ/g (9  kcal/g ), compared with only 17 kJ/g (4 kcal/g) for

5959-497: The aspartate family even though part of their carbon skeleton is derived from pyruvate . In the case of methionine, the methyl carbon is derived from serine and the sulfur group, but in most organisms, it is derived from cysteine. The biosynthesis of aspartate is a one step reaction that is catalyzed by a single enzyme. The enzyme aspartate aminotransferase catalyzes the transfer of an amino group from aspartate onto α-ketoglutarate to yield glutamate and oxaloacetate . Asparagine

6060-454: The bases attached to the sugar. This non-specificity allows ribonucleoside triphosphate reductase to convert all nucleotide triphosphates to deoxyribonucleotide by a similar mechanism. In contrast to uracil, thymine bases are found mostly in DNA, not RNA. Cells do not normally contain thymine bases that are linked to ribose sugars in RNA, thus indicating that cells only synthesize deoxyribose-linked thymine. The enzyme thymidylate synthetase

6161-644: The brain) contains relatively high amounts of glycerophospholipids, and alterations in their composition has been implicated in various neurological disorders. Glycerophospholipids may be subdivided into distinct classes, based on the nature of the polar headgroup at the sn -3 position of the glycerol backbone in eukaryotes and eubacteria, or the sn -1 position in the case of archaebacteria . Examples of glycerophospholipids found in biological membranes are phosphatidylcholine (also known as PC, GPCho or lecithin ), phosphatidylethanolamine (PE or GPEtn) and phosphatidylserine (PS or GPSer). In addition to serving as

SECTION 60

#1732855432515

6262-450: The bulk of storage fat in animal tissues. The hydrolysis of the ester bonds of triglycerides and the release of glycerol and fatty acids from adipose tissue are the initial steps in metabolizing fat. Additional subclasses of glycerolipids are represented by glycosylglycerols, which are characterized by the presence of one or more sugar residues attached to glycerol via a glycosidic linkage . Examples of structures in this category are

6363-457: The carbons needed for the biosynthesis of the methionine and histidine . During serine biosynthesis, the enzyme phosphoglycerate dehydrogenase catalyzes the initial reaction that oxidizes 3-phospho-D-glycerate to yield 3-phosphonooxypyruvate . The following reaction is catalyzed by the enzyme phosphoserine aminotransferase , which transfers an amino group from glutamate onto 3-phosphonooxypyruvate to yield L-phosphoserine . The final step

6464-485: The cells or cell fragments exposing them. The "fat-soluble" vitamins ( A , D , E and K ) – which are isoprene -based lipids – are essential nutrients stored in the liver and fatty tissues, with a diverse range of functions. Acyl-carnitines are involved in the transport and metabolism of fatty acids in and out of mitochondria, where they undergo beta oxidation . Polyprenols and their phosphorylated derivatives also play important transport roles, in this case

6565-406: The commonalities between the two organisms. Before translation can begin, the process of binding a specific amino acid to its corresponding tRNA must occur. This reaction, called tRNA charging, is catalyzed by aminoacyl tRNA synthetase . A specific tRNA synthetase is responsible for recognizing and charging a particular amino acid. Furthermore, this enzyme has special discriminator regions to ensure

6666-513: The compartmentalized membrane-bound organelles that carry out different biological functions. The glycerophospholipids are the main structural component of biological membranes , as the cellular plasma membrane and the intracellular membranes of organelles; in animal cells, the plasma membrane physically separates the intracellular components from the extracellular environment. The glycerophospholipids are amphipathic molecules (containing both hydrophobic and hydrophilic regions) that contain

6767-497: The concept not only the traditional fats (glycerides), but also the "lipoids", with a complex constitution. The word lipide was unanimously approved by the international commission of the Société de Chimie Biologique during the plenary session on July 3, 1923. The word lipide was later anglicized as lipid because of its pronunciation ('lɪpɪd). In French, the suffix -ide , from Ancient Greek -ίδης (meaning 'son of' or 'descendant of'),

6868-614: The control of precursors used to produce drugs of abuse. In Europe the Regulation (EC) No. 273/2004 of the European Parliament and of the Council on drug precursors was adopted on 11 February 2004. ( European law on drug precursors ) On January 15, 2013, the Regulation (EU) No. 98/2013 of the European Parliament and of the Council on the marketing and use of explosives precursors was adopted. The Regulation harmonises rules across Europe on

6969-408: The correct binding between tRNA and its cognate amino acid. The first step for joining an amino acid to its corresponding tRNA is the formation of aminoacyl-AMP: This is followed by the transfer of the aminoacyl group from aminoacyl-AMP to a tRNA molecule. The resulting molecule is aminoacyl-tRNA : The combination of these two steps, both of which are catalyzed by aminoacyl tRNA synthetase, produces

7070-424: The diet. Both of these fatty acids are 18-carbon polyunsaturated fatty acids differing in the number and position of the double bonds. Most vegetable oils are rich in linoleic acid ( safflower , sunflower , and corn oils). Alpha-linolenic acid is found in the green leaves of plants and in some seeds, nuts, and legumes (in particular flax , rapeseed , walnut , and soy ). Fish oils are particularly rich in

7171-486: The diet. In 1815, Henri Braconnot classified lipids ( graisses ) in two categories, suifs (solid greases or tallow) and huiles (fluid oils). In 1823, Michel Eugène Chevreul developed a more detailed classification, including oils, greases, tallow, waxes, resins, balsams and volatile oils (or essential oils). The first synthetic triglyceride was reported by Théophile-Jules Pelouze in 1844, when he produced tributyrin by treating butyric acid with glycerin in

7272-403: The digalactosyldiacylglycerols found in plant membranes and seminolipid from mammalian sperm cells . Glycerophospholipids, usually referred to as phospholipids (though sphingomyelins are also classified as phospholipids), are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and cell signaling . Neural tissue (including

7373-527: The environment could contribute to an early location of sites where illegal substances (both explosives and drugs of abuse) are produced. Lipid Lipids are a broad group of organic compounds which include fats , waxes , sterols , fat-soluble vitamins (such as vitamins A , D , E and K ), monoglycerides , diglycerides , phospholipids , and others. The functions of lipids include storing energy, signaling , and acting as structural components of cell membranes . Lipids have applications in

7474-473: The enzyme glutamate dehydrogenase (GDH). GDH is able to transfer ammonia onto 2-oxoglutarate and form glutamate. Furthermore, the enzyme glutamine synthetase (GS) is able to transfer ammonia onto glutamate and synthesize glutamine, replenishing glutamine. The glutamate family of amino acids includes the amino acids that derive from the amino acid glutamate. This family includes: glutamate, glutamine , proline , and arginine . This family also includes

7575-409: The enzyme glutamine oxoglutarate aminotransferase (GOGAT) which removes the amide amino group of glutamine and transfers it onto 2-oxoglutarate , producing two glutamate molecules. In this catalysis reaction, glutamine serves as the nitrogen source. An image illustrating this reaction is found to the right. The other pathway for incorporating nitrogen onto the α-carbon of amino acids involves

7676-466: The enzyme serine acetyltransferase catalyzes the transfer of acetyl group from acetyl-CoA onto L-serine to yield O-acetyl-L-serine . The following reaction step, catalyzed by the enzyme O-acetyl serine (thiol) lyase , replaces the acetyl group of O-acetyl-L-serine with sulfide to yield cysteine. The aspartate family of amino acids includes: threonine , lysine , methionine , isoleucine , and aspartate. Lysine and isoleucine are considered part of

7777-472: The first stage taking place in the cytoplasm and the second and third stages occurring in the endoplasmic reticulum. The stages are as follows: The biosynthesis of nucleotides involves enzyme- catalyzed reactions that convert substrates into more complex products. Nucleotides are the building blocks of DNA and RNA . Nucleotides are composed of a five-membered ring formed from ribose sugar in RNA, and deoxyribose sugar in DNA; these sugars are linked to

7878-407: The first step in phospholipid synthesis involves the formation of phosphatidate or diacylglycerol 3-phosphate at the endoplasmic reticulum and outer mitochondrial membrane . The synthesis pathway is found below: The pathway starts with glycerol 3-phosphate, which gets converted to lysophosphatidate via the addition of a fatty acid chain provided by acyl coenzyme A . Then, lysophosphatidate

7979-552: The first step of arginine biosynthesis in bacteria, glutamate is acetylated by transferring the acetyl group from acetyl-CoA at the N-α position; this prevents spontaneous cyclization. The enzyme N-acetylglutamate synthase (glutamate N-acetyltransferase) is responsible for catalyzing the acetylation step. Subsequent steps are catalyzed by the enzymes N-acetylglutamate kinase , N-acetyl-gamma-glutamyl-phosphate reductase , and acetylornithine/succinyldiamino pimelate aminotransferase and yield

8080-399: The growing chain on the innermost phosphorus atom of a deoxynucleoside triphosphate; this yields the formation of a phosphodiester bridge that attaches a new nucleotide and releases pyrophosphate . Two types of strands are created simultaneously during replication: the leading strand , which is synthesized continuously and grows towards the replication fork, and the lagging strand , which

8181-480: The hydrogen atoms is substituted with a hydroxyl group , at position 3 in the carbon chain. They have in common with steroids the same fused four-ring core structure. Steroids have different biological roles as hormones and signaling molecules . The eighteen-carbon (C18) steroids include the estrogen family whereas the C19 steroids comprise the androgens such as testosterone and androsterone . The C21 subclass includes

8282-482: The inner mitochondrial membrane. They are believed to activate enzymes involved with oxidative phosphorylation . Lipids also form the basis of steroid hormones. The major dietary lipids for humans and other animals are animal and plant triglycerides, sterols, and membrane phospholipids. The process of lipid metabolism synthesizes and degrades the lipid stores and produces the structural and functional lipids characteristic of individual tissues. In animals, when there

8383-418: The intermediates of glycolysis to glycine. In the glycolytic pathway, the enzyme serine hydroxymethyltransferase catalyzes the cleavage of serine to yield glycine and transfers the cleaved carbon group of serine onto tetrahydrofolate , forming 5,10-methylene-tetrahydrofolate . Cysteine biosynthesis is a two-step reaction that involves the incorporation of inorganic sulfur . In microorganisms and plants,

8484-501: The longer-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid . Many studies have shown positive health benefits associated with consumption of omega-3 fatty acids on infant development, cancer, cardiovascular diseases, and various mental illnesses (such as depression, attention-deficit hyperactivity disorder, and dementia). In contrast, it is now well-established that consumption of trans fats , such as those present in partially hydrogenated vegetable oils , are

8585-522: The making available, introduction, possession and use, of certain substances or mixtures that could be misused for the illicit manufacture of explosives. A portable, advanced sensor based on infrared spectroscopy in a hollow fiber matched to a silicon-micromachined fast gas chromatography column can analyze illegal stimulants and precursors with nanogram-level sensitivity. Raman spectroscopy has been successfully tested to detect explosives and their precursors. Technologies able to detect precursors in

8686-468: The most part, fatty acids are oxidized by a mechanism that is similar to, but not identical with, a reversal of the process of fatty acid synthesis. That is, two-carbon fragments are removed sequentially from the carboxyl end of the acid after steps of dehydrogenation , hydration , and oxidation to form a beta-keto acid , which is split by thiolysis . The acetyl-CoA is then ultimately converted into adenosine triphosphate (ATP), CO 2 , and H 2 O using

8787-414: The oxidative breakdown of carbohydrates and proteins . The adipocyte , or fat cell, is designed for continuous synthesis and breakdown of triglycerides in animals, with breakdown controlled mainly by the activation of hormone-sensitive enzyme lipase . Migratory birds that must fly long distances without eating use triglycerides to fuel their flights. Evidence has emerged showing that lipid signaling

8888-460: The pathway. The fatty acids may be subsequently converted to triglycerides that are packaged in lipoproteins and secreted from the liver. The synthesis of unsaturated fatty acids involves a desaturation reaction, whereby a double bond is introduced into the fatty acyl chain. For example, in humans, the desaturation of stearic acid by stearoyl-CoA desaturase-1 produces oleic acid . The doubly unsaturated fatty acid linoleic acid as well as

8989-400: The phagocytosis of apoptotic cells or pieces of cells. They accomplish this by being exposed to the extracellular face of the cell membrane after the inactivation of flippases which place them exclusively on the cytosolic side and the activation of scramblases, which scramble the orientation of the phospholipids. After this occurs, other cells recognize the phosphatidylserines and phagocytosize

9090-418: The polar, aqueous environment, while the hydrophobic tails minimize their contact with water and tend to cluster together, forming a vesicle ; depending on the concentration of the lipid, this biophysical interaction may result in the formation of micelles , liposomes , or lipid bilayers . Other aggregations are also observed and form part of the polymorphism of amphiphile (lipid) behavior. Phase behavior

9191-533: The presence of concentrated sulfuric acid . Several years later, Marcellin Berthelot , one of Pelouze's students, synthesized tristearin and tripalmitin by reaction of the analogous fatty acids with glycerin in the presence of gaseous hydrogen chloride at high temperature. In 1827, William Prout recognized fat ("oily" alimentary matters), along with protein ("albuminous") and carbohydrate ("saccharine"), as an important nutrient for humans and animals. For

9292-455: The ribose sugar via a glycosidic bond are thymine , cytosine and uracil (which is only found in RNA). Uridine monophosphate biosynthesis involves an enzyme that is located in the mitochondrial inner membrane and multifunctional enzymes that are located in the cytosol . After the uridine nucleotide base is synthesized, the other bases, cytosine and thymine are synthesized. Cytosine biosynthesis

9393-419: The standard amino acids includes a primary amino group , a carboxyl group and the functional group attached to the α-carbon . The different amino acids are identified by the functional group. As a result of the three different groups attached to the α-carbon, amino acids are asymmetrical molecules . For all standard amino acids, except glycine , the α-carbon is a chiral center . In the case of glycine,

9494-448: The structure and function of cell membranes. Most naturally occurring fatty acids are of the cis configuration, although the trans form does exist in some natural and partially hydrogenated fats and oils. Examples of biologically important fatty acids include the eicosanoids , derived primarily from arachidonic acid and eicosapentaenoic acid , that include prostaglandins , leukotrienes , and thromboxanes . Docosahexaenoic acid

9595-477: The substitution of "lipoid" by "lipin". In 1920, Bloor introduced a new classification for "lipoids": simple lipoids (greases and waxes), compound lipoids (phospholipoids and glycolipoids), and the derived lipoids (fatty acids, alcohols , sterols). The word lipide , which stems etymologically from Greek λίπος, lipos 'fat', was introduced in 1923 by the French pharmacologist Gabriel Bertrand . Bertrand included in

9696-437: The successive addition of C5 units, and are classified according to number of these terpene units. Structures containing greater than 40 carbons are known as polyterpenes. Carotenoids are important simple isoprenoids that function as antioxidants and as precursors of vitamin A . Another biologically important class of molecules is exemplified by the quinones and hydroquinones , which contain an isoprenoid tail attached to

9797-507: The term "lipid" is sometimes used as a synonym for fats, fats are a subgroup of lipids called triglycerides . Lipids also encompass molecules such as fatty acids and their derivatives (including tri-, di-, monoglycerides, and phospholipids), as well as other sterol -containing metabolites such as cholesterol . Although humans and other mammals use various biosynthetic pathways both to break down and to synthesize lipids, some essential lipids cannot be made this way and must be obtained from

9898-508: The transport of oligosaccharides across membranes. Polyprenol phosphate sugars and polyprenol diphosphate sugars function in extra-cytoplasmic glycosylation reactions, in extracellular polysaccharide biosynthesis (for instance, peptidoglycan polymerization in bacteria), and in eukaryotic protein N- glycosylation . Cardiolipins are a subclass of glycerophospholipids containing four acyl chains and three glycerol groups that are particularly abundant in

9999-422: The triply unsaturated α-linolenic acid cannot be synthesized in mammalian tissues, and are therefore essential fatty acids and must be obtained from the diet. Triglyceride synthesis takes place in the endoplasmic reticulum by metabolic pathways in which acyl groups in fatty acyl-CoAs are transferred to the hydroxyl groups of glycerol-3-phosphate and diacylglycerol. Terpenes and isoprenoids , including

10100-408: The two synthetic pathways is the diaminopimelic acid pathway; it consists of several enzymatic reactions that add carbon groups to aspartate to yield lysine: The serine family of amino acid includes: serine, cysteine , and glycine . Most microorganisms and plants obtain the sulfur for synthesizing methionine from the amino acid cysteine. Furthermore, the conversion of serine to glycine provides

10201-519: The α-carbon has two hydrogen atoms, thus adding symmetry to this molecule. With the exception of proline , all of the amino acids found in life have the L-isoform conformation. Proline has a functional group on the α-carbon that forms a ring with the amino group. One major step in amino acid biosynthesis involves incorporating a nitrogen group onto the α-carbon. In cells, there are two major pathways of incorporating nitrogen groups. One pathway involves

#514485