Radio-frequency identification ( RFID ) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder called a tag, a radio receiver , and a transmitter . When triggered by an electromagnetic interrogation pulse from a nearby RFID reader device, the tag transmits digital data, usually an identifying inventory number , back to the reader. This number can be used to track inventory goods.
50-468: The Auto-ID Labs network is a research group in the field of networked radio-frequency identification (RFID) and emerging sensing technologies. The labs consist of seven research universities located on four different continents. These institutions were chosen by the former Auto-ID Center to design the architecture for the Internet of Things together with EPCglobal . The federation was established in 1999;
100-545: A terahertz frequency identification (TFID) tag that is barely 1 square millimeter in size. The devices are essentially a piece of silicon that are inexpensive, small, and function like larger RFID tags. Because of the small size, manufacturers could tag any product and track logistics information for minimal cost. An RFID tag can be affixed to an object and used to track tools, equipment, inventory, assets, people, or other objects. RFID offers advantages over manual systems or use of barcodes . The tag can be read if passed near
150-560: A certain distance of the reader to authenticate the holder. Tags can also be placed on vehicles, which can be read at a distance, to allow entrance to controlled areas without having to stop the vehicle and present a card or enter an access code. In 2010, Vail Resorts began using UHF Passive RFID tags in ski passes. Facebook is using RFID cards at most of their live events to allow guests to automatically capture and post photos. Automotive brands have adopted RFID for social media product placement more quickly than other industries. Mercedes
200-409: A particular product. Often more than one tag will respond to a tag reader. For example, many individual products with tags may be shipped in a common box or on a common pallet. Collision detection is important to allow reading of data. Two different types of protocols are used to "singulate" a particular tag, allowing its data to be read in the midst of many similar tags. In a slotted Aloha system,
250-418: A peak-to-peak excursion of 0.5 inches at 60 Hz undergoes a maximum acceleration of 92 "g"s. Paper-based cones account for approximately 85% of the cones sold worldwide. The ability of paper (cellulose) to be easily modified by chemical or mechanical means gives it a practical processing advantage not found in other common cone materials. The purpose of the cone/surround assembly is to accurately reproduce
300-723: A reader, even if it is covered by the object or not visible. The tag can be read inside a case, carton, box or other container, and unlike barcodes, RFID tags can be read hundreds at a time; barcodes can only be read one at a time using current devices. Some RFID tags, such as battery-assisted passive tags, are also able to monitor temperature and humidity. In 2011, the cost of passive tags started at US$ 0.09 each; special tags, meant to be mounted on metal or withstand gamma sterilization, could cost up to US$ 5. Active tags for tracking containers, medical assets, or monitoring environmental conditions in data centers started at US$ 50 and could be over US$ 100 each. Battery-Assisted Passive (BAP) tags were in
350-402: A rudimentary microphone, and vice versa.) The diaphragm in a microphone works similarly to the human eardrum . In a phonograph reproducer, the diaphragm is a flat disk of typically mica or isinglass that converts the mechanical vibration imparted on the buttress from the recorded groove into sound. In the case of acoustic recording the reproducer converts the sound into the motion of
400-510: A special tool or deactivated electronically when payment is made. On leaving the shop, customers have to pass near an RFID detector; if they have items with active RFID tags, an alarm sounds, both indicating an unpaid-for item, and identifying what it is. Casinos can use RFID to authenticate poker chips , and can selectively invalidate any chips known to be stolen. RFID tags are widely used in identification badges , replacing earlier magnetic stripe cards. These badges need only be held within
450-446: A transfer hose can read an RFID tag affixed to the tank, positively identifying it. At least one company has introduced RFID to identify and locate underground infrastructure assets such as gas pipelines , sewer lines , electrical cables, communication cables, etc. Diaphragm (acoustics) In the field of acoustics , a diaphragm is a transducer intended to inter-convert mechanical vibrations to sounds, or vice versa. It
500-441: Is a fuzzy method for process support. From the perspective of cost and effect, bulk reading is not reported as an economical approach to secure process control in logistics. RFID tags are easy to conceal or incorporate in other items. For example, in 2009 researchers at Bristol University successfully glued RFID micro-transponders to live ants in order to study their behavior. This trend towards increasingly miniaturized RFIDs
550-460: Is a strategy for interrogating multiple tags at the same time, but lacks sufficient precision for inventory control. A group of objects, all of them RFID tagged, are read completely from one single reader position at one time. However, as tags respond strictly sequentially, the time needed for bulk reading grows linearly with the number of labels to be read. This means it takes at least twice as long to read twice as many labels. Due to collision effects,
SECTION 10
#1732855825097600-399: Is commonly constructed of a thin membrane or sheet of various materials, suspended at its edges. The varying air pressure of sound waves imparts mechanical vibrations to the diaphragm which can then be converted to some other type of signal; examples of this type of diaphragm are found in microphones and the human eardrum . Conversely a diaphragm vibrated by a source of energy beats against
650-460: Is expected to rise from US$ 12.08 billion in 2020 to US$ 16.23 billion by 2029. In 1945, Leon Theremin invented the "Thing", a listening device for the Soviet Union which retransmitted incident radio waves with the added audio information. Sound waves vibrated a diaphragm which slightly altered the shape of the resonator , which modulated the reflected radio frequency. Even though this device
700-507: Is likely to continue as technology advances. Hitachi holds the record for the smallest RFID chip, at 0.05 mm × 0.05 mm. This is 1/64th the size of the previous record holder, the mu-chip. Manufacture is enabled by using the silicon-on-insulator (SOI) process. These dust-sized chips can store 38-digit numbers using 128-bit Read Only Memory (ROM). A major challenge is the attachment of antennas, thus limiting read range to only millimeters. In early 2020, MIT researchers demonstrated
750-408: Is not reliable. Bulk reading can be a rough guide for logistics decisions, but due to a high proportion of reading failures, it is not (yet) suitable for inventory management. However, when a single RFID tag might be seen as not guaranteeing a proper read, multiple RFID tags, where at least one will respond, may be a safer approach for detecting a known grouping of objects. In this respect, bulk reading
800-438: Is the landmark 1948 paper by Harry Stockman, who predicted that "Considerable research and development work has to be done before the remaining basic problems in reflected-power communication are solved, and before the field of useful applications is explored." Mario Cardullo 's device, patented on January 23, 1973, was the first true ancestor of modern RFID, as it was a passive radio transponder with memory. The initial device
850-428: Is used in intelligent transportation systems . In New York City , RFID readers are deployed at intersections to track E-ZPass tags as a means for monitoring the traffic flow. The data is fed through the broadband wireless infrastructure to the traffic management center to be used in adaptive traffic control of the traffic lights. Where ship, rail, or highway tanks are being loaded, a fixed RFID antenna contained in
900-407: The assembly line , RFID-tagged pharmaceuticals can be tracked through warehouses, and implanting RFID microchips in livestock and pets enables positive identification of animals. Tags can also be used in shops to expedite checkout, and to prevent theft by customers and employees. Since RFID tags can be attached to physical money, clothing, and possessions, or implanted in animals and people,
950-582: The railroad industry, RFID tags mounted on locomotives and rolling stock identify the owner, identification number and type of equipment and its characteristics. This can be used with a database to identify the type, origin, destination, etc. of the commodities being carried. In commercial aviation, RFID is used to support maintenance on commercial aircraft. RFID tags are used to identify baggage and cargo at several airports and airlines. Some countries are using RFID for vehicle registration and enforcement. RFID can help detect and retrieve stolen cars. RFID
1000-527: The Auto-ID Center was replaced by the newly founded research network, the Auto-ID Labs and EPCGlobal, an organization charged with managing the new EPC Network. Auto-ID Labs is responsible for managing and funding the continued development of EPC technology. The research topics of the labs have gone beyond RFID-only research and now also includes sensor networks and new emerging sensing technology. Basically,
1050-649: The French retailer Decathlon , customers perform self-checkout by either using a smartphone or putting items into a bin near the register that scans the tags without having to orient each one toward the scanner. Some stores use RFID-tagged items to trigger systems that provide customers with more information or suggestions, such as fitting rooms at Chanel and the "Color Bar" at Kendra Scott stores. Item tagging can also provide protection against theft by customers and employees by using electronic article surveillance (EAS). Tags of different types can be physically removed with
SECTION 20
#17328558250971100-720: The MIT Auto-ID Center, founded by Kevin Ashton , David Brock, Dr. Daniel Engels, Sanjay Sarma , and Sunny Siu with funding from Procter & Gamble , Gillette , the Uniform Code Council , and a number of other global consumer products manufacturers. The MIT Auto-ID Center was created to develop the Electronic Product Code, a global RFID-based item identification system intended to replace the UPC bar code . In October 2003,
1150-582: The RFID reader's interrogating radio waves . Active tags are powered by a battery and thus can be read at a greater range from the RFID reader, up to hundreds of meters. Unlike a barcode , the tag does not need to be within the line of sight of the reader, so it may be embedded in the tracked object. RFID is one method of automatic identification and data capture (AIDC). RFID tags are used in many industries. For example, an RFID tag attached to an automobile during production can be used to track its progress through
1200-509: The US$ 3–10 range. RFID can be used in a variety of applications, such as: In 2010, three factors drove a significant increase in RFID usage: decreased cost of equipment and tags, increased performance to a reliability of 99.9%, and a stable international standard around HF and UHF passive RFID. The adoption of these standards were driven by EPCglobal, a joint venture between GS1 and GS1 US , which were responsible for driving global adoption of
1250-822: The air, creating sound waves. Examples of this type of diaphragm are loudspeaker cones and earphone diaphragms and are found in air horns . In an electrodynamic loudspeaker , a diaphragm is the thin, semi-rigid membrane attached to the voice coil , which moves in a magnetic gap, vibrating the diaphragm, and producing sound . It can also be called a cone , though not all speaker diaphragms are cone-shaped. Diaphragms are also found in headphones . Quality midrange and bass drivers are usually made from paper, paper composites and laminates, plastic materials such as polypropylene , or mineral/fiber-filled polypropylene. Such materials have very high strength/weight ratios (paper being even higher than metals) and tend to be relatively immune from flexing during large excursions. This allows
1300-679: The barcode in the 1970s and 1980s. The EPCglobal Network was developed by the Auto-ID Center . RFID provides a way for organizations to identify and manage stock, tools and equipment ( asset tracking ), etc. without manual data entry. Manufactured products such as automobiles or garments can be tracked through the factory and through shipping to the customer. Automatic identification with RFID can be used for inventory systems. Many organisations require that their vendors place RFID tags on all shipments to improve supply chain management . Warehouse Management System incorporate this technology to speed up
1350-421: The cone/surround interface, and the "toughness" to withstand long-term vibration-induced fatigue. Sometimes the conical part and the outer surround are molded in one step and are one piece as commonly used for a Guitar speaker . Other types of speakers (such as electrostatic loudspeakers ) may use a thin membrane instead of a cone. Microphones can be thought of as speakers in reverse. The sound waves strike
1400-606: The driver to react quickly during transitions in music (i.e. fast changing transient impulses) and minimizes acoustical output distortion. If properly designed in terms of mass, stiffness, and damping, paper woofer/midrange cones can outperform many exotic drivers made from more expensive materials. Other materials used for diaphragms include polypropylene (PP), polyetheretherketone (PEEK) polycarbonate (PC), Mylar (PET), silk , glassfibre , carbon fibre , titanium , aluminium , aluminium- magnesium alloy, nickel , and beryllium . A 12-inch-diameter (300 mm) paper woofer with
1450-437: The field produced by the reader by changing the electrical loading the tag represents. By switching between lower and higher relative loads, the tag produces a change that the reader can detect. At UHF and higher frequencies, the tag is more than one radio wavelength away from the reader, requiring a different approach. The tag can backscatter a signal. Active tags may contain functionally separated transmitters and receivers, and
1500-495: The network they have developed is at the heart of a proposal sponsored by EPCglobal and supported by GS1 , GS1 US , Wal-Mart , Hewlett-Packard , and others to use RFID and the Electronic Product Code (EPC) in the identification of items in the supply chain for companies. The areas of expertise range from hardware to software to business research related to RFID. The Auto-ID Labs is the research-oriented successor to
1550-451: The organization number is assigned by the EPCGlobal consortium. The next 24 bits are an object class, identifying the kind of product. The last 36 bits are a unique serial number for a particular tag. These last two fields are set by the organization that issued the tag. Rather like a URL , the total electronic product code number can be used as a key into a global database to uniquely identify
Auto-ID Labs - Misplaced Pages Continue
1600-473: The possibility of reading personally-linked information without consent has raised serious privacy concerns. These concerns resulted in standard specifications development addressing privacy and security issues. In 2014, the world RFID market was worth US$ 8.89 billion , up from US$ 7.77 billion in 2013 and US$ 6.96 billion in 2012. This figure includes tags, readers, and software/services for RFID cards, labels, fobs, and all other form factors. The market value
1650-528: The radio energy transmitted by the reader. However, to operate a passive tag, it must be illuminated with a power level roughly a thousand times stronger than an active tag for signal transmission. Tags may either be read-only, having a factory-assigned serial number that is used as a key into a database, or may be read/write, where object-specific data can be written into the tag by the system user. Field programmable tags may be write-once, read-multiple; "blank" tags may be written with an electronic product code by
1700-423: The range of the RFID reader and read them simultaneously. RFID systems can be classified by the type of tag and reader. There are 3 types: Fixed readers are set up to create a specific interrogation zone which can be tightly controlled. This allows a highly defined reading area for when tags go in and out of the interrogation zone. Mobile readers may be handheld or mounted on carts or vehicles. Signaling between
1750-410: The reader and the tag is done in several different incompatible ways, depending on the frequency band used by the tag. Tags operating on LF and HF bands are, in terms of radio wavelength, very close to the reader antenna because they are only a small percentage of a wavelength away. In this near field region, the tag is closely coupled electrically with the transmitter in the reader. The tag can modulate
1800-484: The reader broadcasts an initialization command and a parameter that the tags individually use to pseudo-randomly delay their responses. When using an "adaptive binary tree" protocol, the reader sends an initialization symbol and then transmits one bit of ID data at a time; only tags with matching bits respond, and eventually only one tag matches the complete ID string. Both methods have drawbacks when used with many tags or with multiple overlapping readers. "Bulk reading"
1850-425: The receiving and delivery of the products and reduce the cost of labor needed in their warehouses. RFID is used for item-level tagging in retail stores. This can enable more accurate and lower-labor-cost supply chain and store inventory tracking, as is done at Lululemon , though physically locating items in stores requires more expensive technology. RFID tags can be used at checkout; for example, at some stores of
1900-478: The research can be grouped into three main areas: hardware, software and business layer. On the autoidlabs.org website, the Auto-ID Labs continuously publish their research results and provide an archive with over 150 white papers and academic publications. The following parts outline how the research is organized. The research network consists of the following seven research institutions: Radio-frequency identification Passive tags are powered by energy from
1950-425: The surround's linearity/damping play a crucial role in accuracy of the reproduced voice coil signal waveform. This is the crux of high-fidelity stereo. The surround may be resin-treated cloth, resin-treated non-wovens, polymeric foams, or thermoplastic elastomers over-molded onto the cone body. An ideal surround has a linear force-deflection curve with sufficient damping to fully absorb vibrational transmissions from
2000-414: The tag need not respond on a frequency related to the reader's interrogation signal. An Electronic Product Code (EPC) is one common type of data stored in a tag. When written into the tag by an RFID printer, the tag contains a 96-bit string of data. The first eight bits are a header which identifies the version of the protocol. The next 28 bits identify the organization that manages the data for this tag;
2050-423: The thin diaphragm, causing it to vibrate. Microphone diaphragms, unlike speaker diaphragms, tend to be thin and flexible, since they need to absorb as much sound as possible. In a condenser microphone, the diaphragm is placed in front of a plate and is charged . In a dynamic microphone, the diaphragm is glued to a magnetic coil, similar to the one in a dynamic loudspeaker. (In fact, a dynamic speaker can be used as
Auto-ID Labs - Misplaced Pages Continue
2100-572: The time required is greater. A group of tags has to be illuminated by the interrogating signal just like a single tag. This is not a challenge concerning energy, but with respect to visibility; if any of the tags are shielded by other tags, they might not be sufficiently illuminated to return a sufficient response. The response conditions for inductively coupled HF RFID tags and coil antennas in magnetic fields appear better than for UHF or SHF dipole fields, but then distance limits apply and may prevent success. Under operational conditions, bulk reading
2150-403: The transmission and sensor data, respectively. RFID tags can be either passive, active or battery-assisted passive. An active tag has an on-board battery and periodically transmits its ID signal. A battery-assisted passive tag has a small battery on board and is activated when in the presence of an RFID reader. A passive tag is cheaper and smaller because it has no battery; instead, the tag uses
2200-410: The user. The RFID tag receives the message and then responds with its identification and other information. This may be only a unique tag serial number, or may be product-related information such as a stock number, lot or batch number, production date, or other specific information. Since tags have individual serial numbers, the RFID system design can discriminate among several tags that might be within
2250-420: The voice coil signal waveform. Inaccurate reproduction of the voice coil signal results in acoustical distortion. The ideal for a cone/surround assembly is an extended range of linearity or "pistonic" motion characterized by i) minimal acoustical breakup of the cone material, ii) minimal standing wave patterns in the cone, and iii) linearity of the surrounds force-deflection curve. The cone stiffness/damping plus
2300-633: Was a covert listening device , rather than an identification tag, it is considered to be a predecessor of RFID because it was passive, being energised and activated by waves from an outside source. Similar technology, such as the Identification friend or foe transponder , was routinely used by the Allies and Germany in World War II to identify aircraft as friendly or hostile. Transponders are still used by most powered aircraft. An early work exploring RFID
2350-544: Was an early adopter in 2011 at the PGA Golf Championships , and by the 2013 Geneva Motor Show many of the larger brands were using RFID for social media marketing. To prevent retailers diverting products, manufacturers are exploring the use of RFID tags on promoted merchandise so that they can track exactly which product has sold through the supply chain at fully discounted prices. Yard management, shipping and freight and distribution centers use RFID tracking. In
2400-484: Was granted to David Everett, John Frech, Theodore Wright, and Kelly Rodriguez. A radio-frequency identification system uses tags , or labels attached to the objects to be identified. Two-way radio transmitter-receivers called interrogators or readers send a signal to the tag and read its response. RFID tags are made out of three pieces: The tag information is stored in a non-volatile memory. The RFID tag includes either fixed or programmable logic for processing
2450-929: Was passive, powered by the interrogating signal, and was demonstrated in 1971 to the New York Port Authority and other potential users. It consisted of a transponder with 16 bit memory for use as a toll device . The basic Cardullo patent covers the use of radio frequency (RF), sound and light as transmission carriers. The original business plan presented to investors in 1969 showed uses in transportation (automotive vehicle identification, automatic toll system, electronic license plate , electronic manifest, vehicle routing, vehicle performance monitoring), banking (electronic chequebook, electronic credit card), security (personnel identification, automatic gates, surveillance) and medical (identification, patient history). In 1973, an early demonstration of reflected power (modulated backscatter) RFID tags, both passive and semi-passive,
2500-520: Was performed by Steven Depp, Alfred Koelle and Robert Freyman at the Los Alamos National Laboratory . The portable system operated at 915 MHz and used 12-bit tags. This technique is used by the majority of today's UHFID and microwave RFID tags. In 1983, the first patent to be associated with the abbreviation RFID was granted to Charles Walton . In 1996, the first patent for a batteryless RFID passive tag with limited interference
#96903