An atmosphere (from Ancient Greek ἀτμός ( atmós ) 'vapour, steam' and σφαῖρα ( sphaîra ) 'sphere') is a layer of gases that envelop an astronomical object , held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosphere is the outer region of a star, which includes the layers above the opaque photosphere ; stars of low temperature might have outer atmospheres containing compound molecules .
102-414: The atmosphere of Earth is composed of nitrogen (78%), oxygen (21%), argon (0.9%), carbon dioxide (0.04%) and trace gases. Most organisms use oxygen for respiration ; lightning and bacteria perform nitrogen fixation which produces ammonia that is used to make nucleotides and amino acids ; plants , algae , and cyanobacteria use carbon dioxide for photosynthesis . The layered composition of
204-435: A boundary marked in most places by a temperature inversion (i.e. a layer of relatively warm air above a colder one), and in others by a zone that is isothermal with height. Although variations do occur, the temperature usually declines with increasing altitude in the troposphere because the troposphere is mostly heated through energy transfer from the surface. Thus, the lowest part of the troposphere (i.e. Earth's surface)
306-505: A factor of 1/ e (0.368) every 7.64 km (25,100 ft), (this is called the scale height ) -- for altitudes out to around 70 km (43 mi; 230,000 ft). However, the atmosphere is more accurately modeled with a customized equation for each layer that takes gradients of temperature, molecular composition, solar radiation and gravity into account. At heights over 100 km, an atmosphere may no longer be well mixed. Then each chemical species has its own scale height. In summary,
408-511: A layer in which temperatures rise with increasing altitude. This rise in temperature is caused by the absorption of ultraviolet radiation (UV) from the Sun by the ozone layer, which restricts turbulence and mixing. Although the temperature may be −60 °C (−76 °F; 210 K) at the tropopause, the top of the stratosphere is much warmer, and may be near 0 °C. The stratospheric temperature profile creates very stable atmospheric conditions, so
510-574: A mass of about 5.15 × 10 kg, three quarters of which is within about 11 km (6.8 mi; 36,000 ft) of the surface. The atmosphere becomes thinner with increasing altitude, with no definite boundary between the atmosphere and outer space . The Kármán line , at 100 km (62 mi) or 1.57% of Earth's radius, is often used as the border between the atmosphere and outer space. Atmospheric effects become noticeable during atmospheric reentry of spacecraft at an altitude of around 120 km (75 mi). Several layers can be distinguished in
612-485: A million miles away, were found to be reflected light from ice crystals in the atmosphere. When light passes through Earth's atmosphere, photons interact with it through scattering . If the light does not interact with the atmosphere, it is called direct radiation and is what you see if you were to look directly at the Sun. Indirect radiation is light that has been scattered in the atmosphere. For example, on an overcast day when you cannot see your shadow, there
714-648: A moon of Saturn, and Triton , a moon of Neptune, have atmospheres mainly of nitrogen . When in the part of its orbit closest to the Sun, Pluto has an atmosphere of nitrogen and methane similar to Triton's, but these gases are frozen when it is farther from the Sun. Other bodies within the Solar System have extremely thin atmospheres not in equilibrium. These include the Moon ( sodium gas), Mercury (sodium gas), Europa (oxygen), Io ( sulfur ), and Enceladus ( water vapor ). The first exoplanet whose atmospheric composition
816-507: A planet from atmospheric escape and that for some magnetizations the presence of a magnetic field works to increase the escape rate. Other mechanisms that can cause atmosphere depletion are solar wind -induced sputtering, impact erosion, weathering , and sequestration—sometimes referred to as "freezing out"—into the regolith and polar caps . Atmospheres have dramatic effects on the surfaces of rocky bodies. Objects that have no atmosphere, or that have only an exosphere, have terrain that
918-733: A protective buffer between the Earth's surface and outer space , shields the surface from most meteoroids and ultraviolet solar radiation , keeps it warm and reduces diurnal temperature variation (temperature extremes between day and night ) through heat retention ( greenhouse effect ), redistributes heat and moisture among different regions via air currents , and provides the chemical and climate conditions allowing life to exist and evolve on Earth. By mole fraction (i.e., by quantity of molecules ), dry air contains 78.08% nitrogen , 20.95% oxygen , 0.93% argon , 0.04% carbon dioxide , and small amounts of other trace gases . Air also contains
1020-412: A valuable by-product. The sources of atmospheric water vapor are the bodies of water (oceans, seas, lakes, rivers, swamps), and vegetation on the planetary surface , which humidify the troposphere through the processes of evaporation and transpiration respectively, and which influences the occurrence of weather phenomena; the greatest proportion of water vapor is in the atmosphere nearest the surface of
1122-445: A variable amount of water vapor , on average around 1% at sea level, and 0.4% over the entire atmosphere. Air composition, temperature and atmospheric pressure vary with altitude . Within the atmosphere, air suitable for use in photosynthesis by terrestrial plants and respiration of terrestrial animals is found only within 12 kilometres (7.5 mi) from the ground. Earth's early atmosphere consisted of accreted gases from
SECTION 10
#17328526611811224-450: A variable amount of water vapor is also present, on average about 1% at sea level. The low temperatures and higher gravity of the Solar System's giant planets — Jupiter , Saturn , Uranus and Neptune —allow them more readily to retain gases with low molecular masses . These planets have hydrogen–helium atmospheres, with trace amounts of more complex compounds. Two satellites of the outer planets possess significant atmospheres. Titan ,
1326-464: A wide range of velocities, there will always be some fast enough to produce a slow leakage of gas into space. Lighter molecules move faster than heavier ones with the same thermal kinetic energy , and so gases of low molecular weight are lost more rapidly than those of high molecular weight. It is thought that Venus and Mars may have lost much of their water when, after being photodissociated into hydrogen and oxygen by solar ultraviolet radiation,
1428-428: A year is equal to the energy radiated (lost) into outer space. The Earth's energy balance does not equally apply to each latitude because of the varying strength of the sunlight that strikes each of the three atmospheric cells, consequent to the inclination of the axis of planet Earth within its orbit of the Sun. The resultant atmospheric circulation transports warm tropical air to the geographic poles and cold polar air to
1530-544: Is 14 °C (57 °F; 287 K) or 15 °C (59 °F; 288 K), depending on the reference. The average atmospheric pressure at sea level is defined by the International Standard Atmosphere as 101325 pascals (760.00 Torr ; 14.6959 psi ; 760.00 mmHg ). This is sometimes referred to as a unit of standard atmospheres (atm) . Total atmospheric mass is 5.1480×10 kg (1.135×10 lb), about 2.5% less than would be inferred from
1632-408: Is about 1.2 kg/m (1.2 g/L, 0.0012 g/cm ). Density is not measured directly but is calculated from measurements of temperature, pressure and humidity using the equation of state for air (a form of the ideal gas law ). Atmospheric density decreases as the altitude increases. This variation can be approximately modeled using the barometric formula . More sophisticated models are used to predict
1734-414: Is about 28.946 or 28.96 g/mol. This is decreased when the air is humid. The relative concentration of gases remains constant until about 10,000 m (33,000 ft). In general, air pressure and density decrease with altitude in the atmosphere. However, temperature has a more complicated profile with altitude and may remain relatively constant or even increase with altitude in some regions (see
1836-442: Is because clouds (H 2 O) are strong absorbers and emitters of infrared radiation. This is also why it becomes colder at night at higher elevations. The greenhouse effect is directly related to this absorption and emission effect. Some gases in the atmosphere absorb and emit infrared radiation, but do not interact with sunlight in the visible spectrum. Common examples of these are CO 2 and H 2 O. The refractive index of air
1938-1429: Is called paleoclimatology . The three major constituents of Earth's atmosphere are nitrogen , oxygen , and argon . Water vapor accounts for roughly 0.25% of the atmosphere by mass. The concentration of water vapor (a greenhouse gas) varies significantly from around 10 ppm by mole fraction in the coldest portions of the atmosphere to as much as 5% by mole fraction in hot, humid air masses, and concentrations of other atmospheric gases are typically quoted in terms of dry air (without water vapor). The remaining gases are often referred to as trace gases, among which are other greenhouse gases , principally carbon dioxide, methane, nitrous oxide, and ozone. Besides argon, other noble gases , neon , helium , krypton , and xenon are also present. Filtered air includes trace amounts of many other chemical compounds . Many substances of natural origin may be present in locally and seasonally variable small amounts as aerosols in an unfiltered air sample, including dust of mineral and organic composition, pollen and spores , sea spray , and volcanic ash . Various industrial pollutants also may be present as gases or aerosols, such as chlorine (elemental or in compounds), fluorine compounds and elemental mercury vapor. Sulfur compounds such as hydrogen sulfide and sulfur dioxide (SO 2 ) may be derived from natural sources or from industrial air pollution. Mole fraction
2040-447: Is close to, but just greater than, 1. Systematic variations in the refractive index can lead to the bending of light rays over long optical paths. One example is that, under some circumstances, observers on board ships can see other vessels just over the horizon because light is refracted in the same direction as the curvature of Earth's surface. The refractive index of air depends on temperature, giving rise to refraction effects when
2142-422: Is covered in craters . Without an atmosphere, the planet has no protection from meteoroids , and all of them collide with the surface as meteorites and create craters. For planets with a significant atmosphere, most meteoroids burn up as meteors before hitting a planet's surface. When meteoroids do impact, the effects are often erased by the action of wind. Wind erosion is a significant factor in shaping
SECTION 20
#17328526611812244-477: Is mainly composed of extremely low densities of hydrogen, helium and several heavier molecules including nitrogen, oxygen and carbon dioxide closer to the exobase. The atoms and molecules are so far apart that they can travel hundreds of kilometres without colliding with one another. Thus, the exosphere no longer behaves like a gas, and the particles constantly escape into space . These free-moving particles follow ballistic trajectories and may migrate in and out of
2346-445: Is no direct radiation reaching you, it has all been scattered. As another example, due to a phenomenon called Rayleigh scattering , shorter (blue) wavelengths scatter more easily than longer (red) wavelengths. This is why the sky looks blue; you are seeing scattered blue light. This is also why sunsets are red. Because the Sun is close to the horizon, the Sun's rays pass through more atmosphere than normal before reaching your eye. Much of
2448-513: Is so tenuous that some scientists consider it to be part of interplanetary space rather than part of the atmosphere). It extends from the thermopause (also known as the "exobase") at the top of the thermosphere to a poorly defined boundary with the solar wind and interplanetary medium . The altitude of the exobase varies from about 500 kilometres (310 mi; 1,600,000 ft) to about 1,000 kilometres (620 mi) in times of higher incoming solar radiation. The upper limit varies depending on
2550-481: Is sometimes referred to as volume fraction ; these are identical for an ideal gas only. ppm: parts per million by molecular count The concentration of CO 2 has been increasing in recent decades , as has that of CH 4 . Water vapor is about 0.25% by mass over full atmosphere Water vapor varies significantly locally The average molecular weight of dry air, which can be used to calculate densities or to convert between mole fraction and mass fraction,
2652-768: Is the heat capacity ratio ( γ ≈ {\displaystyle \gamma \approx \,} 7 ⁄ 5 ) for air. The combination of the equation for the air pressure yields the dry adiabatic lapse rate : d T d z = − m g R γ − 1 γ = − 9.8 ∘ C / k m {\displaystyle {\frac {\,dT\,}{dz}}=-{\frac {\;mg\;}{R}}{\frac {\;\gamma \,-\,1\;}{\gamma }}=-9.8^{\circ }\mathrm {C/km} } . The environmental lapse rate ( d T / d z {\displaystyle dT/dz} ), at which temperature decreases with altitude, usually
2754-464: Is the atmospheric boundary layer between the troposphere and the stratosphere , and is located by measuring the changes in temperature relative to increased altitude in the troposphere and in the stratosphere. In the troposphere, the temperature of the air decreases at high altitude, however, in the stratosphere the air temperature initially is constant, and then increases with altitude. The increase of air temperature at stratospheric altitudes results from
2856-456: Is the lowest layer of Earth's atmosphere. It extends from Earth's surface to an average height of about 12 km (7.5 mi; 39,000 ft), although this altitude varies from about 9 km (5.6 mi; 30,000 ft) at the geographic poles to 17 km (11 mi; 56,000 ft) at the Equator , with some variation due to weather. The troposphere is bounded above by the tropopause ,
2958-400: Is the lowest layer of the atmosphere. This extends from the planetary surface to the bottom of the stratosphere . The troposphere contains 75–80% of the mass of the atmosphere, and is the atmospheric layer wherein the weather occurs; the height of the troposphere varies between 17 km at the equator and 7.0 km at the poles. The stratosphere extends from the top of the troposphere to
3060-479: Is the numeric difference between the temperature of the planetary surface and the temperature of the tropopause divided by the altitude. Functionally, the ELR equation assumes that the planetary atmosphere is static, that there is no mixing of the layers of air, either by vertical atmospheric convection or winds that could create turbulence. The difference in temperature derives from the planetary surface absorbing most of
3162-412: Is too low to conduct a significant amount of energy to or from the skin. This layer is completely cloudless and free of water vapor. However, non-hydrometeorological phenomena such as the aurora borealis and aurora australis are occasionally seen in the thermosphere. The International Space Station orbits in this layer, between 350 and 420 km (220 and 260 mi). It is this layer where many of
Atmosphere - Misplaced Pages Continue
3264-475: Is typically the warmest section of the troposphere. This promotes vertical mixing (hence, the origin of its name in the Greek word τρόπος, tropos , meaning "turn"). The troposphere contains roughly 80% of the mass of Earth's atmosphere. The troposphere is denser than all its overlying layers because a larger atmospheric weight sits on top of the troposphere and causes it to be most severely compressed. Fifty percent of
3366-406: Is unequal to the adiabatic lapse rate ( d S / d z ≠ 0 {\displaystyle dS/dz\neq 0} ). If the upper air is warmer than predicted by the adiabatic lapse rate ( d S / d z > 0 {\displaystyle dS/dz>0} ), then a rising and expanding parcel of air will arrive at the new altitude at a lower temperature than
3468-577: The F-layer of the ionosphere where they encounter enough atmospheric drag to require reboosts every few months, otherwise, orbital decay will occur resulting in a return to Earth. Depending on solar activity, satellites can experience noticeable atmospheric drag at altitudes as high as 700–800 km. The division of the atmosphere into layers mostly by reference to temperature is discussed above. Temperature decreases with altitude starting at sea level, but variations in this trend begin above 11 km, where
3570-588: The infrared to around 1100 nm. There are also infrared and radio windows that transmit some infrared and radio waves at longer wavelengths. For example, the radio window runs from about one centimetre to about eleven-metre waves. Emission is the opposite of absorption, it is when an object emits radiation. Objects tend to emit amounts and wavelengths of radiation depending on their " black body " emission curves, therefore hotter objects tend to emit more radiation, with shorter wavelengths. Colder objects emit less radiation, with longer wavelengths. For example,
3672-433: The magnetosphere or the solar wind. Every second, the Earth loses about 3 kg of hydrogen, 50 g of helium, and much smaller amounts of other constituents. The exosphere is too far above Earth for meteorological phenomena to be possible. However, Earth's auroras —the aurora borealis (northern lights) and aurora australis (southern lights)—sometimes occur in the lower part of the exosphere, where they overlap into
3774-402: The mesopause that marks the top of this middle layer of the atmosphere. It is the coldest place on Earth and has an average temperature around −85 °C (−120 °F ; 190 K ). Just below the mesopause, the air is so cold that even the very scarce water vapor at this altitude can condense into polar-mesospheric noctilucent clouds of ice particles. These are the highest clouds in
3876-409: The ozone layer 's absorption and retention of the ultraviolet (UV) radiation that Earth receives from the Sun. The coldest layer of the atmosphere, where the temperature lapse rate changes from a positive rate (in the troposphere) to a negative rate (in the stratosphere) locates and identifies the tropopause as an inversion layer in which limited mixing of air layers occurs between the troposphere and
3978-451: The solar nebula , but the atmosphere changed significantly over time, affected by many factors such as volcanism , impact events , weathering and the evolution of life (particularly the photoautotrophs ). Recently, human activity has also contributed to atmospheric changes , such as climate change (mainly through deforestation and fossil fuel -related global warming ), ozone depletion and acid deposition . The atmosphere has
4080-428: The temperature section). Because the general pattern of the temperature/altitude profile, or lapse rate , is constant and measurable by means of instrumented balloon soundings , the temperature behavior provides a useful metric to distinguish atmospheric layers. This atmospheric stratification divides the Earth's atmosphere into five main layers: The exosphere is the outermost layer of Earth's atmosphere (though it
4182-511: The tropopause . This layer extends from the top of the troposphere at roughly 12 km (7.5 mi; 39,000 ft) above Earth's surface to the stratopause at an altitude of about 50 to 55 km (31 to 34 mi; 164,000 to 180,000 ft). The atmospheric pressure at the top of the stratosphere is roughly 1/1000 the pressure at sea level . It contains the ozone layer , which is the part of Earth's atmosphere that contains relatively high concentrations of that gas. The stratosphere defines
Atmosphere - Misplaced Pages Continue
4284-441: The Earth heats the troposphere by means of latent heat , thermal radiation , and sensible heat . The gas layers of the troposphere are less dense at the geographic poles and denser at the equator, where the average height of the tropical troposphere is 13 km, approximately 7.0 km greater than the 6.0 km average height of the polar troposphere at the geographic poles; therefore, surplus heating and vertical expansion of
4386-433: The Earth. The temperature of the troposphere decreases at high altitude by way of the inversion layers that occur in the tropopause , which is the atmospheric boundary that demarcates the troposphere from the stratosphere . At higher altitudes, the low air-temperature consequently decreases the saturation vapor pressure , the amount of atmospheric water vapor in the upper troposphere. The maximum air pressure (weight of
4488-558: The Kármán line, significant atmospheric effects such as auroras still occur. Meteors begin to glow in this region, though the larger ones may not burn up until they penetrate more deeply. The various layers of Earth's ionosphere , important to HF radio propagation, begin below 100 km and extend beyond 500 km. By comparison, the International Space Station and Space Shuttle typically orbit at 350–400 km, within
4590-459: The Sun is approximately 6,000 K (5,730 °C ; 10,340 °F ), its radiation peaks near 500 nm, and is visible to the human eye. Earth is approximately 290 K (17 °C; 62 °F), so its radiation peaks near 10,000 nm, and is much too long to be visible to humans. Because of its temperature, the atmosphere emits infrared radiation. For example, on clear nights Earth's surface cools down faster than on cloudy nights. This
4692-414: The air contains water vapor , then cooling of the air can cause the water to condense, and the air no longer functions as an ideal gas. If the air is at the saturation vapor pressure , then the rate at which temperature decreases with altitude is called the saturated adiabatic lapse rate . The actual rate at which the temperature decreases with altitude is the environmental lapse rate . In the troposphere,
4794-521: The air parcel; atmospheric compression and expansion are measured as an isentropic process ( d S = 0 {\displaystyle dS=0} ) wherein there occurs no change in entropy as the air parcel rises or falls within the atmosphere. Because the heat exchanged ( d Q = 0 {\displaystyle dQ=0} ) is related to the change in entropy ( d S {\displaystyle dS} by d Q = T d S {\displaystyle dQ=TdS} )
4896-498: The appearance of life and its evolution . Atmosphere of Earth The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth 's planetary surface (both lands and oceans ), known collectively as air , with variable quantities of suspended aerosols and particulates (which create weather features such as clouds and hazes ), all retained by Earth's gravity . The atmosphere serves as
4998-420: The aptly-named thermosphere above 90 km. Because in an ideal gas of constant composition the speed of sound depends only on temperature and not on pressure or density, the speed of sound in the atmosphere with altitude takes on the form of the complicated temperature profile (see illustration to the right), and does not mirror altitudinal changes in density or pressure. The density of air at sea level
5100-421: The atmosphere also cools by emitting radiation, as discussed below. The combined absorption spectra of the gases in the atmosphere leave "windows" of low opacity , allowing the transmission of only certain bands of light. The optical window runs from around 300 nm ( ultraviolet -C) up into the range humans can see, the visible spectrum (commonly called light), at roughly 400–700 nm and continues to
5202-399: The atmosphere and may be visible to the naked eye if sunlight reflects off them about an hour or two after sunset or similarly before sunrise. They are most readily visible when the Sun is around 4 to 16 degrees below the horizon. Lightning-induced discharges known as transient luminous events (TLEs) occasionally form in the mesosphere above tropospheric thunderclouds . The mesosphere is also
SECTION 50
#17328526611815304-489: The atmosphere based on characteristics such as temperature and composition, namely the troposphere , stratosphere , mesosphere , thermosphere (formally the ionosphere ) and exosphere . The study of Earth's atmosphere and its processes is called atmospheric science (aerology), and includes multiple subfields, such as climatology and atmospheric physics . Early pioneers in the field include Léon Teisserenc de Bort and Richard Assmann . The study of historic atmosphere
5406-438: The atmosphere can transport thermal energy from the higher temperature interior up to the surface. From the perspective of a planetary geologist , the atmosphere acts to shape a planetary surface. Wind picks up dust and other particles which, when they collide with the terrain, erode the relief and leave deposits ( eolian processes). Frost and precipitations , which depend on the atmospheric composition, also influence
5508-532: The atmosphere minimises the harmful effects of sunlight , ultraviolet radiation, solar wind , and cosmic rays and thus protects the organisms from genetic damage. The current composition of the atmosphere of the Earth is the product of billions of years of biochemical modification of the paleoatmosphere by living organisms. Atmospheres are clouds of gas bound to and engulfing an astronomical focal point of sufficiently dominating mass , adding to its mass, possibly escaping from it or collapsing into it. Because of
5610-413: The atmosphere) is at sea level and decreases at high altitude because the atmosphere is in hydrostatic equilibrium , wherein the air pressure is equal to the weight of the air above a given point on the planetary surface. The relation between decreased air pressure and high altitude can be equated to the density of a fluid, by way of the following hydrostatic equation: where: The planetary surface of
5712-431: The atmospheric pH by negligible amounts. Respiration from animals releases out of equilibrium carbonic acid and low levels of other ions. Combustion of hydrocarbons which is not a chemical reaction releases to atmosphere carbonic acid water as; saturates, condensates, vapour or gas (invisible steam). Combustion can releases particulates (carbon/soot and ash) as well as molecules forming nitrites and sulphites which will reduce
5814-410: The atmospheric pH of the water slightly or harmfully in highly industrialised areas where this is classed as air pollution and can create the phenomena of acid rain, a pH lower than the natural pH5.56. The negative effects of the by-products of combustion released into the atmospheric vapour can be removed by the use of scrubber towers and other physical means, the captured pollutants can be processed into
5916-552: The average environmental lapse rate is a decrease of about 6.5 °C for every 1.0 km (1,000m) of increased altitude. For dry air, an approximately ideal gas , the adiabatic equation is: p ( z ) [ T ( z ) ] − γ γ − 1 = constant {\displaystyle p(z){\Bigl [}T(z){\Bigr ]}^{-{\frac {\gamma }{\,\gamma \,-\,1\,}}}={\text{constant}}} wherein γ {\displaystyle \gamma }
6018-637: The average sea level pressure and Earth's area of 51007.2 megahectares, this portion being displaced by Earth's mountainous terrain. Atmospheric pressure is the total weight of the air above unit area at the point where the pressure is measured. Thus air pressure varies with location and weather . If the entire mass of the atmosphere had a uniform density equal to sea level density (about 1.2 kg per m ) from sea level upwards, it would terminate abruptly at an altitude of 8.50 km (27,900 ft). Air pressure actually decreases exponentially with altitude, dropping by half every 5.6 km (18,000 ft) or by
6120-411: The base of the exosphere at 690 km and contains the ionosphere , where solar radiation ionizes the atmosphere. The density of the ionosphere is greater at short distances from the planetary surface in the daytime and decreases as the ionosphere rises at night-time, thereby allowing a greater range of radio frequencies to travel greater distances. The exosphere begins at 690 to 1,000 km from
6222-414: The blue light has been scattered out, leaving the red light in a sunset. Different molecules absorb different wavelengths of radiation. For example, O 2 and O 3 absorb almost all radiation with wavelengths shorter than 300 nanometres . Water (H 2 O) absorbs at many wavelengths above 700 nm. When a molecule absorbs a photon, it increases the energy of the molecule. This heats the atmosphere, but
SECTION 60
#17328526611816324-428: The bottom of the mesosphere , and contains the ozone layer , at an altitude between 15 km and 35 km. It is the atmospheric layer that absorbs most of the ultraviolet radiation that Earth receives from the Sun. The mesosphere ranges from 50 km to 85 km and is the layer wherein most meteors are incinerated before reaching the surface. The thermosphere extends from an altitude of 85 km to
6426-415: The definition. Various authorities consider it to end at about 10,000 kilometres (6,200 mi) or about 190,000 kilometres (120,000 mi)—about halfway to the moon, where the influence of Earth's gravity is about the same as radiation pressure from sunlight. The geocorona visible in the far ultraviolet (caused by neutral hydrogen) extends to at least 100,000 kilometres (62,000 mi). This layer
6528-426: The diminishing mass of the gas above the point of barometric measurement. The units of air pressure are based upon the standard atmosphere (atm), which is 101,325 Pa (equivalent to 760 Torr or 14.696 psi ). The height at which the atmospheric pressure declines by a factor of e (an irrational number equal to 2.71828) is called the scale height ( H ). For an atmosphere of uniform temperature,
6630-431: The distance from the Sun determines the energy available to heat atmospheric gas to the point where some fraction of its molecules' thermal motion exceed the planet's escape velocity , allowing those to escape a planet's gravitational grasp. Thus, distant and cold Titan , Triton , and Pluto are able to retain their atmospheres despite their relatively low gravities. Since a collection of gas molecules may be moving at
6732-420: The effect of the expansion of dry air as it rises in the atmosphere, and the wet adiabatic lapse rate (WALR) includes the effect of the condensation-rate of water vapor upon the environmental lapse rate. A parcel of air rises and expands because of the lower atmospheric pressure at high altitudes. The expansion of the air parcel pushes outwards against the surrounding air, and transfers energy (as work ) from
6834-404: The energy from the sun, which then radiates outwards and heats the troposphere (the first layer of the atmosphere of Earth) while the radiation of surface heat to the upper atmosphere results in the cooling of that layer of the atmosphere. The ELR equation also assumes that the atmosphere is static, but heated air becomes buoyant, expands, and rises. The dry adiabatic lapse rate (DALR) accounts for
6936-436: The equation governing the air temperature as a function of altitude for a mixed atmosphere is: d S d z = 0 {\displaystyle {\frac {\,dS\,}{dz}}=0} where S is the entropy. The isentropic equation states that atmospheric entropy does not change with altitude; the adiabatic lapse rate measures the rate at which temperature decreases with altitude under such conditions. If
7038-434: The gas molecules are so far apart that its temperature in the usual sense is not very meaningful. The air is so rarefied that an individual molecule (of oxygen , for example) travels an average of 1 kilometre (0.62 mi; 3300 ft) between collisions with other molecules. Although the thermosphere has a high proportion of molecules with high energy, it would not feel hot to a human in direct contact, because its density
7140-410: The heat loss. The parcel of air loses energy as it reaches greater altitude, which is manifested as a decrease in the temperature of the air mass. Analogously, the reverse process occurs within a cold parcel of air that is being compressed and is sinking to the planetary surface. The compression and the expansion of an air parcel are reversible phenomena in which energy is not transferred into or out of
7242-441: The hydrogen escaped. Earth's magnetic field helps to prevent this, as, normally, the solar wind would greatly enhance the escape of hydrogen. However, over the past 3 billion years Earth may have lost gases through the magnetic polar regions due to auroral activity, including a net 2% of its atmospheric oxygen. The net effect, taking the most important escape processes into account, is that an intrinsic magnetic field does not protect
7344-431: The latter, such planetary nucleus can develop from interstellar molecular clouds or protoplanetary disks into rocky astronomical objects with varyingly thick atmospheres, gas giants or fusors . Composition and thickness is originally determined by the stellar nebula's chemistry and temperature, but can also by a product processes within the astronomical body outgasing a different atmosphere. The atmospheres of
7446-403: The layer where most meteors burn up upon atmospheric entrance. It is too high above Earth to be accessible to jet-powered aircraft and balloons, and too low to permit orbital spacecraft. The mesosphere is mainly accessed by sounding rockets and rocket-powered aircraft . The stratosphere is the second-lowest layer of Earth's atmosphere. It lies above the troposphere and is separated from it by
7548-456: The layers of air and so determines the structure and the phenomena of the troposphere. The rotational friction of the troposphere against the planetary surface affects the flow of the air, and so forms the planetary boundary layer (PBL) that varies in height from hundreds of meters up to 2 km (1.2 mi; 6,600 ft). The measures of the PBL vary according to the latitude, the landform , and
7650-482: The mass of Earth's atmosphere is distributed approximately as follows: By comparison, the summit of Mount Everest is at 8,848 m (29,029 ft); commercial airliners typically cruise between 10 and 13 km (33,000 and 43,000 ft) where the lower density and temperature of the air improve fuel economy; weather balloons reach 30.4 km (100,000 ft) and above; and the highest X-15 flight in 1963 reached 108.0 km (354,300 ft). Even above
7752-504: The orbital decay of satellites. The average mass of the atmosphere is about 5 quadrillion (5 × 10 ) tonnes or 1/1,200,000 the mass of Earth. According to the American National Center for Atmospheric Research , "The total mean mass of the atmosphere is 5.1480 × 10 kg with an annual range due to water vapor of 1.2 or 1.5 × 10 kg, depending on whether surface pressure or water vapor data are used; somewhat smaller than
7854-402: The parcel of air to the atmosphere. Transferring energy to a parcel of air by way of heat is a slow and inefficient exchange of energy with the environment, which is an adiabatic process (no energy transfer by way of heat). As the rising parcel of air loses energy while it acts upon the surrounding atmosphere, no heat energy is transferred from the atmosphere to the air parcel to compensate for
7956-406: The past. The circulation of the atmosphere occurs due to thermal differences when convection becomes a more efficient transporter of heat than thermal radiation . On planets where the primary heat source is solar radiation, excess heat in the tropics is transported to higher latitudes. When a planet generates a significant amount of heat internally, such as is the case for Jupiter , convection in
8058-426: The physical environment and may not be in this pH range.) Atmospheric water vapour holds suspended gasses in it (not by mass),78.08% nitrogen as N 2 , 20.95% oxygen as O 2 , 0.93% argon , trace gases, and variable amounts of condensing water (from saturated water vapor ). Any carbon dioxide released into the atmosphere from a pressurised source combines with the carbonic acid water vapour and momentarily reduces
8160-410: The planetary atmosphere of the Earth. The three-cell model of the atmosphere of the Earth describes the actual flow of the atmosphere with the tropical-latitude Hadley cell , the mid-latitude Ferrel cell , and the polar cell to describe the flow of energy and the circulation of the planetary atmosphere. Balance is the fundamental principle of the model — that the solar energy absorbed by the Earth in
8262-428: The planets Venus and Mars are principally composed of carbon dioxide and nitrogen , argon and oxygen . The composition of Earth's atmosphere is determined by the by-products of the life that it sustains. Dry air (mixture of gases) from Earth's atmosphere contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and traces of hydrogen, helium, and other "noble" gases (by volume), but generally
8364-523: The previous estimate. The mean mass of water vapor is estimated as 1.27 × 10 kg and the dry air mass as 5.1352 ±0.0003 × 10 kg." Solar radiation (or sunlight) is the energy Earth receives from the Sun . Earth also emits radiation back into space, but at longer wavelengths that humans cannot see. Part of the incoming and emitted radiation is absorbed or reflected by the atmosphere. In May 2017, glints of light, seen as twinkling from an orbiting satellite
8466-416: The relief. Climate changes can influence a planet's geological history. Conversely, studying the surface of the Earth leads to an understanding of the atmosphere and climate of other planets. For a meteorologist , the composition of the Earth's atmosphere is a factor affecting the climate and its variations. For a biologist or paleontologist , the Earth's atmospheric composition is closely dependent on
8568-422: The satellites orbiting the Earth are present. The mesosphere is the third highest layer of Earth's atmosphere, occupying the region above the stratosphere and below the thermosphere. It extends from the stratopause at an altitude of about 50 km (31 mi; 160,000 ft) to the mesopause at 80–85 km (50–53 mi; 260,000–280,000 ft) above sea level. Temperatures drop with increasing altitude to
8670-468: The scale height is proportional to the atmospheric temperature and is inversely proportional to the product of the mean molecular mass of dry air, and the local acceleration of gravity at the point of barometric measurement. Surface gravity differs significantly among the planets. For example, the large gravitational force of the giant planet Jupiter retains light gases such as hydrogen and helium that escape from objects with lower gravity. Secondly,
8772-447: The stratosphere lacks the weather-producing air turbulence that is so prevalent in the troposphere. Consequently, the stratosphere is almost completely free of clouds and other forms of weather. However, polar stratospheric or nacreous clouds are occasionally seen in the lower part of this layer of the atmosphere where the air is coldest. The stratosphere is the highest layer that can be accessed by jet-powered aircraft . The troposphere
8874-416: The stratosphere. The general flow of the atmosphere is from west to east, which, however, can be interrupted by polar flows, either north-to-south flow or a south-to-north flow, which meteorology describes as a zonal flow and as a meridional flow. The terms are used to describe localized areas of the atmosphere at a synoptic scale ; the three-cell model more fully explains the zonal and meridional flows of
8976-413: The surface, and extends to roughly 10,000 km, where it interacts with the magnetosphere of Earth. Atmospheric pressure is the force (per unit-area) perpendicular to a unit-area of planetary surface, as determined by the weight of the vertical column of atmospheric gases. In said atmospheric model, the atmospheric pressure , the weight of the mass of the gas, decreases at high altitude because of
9078-453: The surrounding air. In which case, the air parcel is denser than the surrounding air, and so falls back to its original altitude as an air mass that is stable against being lifted. If the upper air is cooler than predicted by the adiabatic lapse rate, then, when the air parcel rises to a new altitude, the air mass will have a higher temperature and a lower density than the surrounding air and will continue to accelerate and rise. The tropopause
9180-401: The temperature gradient is large. An example of such effects is the mirage . Troposphere The troposphere is the lowest layer of the atmosphere of Earth . It contains 80% of the total mass of the planetary atmosphere and 99% of the total mass of water vapor and aerosols , and is where most weather phenomena occur. From the planetary surface of the Earth, the average height of
9282-444: The temperature stabilizes over a large vertical distance through the rest of the troposphere. In the stratosphere , starting above about 20 km, the temperature increases with height, due to heating within the ozone layer caused by the capture of significant ultraviolet radiation from the Sun by the dioxygen and ozone gas in this region. Still another region of increasing temperature with altitude occurs at very high altitudes, in
9384-417: The terrain of rocky planets with atmospheres, and over time can erase the effects of both craters and volcanoes . In addition, since liquids cannot exist without pressure, an atmosphere allows liquid to be present at the surface, resulting in lakes , rivers and oceans . Earth and Titan are known to have liquids at their surface and terrain on the planet suggests that Mars had liquid on its surface in
9486-442: The thermopause varies considerably due to changes in solar activity. Because the thermopause lies at the lower boundary of the exosphere, it is also referred to as the exobase . The lower part of the thermosphere, from 80 to 550 kilometres (50 to 342 mi) above Earth's surface, contains the ionosphere . The temperature of the thermosphere gradually increases with height and can rise as high as 1500 °C (2700 °F), though
9588-429: The thermosphere. The exosphere contains many of the artificial satellites that orbit Earth. The thermosphere is the second-highest layer of Earth's atmosphere. It extends from the mesopause (which separates it from the mesosphere) at an altitude of about 80 km (50 mi; 260,000 ft) up to the thermopause at an altitude range of 500–1000 km (310–620 mi; 1,600,000–3,300,000 ft). The height of
9690-777: The time of day when the meteorological measurement is realized. Atop the troposphere is the tropopause , which is the functional atmospheric border that demarcates the troposphere from the stratosphere . As such, because the tropopause is an inversion layer in which air-temperature increases with altitude, the temperature of the tropopause remains constant. The layer has the largest concentration of nitrogen. The Earth's planetary atmosphere contains, besides other gases, water vapour and carbon dioxide, which produce carbonic acid in rain water , which therefore has an approximate natural pH of 5.0 to 5.5 (slightly acidic). (Water other than atmospheric water vapour fallen as fresh rain, such as fresh/sweet/potable/river water, will usually be affected by
9792-419: The total mass of the atmosphere is located in the lower 5.6 km (3.5 mi; 18,000 ft) of the troposphere. Nearly all atmospheric water vapor or moisture is found in the troposphere, so it is the layer where most of Earth's weather takes place. It has basically all the weather-associated cloud genus types generated by active wind circulation, although very tall cumulonimbus thunder clouds can penetrate
9894-453: The tropics. The effect of the three cells is the tendency to the equilibrium of heat and moisture in the planetary atmosphere of Earth. A zonal flow regime is the meteorological term meaning that the general flow pattern is west to east along the Earth's latitude lines, with weak shortwaves embedded in the flow. The use of the word "zone" refers to the flow being along the Earth's latitudinal "zones". This pattern can buckle and thus become
9996-430: The tropopause from below and rise into the lower part of the stratosphere. Most conventional aviation activity takes place in the troposphere, and it is the only layer accessible by propeller-driven aircraft . Within the five principal layers above, which are largely determined by temperature, several secondary layers may be distinguished by other properties: The average temperature of the atmosphere at Earth's surface
10098-679: The tropopause. At the geographical poles , the Arctic and the Antarctic regions, the tropospheric temperature decreases from an average temperature of 0 °C (32 °F) at sea level to approximately −45 °C (−49 °F) at the tropopause. The temperature of the troposphere decreases with increased altitude, and the rate of decrease in air temperature is measured with the Environmental Lapse Rate ( − d T / d z {\displaystyle -dT/dz} ) which
10200-478: The troposphere is 18 km (11 mi; 59,000 ft) in the tropics ; 17 km (11 mi; 56,000 ft) in the middle latitudes ; and 6 km (3.7 mi; 20,000 ft) in the high latitudes of the polar regions in winter; thus the average height of the troposphere is 13 km (8.1 mi; 43,000 ft). The term troposphere derives from the Greek words tropos (rotating) and sphaira (sphere) indicating that rotational turbulence mixes
10302-426: The troposphere occur in the tropical latitudes. At the middle latitudes, tropospheric temperatures decrease from an average temperature of 15 °C (59 °F) at sea level to approximately −55 °C (−67 °F) at the tropopause . At the equator , the tropospheric temperatures decrease from an average temperature of 20 °C (68 °F) at sea level to approximately −70 to −75 °C (−94 to −103 °F) at
10404-460: Was determined is HD 209458b , a gas giant with a close orbit around a star in the constellation Pegasus . Its atmosphere is heated to temperatures over 1,000 K, and is steadily escaping into space. Hydrogen, oxygen, carbon and sulfur have been detected in the planet's inflated atmosphere. The atmosphere of Earth is composed of layers with different properties, such as specific gaseous composition, temperature, and pressure. The troposphere
#180819