Misplaced Pages

Aeromechanics

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Aerodynamics ( Ancient Greek : ἀήρ aero (air) + Ancient Greek : δυναμική (dynamics)) is the study of the motion of air , particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics , and is an important domain of study in aeronautics . The term aerodynamics is often used synonymously with gas dynamics, the difference being that "gas dynamics" applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight , which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis for the development of heavier-than-air flight and a number of other technologies. Recent work in aerodynamics has focused on issues related to compressible flow , turbulence , and boundary layers and has become increasingly computational in nature.

#751248

111-448: Aeromechanics is the science about mechanics that deals with the motion of air and other gases, involving aerodynamics , thermophysics and aerostatics . It is the branch of mechanics that deals with the motion of gases (especially air) and their effects on bodies in the flow. The fluid flow and structure are interactive systems and their interaction is dynamic. The fluid force causes the structure to deform which changes its orientation to

222-765: A bishop in the Church of the United Brethren in Christ , he traveled often and the Wrights frequently moved – twelve times before finally returning permanently to Dayton in 1884. In elementary school, Orville was given to mischief and was once expelled. In 1878, when the family lived in Cedar Rapids, Iowa , their father brought home a toy helicopter for his two younger sons. The device was based on an invention of French aeronautical pioneer Alphonse Pénaud . Made of paper, bamboo and cork with

333-426: A shock wave . The presence of shock waves, along with the compressibility effects of high-flow velocity (see Reynolds number ) fluids, is the central difference between the supersonic and subsonic aerodynamics regimes. In aerodynamics, hypersonic speeds are speeds that are highly supersonic. In the 1970s, the term generally came to refer to speeds of Mach 5 (5 times the speed of sound) and above. The hypersonic regime

444-463: A French aeronautical engineer, became the first person to reasonably predict the power needed for sustained flight. Otto Lilienthal , the first person to become highly successful with glider flights, was also the first to propose thin, curved airfoils that would produce high lift and low drag. Building on these developments as well as research carried out in their own wind tunnel, the Wright brothers flew

555-482: A continuum. Continuum flow fields are characterized by properties such as flow velocity , pressure , density , and temperature , which may be functions of position and time. These properties may be directly or indirectly measured in aerodynamics experiments or calculated starting with the equations for conservation of mass, momentum , and energy in air flows. Density, flow velocity, and an additional property, viscosity , are used to classify flow fields. Flow velocity

666-416: A few times, but the parachute effect of the forward elevator allowed Wilbur to make a safe flat landing, instead of a nose-dive. These incidents wedded the Wrights even more strongly to the canard design, which they did not give up until 1910. The glider, however, delivered two major disappointments. It produced only about one-third the lift calculated and sometimes pointed opposite the intended direction of

777-449: A few wing shapes, and the Wrights mistakenly assumed the data would apply to their wings, which had a different shape. The Wrights took a huge step forward and made basic wind tunnel tests on 200 scale-model wings of many shapes and airfoil curves, followed by detailed tests on 38 of them. An important discovery was the benefit of longer narrower wings: in aeronautical terms, wings with a larger aspect ratio (wingspan divided by chord –

888-410: A flow field) enables the calculation of forces and moments acting on the object. In many aerodynamics problems, the forces of interest are the fundamental forces of flight: lift , drag , thrust , and weight . Of these, lift and drag are aerodynamic forces, i.e. forces due to air flow over a solid body. Calculation of these quantities is often founded upon the assumption that the flow field behaves as

999-438: A fluid, the speed of sound in that fluid can be considered the fastest speed that "information" can travel in the flow. This difference most obviously manifests itself in the case of a fluid striking an object. In front of that object, the fluid builds up a stagnation pressure as impact with the object brings the moving fluid to rest. In fluid traveling at subsonic speed, this pressure disturbance can propagate upstream, changing

1110-415: A flying machine could be controlled and balanced with practice. This was a trend, as many other aviation pioneers were also dedicated cyclists and involved in the bicycle business in various ways. From 1900 until their first powered flights in late 1903, the brothers conducted extensive glider tests that also developed their skills as pilots. Their shop mechanic Charles Taylor became an important part of

1221-409: A flying machine, but rather a system of aerodynamic control that manipulated a flying machine's surfaces. From the beginning of their aeronautical work, Wilbur and Orville focused on developing a reliable method of pilot control as the key to solving "the flying problem". This approach differed significantly from other experimenters of the time who put more emphasis on developing powerful engines. Using

SECTION 10

#1732855208752

1332-454: A good way for a flying machine to turn – to "bank" or "lean" into the turn just like a bird – and just like a person riding a bicycle, an experience with which they were thoroughly familiar. Equally important, they hoped this method would enable recovery when the wind tilted the machine to one side (lateral balance). They puzzled over how to achieve the same effect with man-made wings and eventually discovered wing-warping when Wilbur idly twisted

1443-405: A greater quantity of air than a single relatively slow propeller and not disturb airflow over the leading edge of the wings. Wilbur made a March 1903 entry in his notebook indicating the prototype propeller was 66% efficient. Modern wind tunnel tests on reproduction 1903 propellers show they were more than 75% efficient under the conditions of the first flights, "a remarkable feat", and actually had

1554-557: A long inner-tube box at the bicycle shop. Other aeronautical investigators regarded flight as if it were not so different from surface locomotion, except the surface would be elevated. They thought in terms of a ship's rudder for steering, while the flying machine remained essentially level in the air, as did a train or an automobile or a ship at the surface. The idea of deliberately leaning, or rolling, to one side seemed either undesirable or did not enter their thinking. Some of these other investigators, including Langley and Chanute, sought

1665-414: A peak efficiency of 82%. The Wrights wrote to several engine manufacturers, but none could meet their need for a sufficiently light-weight powerplant. They turned to their shop mechanic, Charlie Taylor , who built an engine in just six weeks in close consultation with the brothers. To keep the weight down the engine block was cast from aluminum, a rare practice at the time. The Wright/Taylor engine had

1776-410: A range of flow velocities just below and above the local speed of sound (generally taken as Mach 0.8–1.2). It is defined as the range of speeds between the critical Mach number , when some parts of the airflow over an aircraft become supersonic , and a higher speed, typically near Mach 1.2 , when all of the airflow is supersonic. Between these speeds, some of the airflow is supersonic, while some of

1887-410: A rubber band to twirl its rotor, it was about 1 ft (30 cm) long. Wilbur and Orville played with it until it broke, and then built their own. In later years, they pointed to their experience with the toy as the spark of their interest in flying. Both brothers attended high school, but did not receive diplomas. The family's abrupt move in 1884 from Richmond, Indiana , to Dayton , Ohio, where

1998-452: A serial killer. Wilbur lost his front teeth. He had been vigorous and athletic until then, and although his injuries did not appear especially severe, he became withdrawn. He had planned to attend Yale. Instead, he spent the next few years largely housebound. During this time he cared for his mother, who was terminally ill with tuberculosis, read extensively in his father's library and ably assisted his father during times of controversy within

2109-448: A small home-built wind tunnel , the Wrights also collected more accurate data than any before, enabling them to design more efficient wings and propellers. The brothers gained the mechanical skills essential to their success by working for years in their Dayton, Ohio -based shop with printing presses, bicycles, motors, and other machinery. Their work with bicycles, in particular, influenced their belief that an unstable vehicle such as

2220-414: A tail was not necessary, and their first two gliders did not have one. According to some Wright biographers, Wilbur probably did all the gliding until 1902, perhaps to exercise his authority as older brother and to protect Orville from harm as he did not want to have to explain to their father, Bishop Wright, if Orville got injured. * (This airfoil caused severe stability problems; the Wrights modified

2331-478: A thorough report about the 1900–1901 glider experiments and complemented his talk with a lantern slide show of photographs. Wilbur's speech was the first public account of the brothers' experiments. A report was published in the Journal of the society, which was then separately published as an offprint titled Some Aeronautical Experiments in a 300 copy printing. Lilienthal had made "whirling arm" tests on only

SECTION 20

#1732855208752

2442-402: A time with so few materials and at so little expense". In their September 1908 Century Magazine article, the Wrights explained, "The calculations on which all flying machines had been based were unreliable, and ... every experiment was simply groping in the dark ... We cast it all aside and decided to rely entirely upon our own investigations." The 1902 glider wing had a flatter airfoil, with

2553-481: A trove of valuable data never before known and showed that the poor lift of the 1900 and 1901 gliders was entirely due to an incorrect Smeaton value, and that Lilienthal's published data were fairly accurate for the tests he had done. Before the detailed wind tunnel tests, Wilbur traveled to Chicago at Chanute's invitation to give a lecture to the Western Society of Engineers on September 18, 1901. He presented

2664-402: A turn – a problem later known as adverse yaw – when Wilbur used the wing-warping control. On the trip home a deeply dejected Wilbur remarked to Orville that man would not fly in a thousand years. The poor lift of the gliders led the Wrights to question the accuracy of Lilienthal's data, as well as the " Smeaton coefficient" of air pressure, a value which had been in use for over 100 years and

2775-418: Is a flow in which density is constant in both time and space. Although all real fluids are compressible, a flow is often approximated as incompressible if the effect of the density changes cause only small changes to the calculated results. This is more likely to be true when the flow speeds are significantly lower than the speed of sound. Effects of compressibility are more significant at speeds close to or above

2886-448: Is a solution in one dimension to both the momentum and energy conservation equations. The ideal gas law or another such equation of state is often used in conjunction with these equations to form a determined system that allows the solution for the unknown variables. Aerodynamic problems are classified by the flow environment or properties of the flow, including flow speed , compressibility , and viscosity . External aerodynamics

2997-416: Is a subset of the supersonic regime. Hypersonic flow is characterized by high temperature flow behind a shock wave, viscous interaction, and chemical dissociation of gas. The incompressible and compressible flow regimes produce many associated phenomena, such as boundary layers and turbulence. The concept of a boundary layer is important in many problems in aerodynamics. The viscosity and fluid friction in

3108-503: Is associated with the frictional forces in a flow. In some flow fields, viscous effects are very small, and approximate solutions may safely neglect viscous effects. These approximations are called inviscid flows. Flows for which viscosity is not neglected are called viscous flows. Finally, aerodynamic problems may also be classified by the flow environment. External aerodynamics is the study of flow around solid objects of various shapes (e.g. around an airplane wing), while internal aerodynamics

3219-407: Is called laminar flow . Aerodynamics is a significant element of vehicle design , including road cars and trucks where the main goal is to reduce the vehicle drag coefficient , and racing cars , where in addition to reducing drag the goal is also to increase the overall level of downforce . Aerodynamics is also important in the prediction of forces and moments acting on sailing vessels . It

3330-409: Is called potential flow and allows the differential equations that describe the flow to be a simplified version of the equations of fluid dynamics , thus making available to the aerodynamicist a range of quick and easy solutions. In solving a subsonic problem, one decision to be made by the aerodynamicist is whether to incorporate the effects of compressibility. Compressibility is a description of

3441-497: Is the study of flow around solid objects of various shapes. Evaluating the lift and drag on an airplane or the shock waves that form in front of the nose of a rocket are examples of external aerodynamics. Internal aerodynamics is the study of flow through passages in solid objects. For instance, internal aerodynamics encompasses the study of the airflow through a jet engine or through an air conditioning pipe. Aerodynamic problems can also be classified according to whether

Aeromechanics - Misplaced Pages Continue

3552-415: Is the study of flow through passages inside solid objects (e.g. through a jet engine). Unlike liquids and solids, gases are composed of discrete molecules which occupy only a small fraction of the volume filled by the gas. On a molecular level, flow fields are made up of the collisions of many individual of gas molecules between themselves and with solid surfaces. However, in most aerodynamics applications,

3663-426: Is used because gas flows with a Mach number below that value demonstrate changes in density of less than 5%. Furthermore, that maximum 5% density change occurs at the stagnation point (the point on the object where flow speed is zero), while the density changes around the rest of the object will be significantly lower. Transonic, supersonic, and hypersonic flows are all compressible flows. The term Transonic refers to

3774-418: Is used in the design of mechanical components such as hard drive heads. Structural engineers resort to aerodynamics, and particularly aeroelasticity , when calculating wind loads in the design of large buildings, bridges , and wind turbines . The aerodynamics of internal passages is important in heating/ventilation , gas piping , and in automotive engines where detailed flow patterns strongly affect

3885-468: Is used to classify flows according to speed regime. Subsonic flows are flow fields in which the air speed field is always below the local speed of sound. Transonic flows include both regions of subsonic flow and regions in which the local flow speed is greater than the local speed of sound. Supersonic flows are defined to be flows in which the flow speed is greater than the speed of sound everywhere. A fourth classification, hypersonic flow, refers to flows where

3996-426: The camber reduced to a ratio of 1-in-24, in contrast to the previous thicker wing. The larger aspect ratio was achieved by increasing the wingspan and shortening the chord. The glider also had a new structural feature: A fixed, rear vertical rudder, which the brothers hoped would eliminate turning problems. However, the 1902 glider encountered trouble in crosswinds and steep banked turns, when it sometimes spiraled into

4107-404: The coefficient of drag replaces the coefficient of lift , computing drag instead of lift. They used this equation to answer the question, "Is there enough power in the engine to produce a thrust adequate to overcome the drag of the total frame ...," in the words of Combs. The Wrights then "... measured the pull in pounds on various parts of their aircraft, including the pull on each of

4218-416: The flow speed is below, near or above the speed of sound . A problem is called subsonic if all the speeds in the problem are less than the speed of sound, transonic if speeds both below and above the speed of sound are present (normally when the characteristic speed is approximately the speed of sound), supersonic when the characteristic flow speed is greater than the speed of sound, and hypersonic when

4329-586: The Brethren Church, but also expressed unease over his own lack of ambition. Orville dropped out of high school after his junior year to start a printing business in 1889, having designed and built his own printing press with Wilbur's help. Wilbur joined the print shop, and in March the brothers launched a weekly newspaper, the West Side News . Subsequent issues listed Orville as publisher and Wilbur as editor on

4440-451: The Smeaton coefficient; Chanute identified up to 50 of them. Wilbur knew that Langley, for example, had used a lower number than the traditional one. Intent on confirming the correct Smeaton value, Wilbur performed his own calculations using measurements collected during kite and free flights of the 1901 glider. His results correctly showed that the coefficient was very close to 0.0033 (similar to

4551-550: The Wright children had middle names. Instead, their father tried hard to give them distinctive first names. Wilbur was named for Willbur Fisk and Orville for Orville Dewey , both clergymen that Milton Wright admired. They were "Will" and "Orv" to their friends and in Dayton, their neighbors knew them simply as "the Bishop's kids", or "the Bishop's boys". Because of their father's position as

Aeromechanics - Misplaced Pages Continue

4662-412: The air is approximated as being significant only in this thin layer. This assumption makes the description of such aerodynamics much more tractable mathematically. In aerodynamics, turbulence is characterized by chaotic property changes in the flow. These include low momentum diffusion, high momentum convection, and rapid variation of pressure and flow velocity in space and time. Flow that is not turbulent

4773-430: The air with no previous flying experience. Although agreeing with Lilienthal's idea of practice, the Wrights saw that his method of balance and control by shifting his body weight was inadequate. They were determined to find something better. On the basis of observation, Wilbur concluded that birds changed the angle of the ends of their wings to make their bodies roll right or left. The brothers decided this would also be

4884-563: The airflow is not supersonic. Supersonic aerodynamic problems are those involving flow speeds greater than the speed of sound. Calculating the lift on the Concorde during cruise can be an example of a supersonic aerodynamic problem. Supersonic flow behaves very differently from subsonic flow. Fluids react to differences in pressure; pressure changes are how a fluid is "told" to respond to its environment. Therefore, since sound is, in fact, an infinitesimal pressure difference propagating through

4995-576: The amount of change of density in the flow. When the effects of compressibility on the solution are small, the assumption that density is constant may be made. The problem is then an incompressible low-speed aerodynamics problem. When the density is allowed to vary, the flow is called compressible. In air, compressibility effects are usually ignored when the Mach number in the flow does not exceed 0.3 (about 335 feet (102 m) per second or 228 miles (366 km) per hour at 60 °F (16 °C)). Above Mach 0.3,

5106-453: The behavior of gases in different atmospheric conditions is crucial. Understanding these interactions is essential for optimizing performance, ensuring stability and control, and improving the efficiency and safety of flight and other applications involving fluid-structure interactions. This fluid dynamics –related article is a stub . You can help Misplaced Pages by expanding it . Aerodynamics Modern aerodynamics only dates back to

5217-658: The brothers built the powered Wright Flyer , using their preferred material for construction, spruce , a strong and lightweight wood, and Pride of the West muslin for surface coverings. They also designed and carved their own wooden propellers, and had a purpose-built gasoline engine fabricated in their bicycle shop. They thought propeller design would be a simple matter and intended to adapt data from shipbuilding. However, their library research disclosed no established formulae for either marine or air propellers, and they found themselves with no sure starting point. They discussed and argued

5328-450: The brothers favored his strategy: to practice gliding in order to master the art of control before attempting motor-driven flight. The death of British aeronaut Percy Pilcher in another hang gliding crash in October 1899 only reinforced their opinion that a reliable method of pilot control was the key to successful – and safe – flight. At the outset of their experiments they regarded control as

5439-402: The brothers put wing warping to the test by building and flying a biplane kite with a 5-foot (1.5 m) wingspan, and a curved wing with a 1-foot (0.30 m) chord . When the wings were warped, or twisted, the trailing edge that was warped down produced more lift than the opposite wing, causing a rolling motion. The warping was controlled by four lines between kite and crossed sticks held by

5550-420: The camber on-site.) The brothers flew the glider for only a few days in the early autumn of 1900 at Kitty Hawk. In the first tests, probably on October 3, Wilbur was aboard while the glider flew as a kite not far above the ground with men below holding tether ropes. Most of the kite tests were unpiloted, with sandbags or chains and even a local boy as ballast. They tested wing-warping using control ropes from

5661-400: The change in direction – was done with roll control using wing-warping. The principles remained the same when ailerons superseded wing-warping. With their new method, the Wrights achieved true control in turns for the first time on October 9, a major milestone. From September 20 until the last weeks of October, they flew over a thousand flights. The longest duration was up to 26 seconds, and

SECTION 50

#1732855208752

5772-690: The choice between statistical mechanics and the continuous formulation of aerodynamics. The assumption of a fluid continuum allows problems in aerodynamics to be solved using fluid dynamics conservation laws . Three conservation principles are used: Together, these equations are known as the Navier–Stokes equations , although some authors define the term to only include the momentum equation(s). The Navier–Stokes equations have no known analytical solution and are solved in modern aerodynamics using computational techniques . Because computational methods using high speed computers were not historically available and

5883-457: The continuum assumption is reasonable. The continuum assumption is less valid for extremely low-density flows, such as those encountered by vehicles at very high altitudes (e.g. 300,000 ft/90 km) or satellites in Low Earth orbit . In those cases, statistical mechanics is a more accurate method of solving the problem than is continuum aerodynamics. The Knudsen number can be used to guide

5994-463: The desire to improve the aerodynamic efficiency of current aircraft and propulsion systems, continues to motivate new research in aerodynamics, while work continues to be done on important problems in basic aerodynamic theory related to flow turbulence and the existence and uniqueness of analytical solutions to the Navier–Stokes equations. Understanding the motion of air around an object (often called

6105-437: The discrete molecular nature of gases is ignored, and the flow field is assumed to behave as a continuum . This assumption allows fluid properties such as density and flow velocity to be defined everywhere within the flow. The validity of the continuum assumption is dependent on the density of the gas and the application in question. For the continuum assumption to be valid, the mean free path length must be much smaller than

6216-497: The dramatic glides by Otto Lilienthal in Germany. 1896 brought three important aeronautical events. In May, Smithsonian Institution Secretary Samuel Langley successfully flew an unmanned steam-powered fixed-wing model aircraft. In mid-year, Chicago engineer and aviation authority Octave Chanute brought together several men who tested various types of gliders over the sand dunes along the shore of Lake Michigan. In August, Lilienthal

6327-576: The elusive ideal of "inherent stability", believing the pilot of a flying machine would not be able to react quickly enough to wind disturbances to use mechanical controls effectively. The Wright brothers, on the other hand, wanted the pilot to have absolute control. For that reason, their early designs made no concessions toward built-in stability (such as dihedral wings). They deliberately designed their 1903 first powered flyer with anhedral (drooping) wings, which are inherently unstable, but less susceptible to upset by gusty cross winds. On July 27, 1899,

6438-399: The family had lived during the 1870s, prevented Wilbur from receiving his diploma after finishing four years of high school. The diploma was awarded posthumously to Wilbur on April 16, 1994, which would have been his 127th birthday. In late 1885 or early 1886, while playing an ice-skating game with friends Wilbur was struck in the face by a hockey stick by Oliver Crook Haugh, who later became

6549-536: The first circle, followed in 1905 by the first truly practical fixed-wing aircraft , the Wright Flyer III . The brothers' breakthrough invention was their creation of a three-axis control system , which enabled the pilot to steer the aircraft effectively and to maintain its equilibrium. Their system of aircraft controls made fixed-wing powered flight possible and remains standard on airplanes of all kinds. Their first U.S. patent did not claim invention of

6660-452: The first person singular became the plural "we" and "our". Author James Tobin asserts, "it is impossible to imagine Orville, bright as he was, supplying the driving force that started their work and kept it going from the back room of a store in Ohio to conferences with capitalists, presidents, and kings. Will did that. He was the leader, from the beginning to the end." Despite Lilienthal's fate,

6771-445: The first person to develop a theory of air resistance, making him one of the first aerodynamicists. Dutch - Swiss mathematician Daniel Bernoulli followed in 1738 with Hydrodynamica in which he described a fundamental relationship between pressure, density, and flow velocity for incompressible flow known today as Bernoulli's principle , which provides one method for calculating aerodynamic lift. In 1757, Leonhard Euler published

SECTION 60

#1732855208752

6882-504: The first person to identify the four aerodynamic forces of flight ( weight , lift , drag , and thrust ), as well as the relationships between them, and in doing so outlined the path toward achieving heavier-than-air flight for the next century. In 1871, Francis Herbert Wenham constructed the first wind tunnel , allowing precise measurements of aerodynamic forces. Drag theories were developed by Jean le Rond d'Alembert , Gustav Kirchhoff , and Lord Rayleigh . In 1889, Charles Renard ,

6993-669: The first powered airplane on December 17, 1903. During the time of the first flights, Frederick W. Lanchester , Martin Kutta , and Nikolai Zhukovsky independently created theories that connected circulation of a fluid flow to lift. Kutta and Zhukovsky went on to develop a two-dimensional wing theory. Expanding upon the work of Lanchester, Ludwig Prandtl is credited with developing the mathematics behind thin-airfoil and lifting-line theories as well as work with boundary layers . As aircraft speed increased designers began to encounter challenges associated with air compressibility at speeds near

7104-399: The flow and hence the resulting fluid force. Areas that comprise this are within the technology of aircraft and helicopters since these use propellers and rotors . Additionally, aeromechanics is critical in the design and analysis of wind turbines, drones, and various unmanned aerial vehicles (UAVs). The principles of aeromechanics are also applied in space exploration vehicles, where

7215-477: The flow pattern ahead of the object and giving the impression that the fluid "knows" the object is there by seemingly adjusting its movement and is flowing around it. In a supersonic flow, however, the pressure disturbance cannot propagate upstream. Thus, when the fluid finally reaches the object it strikes it and the fluid is forced to change its properties – temperature , density , pressure , and Mach number —in an extremely violent and irreversible fashion called

7326-458: The flow speed is much greater than the speed of sound. Aerodynamicists disagree on the precise definition of hypersonic flow. Compressible flow accounts for varying density within the flow. Subsonic flows are often idealized as incompressible, i.e. the density is assumed to be constant. Transonic and supersonic flows are compressible, and calculations that neglect the changes of density in these flow fields will yield inaccurate results. Viscosity

7437-570: The flow speed is much greater than the speed of sound. Aerodynamicists disagree over the precise definition of hypersonic flow; a rough definition considers flows with Mach numbers above 5 to be hypersonic. The influence of viscosity on the flow dictates a third classification. Some problems may encounter only very small viscous effects, in which case viscosity can be considered to be negligible. The approximations to these problems are called inviscid flows . Flows for which viscosity cannot be neglected are called viscous flows. An incompressible flow

7548-491: The glider banked into a turn, rudder pressure overcame the effect of differential drag and pointed the nose of the aircraft in the direction of the turn, eliminating adverse yaw. In short, the Wrights discovered the true purpose of the movable vertical rudder. Its role was not to change the direction of flight, as a rudder does in sailing, but rather, to aim or align the aircraft correctly during banking turns and when leveling off from turns and wind disturbances. The actual turn –

7659-407: The government meteorologist stationed there. Kitty Hawk, although remote, was closer to Dayton than other places Chanute had suggested, including California and Florida. The spot also gave them privacy from reporters, who had turned the 1896 Chanute experiments at Lake Michigan into something of a circus. Chanute visited them in camp each season from 1901 to 1903 and saw gliding experiments, but not

7770-417: The ground – a phenomenon the brothers called "well digging". According to Combs , "They knew that when the earlier 1901 glider banked, it would begin to slide sideways through the air, and if the side motion was left uncorrected, or took place too quickly, the glider would go into an uncontrolled pivoting motion. Now, with vertical fins added to correct this, the glider again went into a pivoting motion, but in

7881-472: The ground. The glider was also tested unmanned while suspended from a small homemade tower. Wilbur, but not Orville, made about a dozen free glides on only a single day, October 20. For those tests the brothers trekked four miles (6   km) south to the Kill Devil Hills , a group of sand dunes up to 100 feet (30 m) high (where they made camp in each of the next three years). Although the glider's lift

7992-465: The high computational cost of solving these complex equations now that they are available, simplifications of the Navier–Stokes equations have been and continue to be employed. The Euler equations are a set of similar conservation equations which neglect viscosity and may be used in cases where the effect of viscosity is expected to be small. Further simplifications lead to Laplace's equation and potential flow theory. Additionally, Bernoulli's equation

8103-416: The horizontal wheel. Attached vertically to the wheel were an airfoil and a flat plate mounted 90° away. As air passed by the airfoil, the lift it generated, if unopposed, would cause the wheel to rotate. The flat plate was oriented so its drag would push the wheel in the opposite direction of the airfoil. The airfoil and flat plate were made in specific sizes such that, according to Lilienthal's measurements,

8214-439: The kite flyer. In return, the kite was under lateral control. In 1900 the brothers went to Kitty Hawk , North Carolina, to begin their manned gliding experiments. In his reply to Wilbur's first letter, Octave Chanute had suggested the mid-Atlantic coast for its regular breezes and soft sandy landing surface. Wilbur also requested and examined U.S. Weather Bureau data, and decided on Kitty Hawk after receiving information from

8325-433: The length scale of the application in question. For example, many aerodynamics applications deal with aircraft flying in atmospheric conditions, where the mean free path length is on the order of micrometers and where the body is orders of magnitude larger. In these cases, the length scale of the aircraft ranges from a few meters to a few tens of meters, which is much larger than the mean free path length. For such applications,

8436-583: The lift generated by the airfoil would exactly counterbalance the drag generated by the flat plate and the wheel would not turn. However, when the brothers tested the device, the wheel did turn. The experiment confirmed their suspicion that either the standard Smeaton coefficient or Lilienthal's coefficients of lift and drag – or all of them – were in error. They then built a six-foot (1.8 m) wind tunnel in their shop, and between October and December 1901 conducted systematic tests on dozens of miniature wings. The "balances" they devised and mounted inside

8547-501: The longest distance more than 600 feet (180 m). Having demonstrated lift, control, and stability, the brothers now turned their focus to the problem of power. Thus did three-axis control evolve: wing-warping for roll (lateral motion), forward elevator for pitch (up and down) and rear rudder for yaw (side to side). On March 23, 1903, the Wrights applied for their famous patent for a "Flying Machine", based on their successful 1902 glider. Some aviation historians believe that applying

8658-503: The masthead. In April 1890 they converted the paper to a daily, The Evening Item , but it lasted only four months. They then focused on commercial printing. One of their clients was Orville's friend and classmate, Paul Laurence Dunbar , who rose to international acclaim as a ground-breaking African-American poet and writer. For a brief period the Wrights printed the Dayton Tattler , a weekly newspaper that Dunbar edited. Capitalizing on

8769-522: The material they thought was needed to be self-sufficient at Kitty Hawk. Besides living in tents once again, they built a combination workshop and hangar. Measuring 25 feet (7.6 m) long by 16 feet (4.9 m) wide, the ends opened upward for easy glider access. Hoping to improve lift, they built the 1901 glider with a much larger wing area and made dozens of flights in July and August for distances of 50 to 400 ft (15 to 122 m). The glider stalled

8880-456: The more general Euler equations which could be applied to both compressible and incompressible flows. The Euler equations were extended to incorporate the effects of viscosity in the first half of the 1800s, resulting in the Navier–Stokes equations . The Navier–Stokes equations are the most general governing equations of fluid flow but are difficult to solve for the flow around all but the simplest of shapes. In 1799, Sir George Cayley became

8991-654: The national bicycle craze (spurred by the invention of the safety bicycle and its substantial advantages over the penny-farthing design), in December 1892 the brothers opened a repair and sales shop (the Wright Cycle Exchange, later the Wright Cycle Company ) and in 1896 began manufacturing their own brand. They used this endeavor to fund their growing interest in flight. In the early or mid-1890s they saw newspaper or magazine articles and probably photographs of

9102-432: The number Langley used), not the traditional 0.0054, which would significantly exaggerate predicted lift. The brothers decided to find out if Lilienthal's data for lift coefficients were correct. They devised an experimental apparatus which consisted of a freely rotating bicycle wheel mounted horizontally in front of the handlebars of a bicycle. The brothers took turns pedaling the bicycle vigorously, creating air flow over

9213-419: The opposite direction, with the nose swinging downward." Orville apparently visualized that the fixed rudder resisted the effect of corrective wing-warping when attempting to level off from a turn. He wrote in his diary that on the night of October 2, "I studied out a new vertical rudder". The brothers then decided to make the rear rudder movable to solve the problem. They hinged the rudder and connected it to

9324-579: The performance of the engine. Urban aerodynamics are studied by town planners and designers seeking to improve amenity in outdoor spaces, or in creating urban microclimates to reduce the effects of urban pollution. The field of environmental aerodynamics describes ways in which atmospheric circulation and flight mechanics affect ecosystems. Aerodynamic equations are used in numerical weather prediction . Sports in which aerodynamics are of crucial importance include soccer , table tennis , cricket , baseball , and golf , in which most players can control

9435-431: The pilot's warping "cradle", so a single movement by the pilot simultaneously controlled wing-warping and rudder deflection. The apparatus made the trailing edge of the rudder turn away from whichever end of the wings had more drag (and lift) due to warping. The opposing pressure produced by turning the rudder enabled corrective wing-warping to reliably restore level flight after a turn or a wind disturbance. Furthermore, when

9546-485: The point where entire aircraft can be designed using computer software, with wind-tunnel tests followed by flight tests to confirm the computer predictions. Understanding of supersonic and hypersonic aerodynamics has matured since the 1960s, and the goals of aerodynamicists have shifted from the behaviour of fluid flow to the engineering of a vehicle such that it interacts predictably with the fluid flow. Designing aircraft for supersonic and hypersonic conditions, as well as

9657-466: The powered flights. The Wrights based the design of their kite and full-size gliders on work done in the 1890s by other aviation pioneers. They adopted the basic design of the Chanute-Herring biplane hang glider ("double-decker" as the Wrights called it), which flew well in the 1896 experiments near Chicago, and used aeronautical data on lift that Otto Lilienthal had published. The Wrights designed

9768-421: The problem flow should be described using compressible aerodynamics. According to the theory of aerodynamics, a flow is considered to be compressible if the density changes along a streamline . This means that – unlike incompressible flow – changes in density are considered. In general, this is the case where the Mach number in part or all of the flow exceeds 0.3. The Mach 0.3 value is rather arbitrary, but it

9879-428: The question, sometimes heatedly, until they concluded that an aeronautical propeller is essentially a wing rotating in the vertical plane. On that basis, they used data from more wind tunnel tests to design their propellers. The finished blades were just over eight feet long, made of three laminations of glued spruce. The Wrights decided on twin " pusher " propellers (counter-rotating to cancel torque), which would act on

9990-478: The seventeenth century, but aerodynamic forces have been harnessed by humans for thousands of years in sailboats and windmills, and images and stories of flight appear throughout recorded history, such as the Ancient Greek legend of Icarus and Daedalus . Fundamental concepts of continuum , drag , and pressure gradients appear in the work of Aristotle and Archimedes . In 1726, Sir Isaac Newton became

10101-450: The speed of sound. The Mach number is used to evaluate whether the incompressibility can be assumed, otherwise the effects of compressibility must be included. Subsonic (or low-speed) aerodynamics describes fluid motion in flows which are much lower than the speed of sound everywhere in the flow. There are several branches of subsonic flow but one special case arises when the flow is inviscid , incompressible and irrotational . This case

10212-459: The speed of sound. The differences in airflow under such conditions lead to problems in aircraft control, increased drag due to shock waves , and the threat of structural failure due to aeroelastic flutter . The ratio of the flow speed to the speed of sound was named the Mach number after Ernst Mach who was one of the first to investigate the properties of the supersonic flow. Macquorn Rankine and Pierre Henri Hugoniot independently developed

10323-475: The system of three-axis flight control on the 1902 glider was equal to, or even more significant, than the addition of power to the 1903 Flyer. Peter Jakab of the Smithsonian asserts that perfection of the 1902 glider essentially represents invention of the airplane. In addition to developing the lift equation, the brothers also developed the equation for drag. It is of the same form as the lift equation, except

10434-531: The team, building their first airplane engine in close collaboration with the brothers. The Wright brothers' status as inventors of the airplane has been subject to numerous counter-claims. Much controversy persists over the many competing claims of early aviators . Wilbur and Orville Wright were two of seven children born to Milton Wright (1828–1917), a clergyman of English and Dutch ancestry, and Susan Catherine Koerner (1831–1889), of German and Swiss ancestry. Milton Wright's mother, Catherine Reeder,

10545-446: The theory for flow properties before and after a shock wave , while Jakob Ackeret led the initial work of calculating the lift and drag of supersonic airfoils. Theodore von Kármán and Hugh Latimer Dryden introduced the term transonic to describe flow speeds between the critical Mach number and Mach 1 where drag increases rapidly. This rapid increase in drag led aerodynamicists and aviators to disagree on whether supersonic flight

10656-659: The trajectory of the ball using the " Magnus effect ". General aerodynamics Subsonic aerodynamics Transonic aerodynamics Supersonic aerodynamics Hypersonic aerodynamics History of aerodynamics Aerodynamics related to engineering Ground vehicles Fixed-wing aircraft Helicopters Missiles Model aircraft Related branches of aerodynamics Aerothermodynamics Wright brothers The Wright brothers , Orville Wright (August 19, 1871 – January 30, 1948) and Wilbur Wright (April 16, 1867 – May 30, 1912), were American aviation pioneers generally credited with inventing, building, and flying

10767-422: The tunnel to hold the wings looked crude, made of bicycle spokes and scrap metal, but were "as critical to the ultimate success of the Wright brothers as were the gliders." The devices allowed the brothers to balance lift against drag and accurately calculate the performance of each wing. They could also see which wings worked well as they looked through the viewing window in the top of the tunnel. The tests yielded

10878-414: The unsolved third part of "the flying problem". The other two parts – wings and engines – they believed were already sufficiently promising. The Wright brothers' plan thus differed sharply from more experienced practitioners of the day, notably Ader , Maxim , and Langley , who all built powerful engines, attached them to airframes equipped with untested control devices, and expected to take to

10989-692: The wing and land on his feet with his arms wrapped over the framework. Within a few glides, however, they discovered the pilot could remain prone on the wing, headfirst, without undue danger when landing. They made all their flights in that position for the next five years. Before returning to Kitty Hawk in the summer of 1901, Wilbur published two articles, "The Angle of Incidence" in The Aeronautical Journal , and "The Horizontal Position During Gliding Flight" in Illustrierte Aeronautische Mitteilungen . The brothers brought all of

11100-429: The wing's front-to-back dimension). Such shapes offered much better lift-to-drag ratio than the stubbier wings the brothers had tried so far. With this knowledge, and a more accurate Smeaton number, the Wrights designed their 1902 glider. The wind tunnel tests, made from October to December 1901, were described by biographer Fred Howard as "the most crucial and fruitful aeronautical experiments ever conducted in so short

11211-451: The wings of the Wright glider were braced by wires in their own version of Chanute's modified Pratt truss , a bridge-building design he used for his biplane glider (initially built as a triplane). The Wrights mounted the horizontal elevator in front of the wings rather than behind, apparently believing this feature would help to avoid, or protect them from, a nosedive and crash like the one that killed Lilienthal. Wilbur incorrectly believed

11322-416: The wings of the biplane in level position in known wind velocities ... They also devised a formula for power-to-weight ratio and propeller efficiency that would answer whether or not they could supply to the propellers the power necessary to deliver the thrust to maintain flight ... they even computed the thrust of their propellers to within 1 percent of the thrust actually delivered ..." In 1903

11433-420: The wings with camber , a curvature of the top surface. The brothers did not discover this principle, but took advantage of it. The better lift of a cambered surface compared to a flat one was first discussed scientifically by Sir George Cayley . Lilienthal, whose work the Wrights carefully studied, used cambered wings in his gliders, proving in flight the advantage over flat surfaces. The wooden uprights between

11544-425: The work of Sir George Cayley , Chanute, Lilienthal, Leonardo da Vinci , and Langley, they began their mechanical aeronautical experimentation that year. The Wright brothers always presented a unified image to the public, sharing equally in the credit for their invention. Biographers note that Wilbur took the initiative in 1899 and 1900, writing of "my" machine and "my" plans before Orville became deeply involved when

11655-513: The world's first successful airplane . They made the first controlled, sustained flight of an engine-powered, heavier-than-air aircraft with the Wright Flyer on December 17, 1903, four miles (6 km) south of Kitty Hawk, North Carolina , at what is now known as Kill Devil Hills . In 1904 the Wright brothers developed the Wright Flyer II , which made longer-duration flights including

11766-485: Was achievable until the sound barrier was broken in 1947 using the Bell X-1 aircraft. By the time the sound barrier was broken, aerodynamicists' understanding of the subsonic and low supersonic flow had matured. The Cold War prompted the design of an ever-evolving line of high-performance aircraft. Computational fluid dynamics began as an effort to solve for flow properties around complex objects and has rapidly grown to

11877-573: Was born near Millville, Indiana , in 1867; Orville in Dayton, Ohio , in 1871. The brothers never married. The other Wright siblings were Reuchlin (1861–1920), Lorin (1862–1939), Katharine (1874–1929), and twins Otis and Ida (born 1870, died in infancy). The direct paternal ancestry goes back to a Samuel Wright (b. 1606 in Essex , England) who sailed to America and settled in Massachusetts in 1636 . None of

11988-624: Was descended from the progenitor of the Vanderbilt family  – one of America's richest families – and the Huguenot Gano family of New Rochelle, New York . Wilbur and Orville were the 3rd great nephews of John Gano , the Revolutionary War Brigade Chaplain, who allegedly baptized President George Washington . Through John Gano they were 5th cousins 1 time removed of billionaire and aviator Howard Hughes . Wilbur

12099-563: Was killed in the plunge of his glider. These events lodged in the minds of the brothers, especially Lilienthal's death. The Wright brothers later cited his death as the point when their serious interest in flight research began. Wilbur said, "Lilienthal was without question the greatest of the precursors, and the world owes to him a great debt." In May 1899 Wilbur wrote a letter to the Smithsonian Institution requesting information and publications about aeronautics. Drawing on

12210-409: Was less than expected, the brothers were encouraged because the craft's front elevator worked well and they had no accidents. However, the small number of free glides meant they were not able to give wing-warping a true test. The pilot lay flat on the lower wing, as planned, to reduce aerodynamic drag. As a glide ended, the pilot was supposed to lower himself to a vertical position through an opening in

12321-443: Was part of the accepted equation for lift. L = lift in pounds k = coefficient of air pressure (Smeaton coefficient) S = total area of lifting surface in square feet V = velocity (headwind plus ground speed) in miles per hour C L = coefficient of lift (varies with wing shape) The Wrights used this equation to calculate the amount of lift that a wing would produce. Over the years a wide variety of values had been measured for

#751248