Seaslug was a first-generation surface-to-air missile designed by Armstrong Whitworth (later part of the Hawker Siddeley group) for use by the Royal Navy . Tracing its history as far back as 1943's LOPGAP design, it came into operational service in 1961 and was still in use at the time of the Falklands War in 1982.
186-624: The Advanced Passenger Train ( APT ) was a tilting high speed train developed by British Rail during the 1970s and early 1980s, for use on the West Coast Main Line (WCML). The WCML contained many curves, and the APT pioneered the concept of active tilting to address these, a feature that has since been copied on designs around the world. The experimental APT-E achieved a new British railway speed record on 10 August 1975 when it reached 152.3 miles per hour (245.1 km/h), only to be surpassed by
372-404: A Naval Staff Target for a new anti-aircraft weapon, capable of attacking targets at altitudes up to 50,000 ft (15,000 m) and speeds of up to 700 mph (1,100 km/h). This project was briefly known as LOPGAP, short for "Liquid Oxygen and Petrol Guided Anti-aircraft Projectile", but soon moved from petrol to methanol which made the "LOP" inaccurate. The Fairey Aviation Company
558-620: A Type 992Q target indicator radar (3 GHz, 1.75 MW peak power, 90 km range); a Type 278 height finding set (80–90 km); a Type 901 missile guidance radar (X band, 70 km range), that in the Sea Slug Mk 2 had a continuous wave signal (but it was still a beam riding designation radar); a Type 904 fire control radar (used in the MRS-3 system, X-band, 50 kW, 35 km range) for surface targeting. The missile had four wrap-around booster motors that separated after launch. After separation,
744-476: A combination known as 'controlled passive tilt' (制御付き自然振子式), where tilt is initiated passively but controlled (and slowed) by computers through mechanical active suspension - culminated post-privatisation with the 2000 series DMU, built for JR Shikoku and introduced on the Shiokaze and Nanpū limited express services in 1990. With problems of ride nausea and track wear alleviated, the benefits of tilting trains on
930-405: A complete experimental train with the design goal to be not only to study the tilt system, but do so on actual lines. Wickens took the plans to Sydney Jones, who immediately took up the idea. They set the performance goal at the nicely rounded figure of 250 km/h (155 mph). In keeping with BR management goals to provide quicker travel times rather than just faster speeds, they also required
1116-479: A conventional rival to APT. As it appeared the HST would be a relatively sure bet, BR's board of directors dithered on the APT project, eventually cutting the number of trains to four. This was later cut to three by the government in a 1974 round of budget cuts. Although the centre-motor layout was the simplest in terms of solving the immediate technical problems, it would cause significant problems in operational terms. There
1302-453: A diesel-alternator generator capable of supplying the minimum requirement of auxiliary power. The diesel-alternators were started using air motors powered from the train's air system, since the APT carried few batteries. The APT was designed for faster running than existing trains on the same track. At the APT's design speeds, it was not possible for the operator to read the speed limits on trackside signs in time to slow down if needed. Instead,
1488-587: A domestic invention, the Talgo , and developed it into a reliable high-speed train for a low-traffic-density railway. British Rail invested heavily in tilting-train technology to overcome the limitations of a rail network located in space-constrained built-up areas. Italy's Trenitalia and the Japan National Railways have used tilting technology to speed express trains on conventional tracks through mountainous terrain. Tilting trains are meant to help reduce
1674-605: A frequency of 2,400 Hz." Seaslug was a high-performance weapon in the 1960s, with a single-shot kill probability of 92%, although other sources give lower kill probabilities: 75% for the Mk 1 and 65% for the Mk 2. The first four ships of the County -class (Batch 1) operated the Seaslug Mk 1, while the final four (Batch 2) were fitted with the ADAWS command and control system which enabled them to carry
1860-541: A growing desire in the 1960s and 1970s to build high-speed rail networks, a problem arose: the amount of tilt appropriate for high-speed trains would be over-tilted for lower-speed local passenger and freight trains sharing the lines. Japan's early bullet train efforts of the 1960s avoided this problem by laying all-new lines as part of a re-gauging effort, and France's TGV followed the same pattern. Other operators did not have this luxury and were generally limited to much lower speeds. Spain's national railway Renfe took
2046-407: A larger number of small ships with 10 to 20 missiles than one larger one, but attempts to design such a ship resulted in one with room for the weapons but not the crew needed to operate them. In May 1955 a wide variety of plans for designs between the two extremes were compared, ranging from 9,850 tons down to 4,550. After continual comparison and revision, these plans finally gelled around what became
SECTION 10
#17328455589662232-503: A matter of insurance", before further upgrading it in 1949 to "top priority". As a result of these changes, the program was seen as having two stages, Stage 1 would deliver missiles in the mid-1950s with roughly 20 miles (32 km) range with capability mostly against subsonic targets, and a Stage 2 of the early 1960s would have a greatly extended range on the order of 150 miles (240 km) and able to attack supersonic aircraft. Two test systems emerged from this centralization. The CTV.1
2418-594: A maximum weight of 500 lb (230 kg). In 1945 a new Guided Projectiles Establishment was set up under the Controller of Supplies (Air) and in 1946 development of all ongoing missile projects moved to the Royal Aircraft Establishment 's (RAE) new Controlled Weapons Department, soon to become the Guided Weapons Department. They began considering the beam riding concept in partnership with
2604-444: A minimum of 5,000 yd (4.6 km). Maximum altitude should be 55,000 ft, but 45,000 would be considered acceptable. A later updated pushed the range to 30,000–60,000 yd (27–55 km) against a 600 kn (1,100 km/h), later 650 kn (1,200 km/h), target. It was assumed the targets would "jink" at 1G, so the missile needed to maneuver at 4G at sea level and 2.5G at 40,000 ft. Additional requirements were
2790-580: A much simpler design, powered by conventional diesels and lacking tilt, but capable of speeds of up to 125 mph (201 km/h) and able to run anywhere on the BR network. This emerged in 1970 as the High Speed Train (HST), and development proceeded rapidly. As the APT programme continued, management began infighting. Experienced engineering resources were withheld from the APT project, using them instead to press ahead as swiftly as possible with what they saw as
2976-604: A new solid fuel rocket had been developed at the Summerfield Research Station which provided the desired range. Continual tests took place over the next four years using both the Clausen Rolling Platform at RAE Aberporth and the Girdle Ness . A final series of tests at sea, which culminated in sixteen successful firings, finally cleared the missile for service in 1961. After more than 250 launches,
3162-446: A new design emerged that demanded the speed to keep up with a fleet in combat, have guns limited to self-defence, and carrying a single twin-missile launcher. The designs were continually modified in order to find a suitable arrangement. They started as early as 1953 with a mid-sized cruiser of 15,000 long tons (15,000 t) carrying 60 to 90 missiles and a crew of 900. Admiral Ralph Edwards pointed out it would be more useful to have
3348-769: A new medium-range system, Sea Dart . Sea Dart entered service in 1973 on the Type 82 destroyers and replaced Seaslug during the 1980s as the County-class destroyers were removed from service. In 1943, the German Luftwaffe began the use of anti-shipping missiles and guided bombs in the Mediterranean Sea during Allied operations against Italy. These weapons were released outside of anti-aircraft gun range, which meant that naval operations lacking complete air superiority would be open to attack with no effective response from
3534-461: A new system using a transponder-based cab display was introduced called "C-APT". A radio signal from the train caused a track-mounted transponder to return the local speed limit. These sealed, unpowered transponders were placed at intervals of no more than 1 km. Approaching speed restrictions were provided at the appropriate distance, along with an audible alert; failure to acknowledge these alerts would result in an automatic brake application. C-APT
3720-455: A number of changes to the design were being made. Among the more problematic changes was Leyland's exit from the turbine market, having concluded that the concept of a turbine powered truck was not economically feasible. The company agreed to continue supporting the project anyway, including the release of a more powerful 350 horsepower (260 kW) version, but made it clear a production design would have to find another solution. In November 1972,
3906-437: A number of design points, and eliminated the need for the hydrokinetic brakes. However, the decision was made to go ahead with the original specification in order to provide the maximum possible speed. The government agreed to pay 80% of the cost of eight trains. It was during this time that other groups within BR began to agitate against APT, saying it was simply too large a step to make in a single design. They proposed building
SECTION 20
#17328455589664092-432: A number of wheel sets, and again wheels and axles had to be replaced. Today Class 612 is back to tilting operation and forms the backbone of DB's fast regional service on non-electrified lines. Additional units were sold to Croatia , where they are used for InterCity services. In 1999 DB was able to use tilting technology for its InterCityExpress services, when with class 411 and 415 an electric high-speed tilting train
4278-570: A passive hydraulic intensifier rather than a hydraulic power pack. Although APT-P used much of the technology developed on the APT-E, construction of the first APT-P was delayed several times. The first power car was delivered from the Derby locomotive works in June 1977, and the first passenger cars on 7 June 1978, a year late. The first complete train was not ready until May 1979. It entered testing soon after, and set
4464-417: A passive tilt mechanism based on a four-bar arrangement, and they inspired the second generation of TALGO trains. In Italy, the studies for a tilting train started in the mid 1960s and the concept was patented in 1967 by two engineers of Fiat railway materials, Franco di Maio and Luigi Santanera. A number of prototypes were built and tested, including an automotrice (self-propelled) derived from ALn 668 ,
4650-419: A pendulum, reaching the proper tilt angle naturally. However, this system had a distinct delay between entering the curve and the body swinging out, and then swung past this angle and then oscillated briefly until settling at the right angle. When traversing a series of curves, like in a switchyard, it tended to swing about alarmingly. Although a number of semi-experimental designs of the 1970s made use of it, like
4836-516: A production version. Jones found an ally in Graham Calder, who had been promoted to become BR's chief mechanical engineer (CME) in 1971. At the time they envisioned building two new experimental trains; one was essentially a stretched version of the APT-E with turbine power, and the other was similar, but powered by overhead electrical lines via pantograph (pan). As data flowed in from the POP and APT-E,
5022-402: A radio proximity fuze and 200 lb (91 kg) blast warhead. The Mark 1 was a beam rider missile, meaning the target had to be continually illuminated by the directing radar, so the system was limited to engaging only the number of targets that there were radars to track and lock on. The Seaslug Mark 2 was based on the aborted Blue Slug programme to develop an anti-ship missile using
5208-614: A reduced version of the Comprehensive Display System (CDS), which was fed by a CDS-link receiver called DPD (Digital Picture Transmission or Translation). The final set for the County ships, actually more a cruiser type than a destroyer, was quite complex: a Type 965 radar for early warning (P-band, 450 kW peak power, range over 175 km), in the County Batch 2 the double antenna AKE-2 had two different frequency settings;
5394-430: A report calling for a two-year programme to build and test a High Speed Passenger Vehicle, essentially an experimental car like HSFV-1 but for passenger use instead of freight. The original plans called for a single dummy body and two bogies to test the suspension and tilting system at high speed. They set the maximum tilt angle at 9 degrees, which could be added to any cant in the underlying railbed. The design programme
5580-465: A routine check. The tilting mechanism has been switched off since 23 October 2008, and the maintenance intervals were drastically reduced which led to major service disruptions. Much of the technical layout is derived from the ICE 3 . Austria's ÖBB has purchased three units in 2007, operating them jointly with DB for services from Germany to Austria. Even though DB assigned the name ICE-T to class 411/415,
5766-410: A second wave of attacking IAI Dagger fighters. It was unguided because the aircraft was too low to be acquired; the launch was intended to deter the pilot and to remove the exposed missile from the ship because it posed a fire hazard. The first combat use in the surface-to-surface role was during a shore bombardment on 26 May, when HMS Glamorgan fired Seaslugs at Port Stanley Airport claiming
Advanced Passenger Train - Misplaced Pages Continue
5952-667: A similar effect by using on-board computers to limit tilt, initiated using inertia (as in traditional passive tilt). Automatic train stop beacons are used to inform computers of the precise location of these trains and limit natural tilt to angles specified by track data. A high-speed tilting train is a tilting train that operates at high speed, typically defined as by the European Union to include 200 km/h (124 mph) for upgraded track and 250 km/h (155 mph) or faster for new track. Tilting trains operating at 200 km/h (124 mph) or more on upgraded track include
6138-466: A space-frame body for the power cars based on welded steel tube instead of the semi-monocoque construction used on the passenger cars. Contracts for the various parts of the design were sent out in July 1969. Hawker Siddeley Dynamics won the contract for the suspensions and braking systems, GEC and English Electric won the contract for the trailer cars, and by this time Leyland had already been selected for
6324-399: A spacing of several kilometers, but was a serious problem for a single train with pantographs at both ends. The obvious solution was to use a single pantograph at the front or back and then run the power between the cars, but this was outlawed by concerns over the presence of 25 kV power on the passenger cars. Some consideration was given to placing both engines back-to-back at one end of
6510-660: A system using hydraulic cylinders that would quickly drive the car to the proper angle and hold it there without any swinging. A major advantage for BR use was that the center of rotation could be through the middle of the car, instead of the top, meaning the total movement would fit within the smaller British loading gauge . Ispeert returned a report on the concept in August 1966. Wickens noted that BR's single-axle suspension system would have less drag at high speed, and that its lighter weight would make it more stable at high speeds than conventional dual-axle bogies. In November 1966 he wrote
6696-530: A test track. This was originally the main line to Nottingham , but now redundant after the Beeching Axe. This contained a 3 miles (4.8 km) straight section, many curves, and several tight tunnels that would be useful for aerodynamics tests. A set of maintenance buildings was built along this line at Old Dalby, and the line as a whole became known as the Old Dalby Test Track . Although construction of
6882-511: A train coming to a stand within the curve (both of which cases would consequently experience a force to the inside of the curve, a condition known as cant excess ), long experience had shown that the maximum amount of cant that could be applied to lines with mixed traffic was 6.5 degrees. Given the curve radii typically encountered on the WCML, this meant that even with the maximum permissible amount of cant applied, speeds couldn't be increased much above
7068-553: A very small unboosted warhead with an all-plutonium fissile core tested at Maralinga , which was, in turn, replaced by Gwen — a British version of the US W54 Gnat unboosted warhead of approximate yield 0.5–2 kiloton of TNT-equivalent. The final warhead choice was Tony - a UK version of the W44 Tsetse boosted warhead, but all nuclear options for Seaslug were subsequently abandoned, and no nuclear-armed variant of Seaslug
7254-531: A warhead (and guidance) of 200 lb (91 kg) and an all-up weight of 1,800 lb (820 kg). Development continued as before but was significantly hampered by the post-war exodus of engineering talent. Shortly after the new definition was produced, this project also moved to the RAE. Efforts by the Navy to change the name from Seaslug to the more ominous-sounding "Triumph" failed. Development slowed, and in July 1947
7440-411: Is considered a success, but the train could not be said to have been extensively tested; in three years it covered less distance than the average family car would in that period. In comparison, the first TGV prototype, TGV 001 , also powered by gas turbines, covered 320,000 kilometres (200,000 mi) between 1972 and 1976. While APT-E was still under construction, the team was well into the design of
7626-402: Is initiated by computers, which 'force' train bodies to tilt at specific angles based on track information. This information could be stored on board or detected using a sensor at the front of the train or using Automatic train stop beacons. The slight delay in reacting to this information leads to a short period of sideways force while the cars react. It was found that when the cars tilt just at
Advanced Passenger Train - Misplaced Pages Continue
7812-499: The APT-E (for Experimental). It made its first low-speed run from Derby to Duffield on 25 July 1972. Upon reaching Duffield, the ASLEF union immediately "blacked" it, forbidding their members from doing any work involving the train. Their complaint was that the APT-E had a single operator's chair, which they took as evidence that BR was moving to single operator trains. A friendly inspector helped
7998-844: The Acela in the US, the X 2000 in Sweden, the Pendolinos and Super Voyagers in the United Kingdom, and the ICE TD in Germany (the latter two being diesel powered). Some older high-speed lines were built for lower line speeds (≤ 230 km/h (143 mph)); newer tilting trainsets can maintain higher speeds on them. For example, the Japanese N700 Series Shinkansen may tilt up to one degree on
8184-525: The Atchison, Topeka and Santa Fe Railway that year. The company built another three pre-production models in 1939, using more conventional fore-and-aft bogies, and these saw some use with the San Diegan , among others. Mounted on high springs, the car tilted inwards on curves to counterbalance the cant deficiency with the induced centrifugal force. The opening of World War II prevented any immediate orders, and
8370-772: The Chesapeake & Ohio Railway , who began development of what would become the UAC TurboTrain using the same system. The TurboTrain entered service in the US and Canada in 1968. The first successful European tilting train design was the Talgo in Spain, developed in the 1970s as a lightweight, fast train using passive tilt. Renfe, adopted the system widely, but was restricted to the Iberian peninsula initially. The first full commercial application of passive tilting trains appeared in early 1980s with
8556-520: The County-class destroyer . Test firings of the GAP-based examples, now known as Rocket Test Vehicle 1, or RTV.1, demonstrated beam riding in October 1956. The Navy had set a date of 1957 for a broad modernization of the fleet, so they desired Seaslug to be cleared for service in 1956. To this end, they accepted the use of liquid fuels in spite of the Navy's concerns with these fuels on ships. However, by 1956
8742-801: The DB Class 403 (1973) built decades earlier - created a generation of trains with more limited tilt (around 2°) but are more economical to build and easier to maintain. The experimental 300X built in 1995 developed into the N700 series , the first revenue-earning tilting Shinkansen unit in 2007. Applications to Shinkansen lines - which would not have benefitted greatly with mechanical tilting mechanisms due to their already shallow curves that allow high speeds - allowed for greater ride comfort, less track wear and slightly higher speeds leading to increased frequency. The simplicity of this technology made it possible for smaller private operators to introduce tilting trains, such as
8928-480: The Dresden – Munich line, but these class 605 (ICE-TD) units experienced trouble from the start. After breaking an axle in 2002, all remaining 19 units (one fell off a working platform) were taken out of service. Even though one year later the trains were admitted to service again, DB judged their operation to be overly expensive. In 2006, those trains were used for amplifier trains and from 2008 to 2017, they ran on
9114-584: The Hamburg – Copenhagen route. Since 2018 and 2021, two units are in operation as the advanced TrainLab [ de ] test train. In 1966, a consortium of Canadian industrial firms began considering a conventionally-powered competitor to the TurboTrain, eventually emerging as the LRC (Light, Rapid, Comfortable) in the early 1970s. This design also used an active-tilt system, but one of very different form than
9300-588: The National Railway Museum where it joined the APT-E. Despite the challenges faced by the APT, its design was highly influential and directly inspired other high-speed trains, such as the Pendolino . The extensive work on electrification carried out alongside the APT was effectively utilized in later non-tilting designs, including the British Rail Class 91 . The APT’s tilting system was reintroduced on
9486-610: The Odakyu 50000 series VSE , a luxurious sightseeing express train with active suspension introduced not to increase speeds but to enhance ride comfort; and even cheap enough to be applied to commuter stock, such as JR Hokkaido 's KiHa 201 series , which improved speeds and frequencies on Sapporo 's partly non-electrified suburban railway system. This is also one of the only applications of tilting technology on 'metro-style' commuter trains to date. . More modern and more numerous examples of active suspension and pneumatic tilting trains, include
SECTION 50
#17328455589669672-523: The Red Hawk air-to-air missile . In March 1948 a new report from the DRPC noted there was not enough manpower for all four projects, and put Seaslug at the bottom of the priority list, claiming air attack would be less likely than submarine in the event of war. They suggested the much longer ranged Red Heathen was more important in the short term. The Admiralty was of another opinion on the matter and argued against
9858-578: The Royal Air Force ( Bloodhound ) and the British Army ( Thunderbird ) were not required. Once the boosters were jettisoned the control surfaces became active. Guidance was by radar beam-riding, the beam to be provided by Type 901 fire-control radar . There were four flight modes: Electrical power when the missile was in flight was provided by a flux switching alternator with a six tooth rotor. "The 1.5 kVA Seaslug generator ran at 24,000 rev/min with
10044-468: The T originally did not stand for tilting but for Triebwagen (self-propelled car), as DB's marketing department at first deemed the top speed too low for assignment of the InterCityExpress brand and therefore planned to refer to this class as IC-T (InterCity-Triebwagen). Rather luckless was Class 411/415's adaptation for diesel services. In 2001, a total of 20 units were commissioned for use on
10230-657: The Talgo Pendular . Talgo is currently in its 21st generation of production. Talgo trains are in service in various parts of Europe, and built under licence in Latin America and Asia. In North America, Amtrak uses Talgo trains in its Cascades service in the Northwest. The first Talgo tilting series were the "pendular" ones from 400 series onwards. The first tilting train to enter into regular service in North America
10416-553: The Telecommunications Research Establishment (TRE), the deliberately oddly-named department of the Air Ministry responsible for radar development. Over the next year, first Brakemine and then Stooge were moved to the RAE. In a January 1947 Navy review, the program was given the name Seaslug. This called for a significantly larger weapon than initially envisioned, capable of single-stage vertical launch,
10602-504: The Tōkaidō Shinkansen , allowing the trains to maintain 270 km/h (168 mph) even on 2,500 m (8,200 ft) radius curves that previously had a maximum speed of 255 km/h (158 mph). Many high-speed trainsets are designed to operate on purpose-built high-speed lines and then continue their journeys on legacy lines, upgraded or not. Where the legacy lines justify it, a tilting train may operate at higher speeds on
10788-415: The UAC TurboTrain , the concept was not widely used. In 1964, a number of BR's formerly-dispersed research groups were organised into the new Derby Research Division . It was here that the final work on Wickens' HSFV was being developed. At first there was some argument about whether or not a high-speed train would be supported; in the aftermath of the 1963 Beeching Axe it was not clear what size of network
10974-415: The West Coast Main Line ( London Euston to Glasgow Central , Liverpool Lime Street and Manchester Piccadilly ). Class 390s commenced operation in 2001 with only one being in a major derailment. Due to signalling constraints, Class 390s are limited to 201 km/h (125 mph) in regular service. Japan was an early adopter of tilting trains and continues to use them on many express services. Due to
11160-523: The West Coast Main Line with the British Rail Class 390 , which was based on the Fiat Ferroviaria tilting train design and built by Alstom . However, certain features introduced by the APT, such as the hydrokinetic braking system, have not been widely adopted. Following nationalisation of the UK's railways in 1948, British Railways , as it was then known, faced significant reductions in passenger numbers as
11346-409: The 'limited express' EMUs E353 series for JR East. Deutsche Bundesbahn started tests with tilting trains in Germany with its Class 634 in 1967 when some Class 624 DMUs were equipped with passive tilting systems. As the passengers experienced motion sickness, the tilting technology was disabled and later removed. The tests continued with the prototypes of the following Class 614 units, but due to
SECTION 60
#173284555896611532-436: The 100 mph (161 km/h) range without once again experiencing excessive lateral forces. As the initial factor limiting speeds is not safety against derailing or overturning, but rather only passenger comfort, the solution to increasing speeds further is therefore having the train car bodies tilt as well – while this doesn't influence the forces acting at the wheel-rail level, it keeps the lateral forces experienced inside
11718-617: The 8000 series serves as the basis of the Electric Tilt Train built for Queensland Rail 's Cape Gauge network. The 885 series, built as part of the Hitachi A-train family, serves as the basis of the Taiwanese TEMU1000 series tilting EMU for Taroko Express services, and some non-tilting variants including the British Rail Class 395 and British Rail Class 801 . Later developments in pneumatic active suspension - based on
11904-530: The ALn 668 1999 diesel car, provided with tilting seats to test the effects of active tilting technologies. The first working prototype using a tilting carbody was ETR Y 0160, an electrically powered car launched by FIAT in 1969. This was the first to be christened Pendolino . This design led to the construction of an entire EMU in 1975, the ETR 401 , built in two units by FIAT. One was put into public service on 2 July 1976 on
12090-491: The APT. The carriages rode on two C-shaped channels mounted across the top of the bogies. Tilt was accomplished by rams that pushed the bottom of the carriage side to side along these channels. Amtrak experimented with the LRC in 1980, but retired it seven years later. In Canada, it entered service in 1981, beating the APT into service and becoming the first operational active-tilt system. The LRC carriages remain in use today, although
12276-600: The Admiralty approached Henry Tizard to argue for a more "virile leadership" of the program. Tizard called a meeting of the Defence Research Policy Committee (DRPC) and started a process of pushing through four key missile programs that were intended to enter service in 1957, Seaslug, a longer ranged Army/Air Force surface-to-air missile known as Red Heathen , the Blue Boar television guided glide bomb , and
12462-547: The American Terrier missile was somewhat shorter at 13 ft 6 in (4.11 m), but this required an additional tandem booster which took the overall length to 28 ft 6 in (8.69 m). In 1954, during another review of the Navy's future operations, consideration turned from a "hot war" against the Soviets to a series of "warm wars" in the third world . Among other changes brought about by this review, including
12648-619: The Chileans would accept a package to upgrade the ships to operate Seadart, but this was not taken up and they were transferred complete with Seaslug. The Chilean ships were later refitted with an extended flight deck in place of the Seaslug launcher. There were two main variants of the Seaslug: The Seaslug Mark 1 was powered by the solid-fuel Foxhound (390 kg fuel) sustainer motor and Gosling (145 kg) booster motors. It had
12834-468: The ETR 460 introduced several innovations, such as more powerful AC asynchronous motors. The pistons actuating the tilting action were placed in the bogie instead of on the carbody sides: this permitted the reorganisation of the vestibules and passenger compartment areas, improving comfort. The bogie-to-body connection is extremely simple and easy to build, with maintenance advantages. ETR 460 keeps axle load to an extremely low level (14.5 ton/axle), to allow
13020-456: The Italian government in the project in the mid 1980s, and the introduction of new technologies, led to the revision of the project with the ETR 401 with electronic systems, that led to the introduction of the slightly more advanced ETR 450 , the first Pendolino to enter regular service in the world. Characterized by an 8-car configuration, and a maximum tilt reduced to 8° from the 10° of the ETR 401, for safety and comfort reasons, ETR 450 could run
13206-406: The Italo-Swiss Cisalpino company, the ETR 460 France, later called as ETR 463, used by FS to the route Milan Lione, and the ETR 480 , used by Trenitalia under AC-powered Italian high speed lines. A total of 34 EMUs of the ETR 460/470/480 series were built for FS. The development of the Pendolino technology continued in the Italian factories of Alstom and the next generation, the New Pendolino ,
13392-575: The LRS.1 fire-control system that allowed large dual-purpose guns to attack bombers at long range. A contemporary British Army project at Cossors, Brakemine , was working on a system to allow a missile to keep itself centred within a radar beam, a concept known today as beam riding . The Navy decided to combine the two concepts, using the LRS.1's Type 909 radar with a new missile that differed from Brakemine primarily in requiring longer range and being more robust for shipborne use. In December 1944, GAP put out
13578-519: The Rome- Ancona (later extended to Rimini ) line, operated by Italian State Railways . Between Roma and Ancona (km. 295), the train took 2 hours 50 minutes, while ordinary trains took 3 hours 30 minutes. The train had four cars and was mostly considered a travelling laboratory for the new technology. Initially the ETR 401 was conceived as the first of a series of four trains, but the government lost interest to
13764-525: The Rome-Milan line in under four hours, at speeds up to 250 km/h (160 mph). Passenger numbers increased from 220,000 in 1988 to 2.2 million in 1993. In 1989, the old technologies and concepts of some parts of the ETR 450, and the introduction of new technologies in traction, led to the development of the next generation. The result was the ETR 460 , styled by Giorgetto Giugiaro , a train that began service in 1996. Though plagued by technical problems,
13950-603: The Seaslug Mark 1, also known as Guided Weapon System 1, or GWS.1, finally entered service in 1962 on County-class, each fitted with a single twin missile launcher and a complete weapon system with one fire control set and 30 missiles. The Seaslug-armed cruisers were cancelled in 1957. Seaslug needed height, range and bearing information for targets. By 1955 the Royal Navy considered using the Type 984 radar on Seaslug-armed cruisers and destroyers to provide this. During development,
14136-503: The Seaslug Mk 1 was in December 1981 by HMS London , the final GWS1 (or Batch 1) ship in active service. HMS Fife was converted to a training ship, and had her Seaslug systems removed, freeing up large spaces for classrooms and was completed in June 1986. Fife and the remaining GWS2 ships were sold to Chile between 1982 and 1987. Initially, the British government had hoped that
14322-471: The Seaslug missile and guidance system. The project was cancelled in favour of the "Green Cheese" missile , a tactical nuclear anti-ship weapon, but other project developments were incorporated into what became the Mark 2. It had improved low altitude performance and a limited anti-ship capability and entered service in 1971. The Mark 2 utilized an improved beam-riding guidance system. and solid-state electronics. It
14508-525: The Train Control Project. Another of Jones' many goals for the APT was that it would not cause additional wear on the lines. Instantaneous loads on the railbed vary with the square of speed, so a faster train would greatly increase road wear. Offsetting this effect required the train to meet stringent weight limits, and eliminated the possibility of using conventional diesel engines , which were simply too heavy. The team selected gas turbine power as
14694-407: The UK speed record at 162.2 miles per hour (261.0 km/h) in December 1979, a record that stood until beaten by a Class 373 Eurostar in July 2003. Two additional examples were delivered, each with minor changes, one in late 1979, and the last in 1980. Initially proposed in the 1960s, and given the go-ahead in the early 1970s, the design was now significantly late. Long delays in the production of
14880-545: The WCML, had in the order of 6 million passengers a year between London and Manchester , a far cry from the Tokyo-Osaka's 120 million. Funding for a new line for high speed use was highly unlikely given these passenger levels. This presented a problem for any sort of high-speed operation on the route because the existing line contained many turns and curves, and rounding these at high speed would cause lateral forces that would make walking difficult, and throw items off tables onto
15066-422: The ability to switch between targets in 6 seconds. The designers ultimately selected a maximum range of 30,000 yards, which included 6,000 yd (5.5 km) of coasting after motor burn-out. This was about 50% better than the contemporary US Terrier design. Hit probability was estimated to be 40% at maximum range, so salvos of three missiles would be fired at once, demanding a three-place launcher. This
15252-435: The addition of a small seating area to the passenger car for VIP use. Contract negotiations over high speed rail had concluded in the summer of 1973, just in time for the modified three-car APT-E to emerge from the shop in August 1973. The train then started a testing series lasting eight months, covering details of the suspension, braking, curve performance and drag. However, reliability was a serious problem and it returned to
15438-605: The aeronautics field to investigate it. In October 1962, Alan Wickens was given the position. Wickens was a dynamics expert who had previously worked at Armstrong Whitworth on the Sea Slug missile and then for a period at Canadair in Montreal before returning to the UK and joining the Blue Steel missile project. When the follow-on Blue Steel II was cancelled in favour of the US designed Skybolt , Wickens left A. V. Roe because he "saw
15624-416: The again unsatisfying results the serial types were delivered without tilting system. Another early train with tilting technology was Deutsche Bundesbahn 's Class 403 (today this number is used by ICE 3 ) high speed EMU. Following its InterCity services until 1979, it was also used for airport transfers between Düsseldorf and Frankfurt (see also: AiRail Service ). Class 403 was able to tilt 4°, but
15810-628: The bearing axis, and this caused them to naturally pendulum outward on curves. The first test of a Talgo in the United States was the John Quincy Adams with Fairbanks-Morse P-12-42 tested by the New York, New Haven & Hartford Railroad in 1957–1958. Due to technical troubles and the precarious financial state of the New Haven railroad, the trainset was stored. The idea caught the interest of
15996-516: The beginning of the curves instead of while they are making the turns, there was no motion sickness. Researchers have found that if the tilting motion is reduced to compensate for 80% or less of lateral apparent force, then passengers feel more secure. Also, motion sickness on tilting trains can be essentially eliminated by adjusting the timing of when the cars tilt as they enter and leave the curves. A similar technology widely adopted across Asia and Oceania, known as controlled passive tilt , achieves
16182-403: The bottoms of the carriages to tilt them, rotating them around their centre point rather than swinging outward. This had the advantage of keeping the carriage centred over the bogies, which reduced load on the rails, and could be turned off when navigating switches. Due to lengthy political delays, the APT did not begin service testing until 1979, entering limited scheduled service in December 1981,
16368-410: The cancellation of a future all-gun cruiser class and ending further conversion of WWII-era destroyers to Type 15 frigates , the new environment meant that air cover by carriers could not be guaranteed, and the need for air defence for task-force sized groups became the primary concern. A cut to carrier construction, capping the fleet at four, released funds for missile ship construction. In October 1954,
16554-401: The centre of the train. When the prototypes were built, worked and proven, the engineering development team was disbanded and the trains handed over to British Rail's in-house engineering department to build. The developing engineers moved on to different fields while British Rail engineered the train into a production model. The BR engineers, who had little to no involvement in the development of
16740-514: The change in priority. The Navy found an unlikely ally in the Army, who were concerned that Red Heathen was too difficult to move to in a single step and suggested that Seaslug might be the basis for a more immediate medium-range weapon that could be used both on land and sea. The DPRC also began to have concerns about accurately guiding Red Heathen at its desired 100,000 yd (91 km) maximum range. In September 1948 they agreed to develop Seaslug "as
16926-526: The concept was not revived in the post-war era. In 1956, SNCF experimented with a self-propelled pendulum car, which also relied on centrifugal force. This experiment demonstrated the need for an active suspension system to tilt the coach bodies. The Spanish Talgo company had introduced the first widely successful shared-bogie system, which allowed cars to be connected end-to-end using a single bogie instead of each car having its own bogies at either end. This design saves weight and can reduce rail wear. In
17112-530: The country's mountainous Cape gauge (1,067mm) railway system soon became apparent and since then these 'semi-active' tilting trains have seen widespread use on limited-express trains throughout the archipelago. Particularly well-known diesel and electric examples of this generation of tilting trains include JR Hokkaido 's KiHa 281 series , JR East 's E351 series , JR Central 's 383 series , JR Shikoku 's 8000 series , and JR Kyushu 's 885 series . This generation of designs has seen some popularity overseas -
17298-447: The design also started. Sited behind the main offices at the Derby labs, Kelvin House, the new facilities included a roller rig for testing the engines, a brake dynamometer and various test rigs for testing the suspension and tilt systems. The new lab was opened on 26 October 1970. Additionally, a 13.25 miles (21.32 km) section of track between Melton Mowbray and Edwalton was purchased as
17484-408: The design was further modified and renamed GPV, for General Purpose Test Vehicle. Several liquid rocket motors were tested as part of this program. Early tests demonstrated shifts in the center of gravity that required active damping, which in turn led to the lengthening of the overall fuselage to become the "long round". This version used forward-mounted boosters, which were mounted so their exhaust
17670-473: The destruction of a number of helicopters and a radar installation. A total of eight Seaslug Mk 2 missiles were launched in theatre by the two ships armed with them, including two missiles jettisoned by Glamorgan after she was hit by a land-launched Exocet missile on 12 June. Also during 1982, the Mk2 was used as a trials target for Seadart, but there were reliability problems with both systems. The last firing of
17856-399: The diameter defined by the missile's wings, so they did not make it any larger in diameter when stored. If one of the boosters did not fire the thrust would be significantly off-axis, a possibility which was later addressed by moving the boosters forward so their exhaust was near the centre of gravity of the missile, allowing the missile's small control surfaces to remain effective. In contrast,
18042-534: The early 1950s, the Spanish National Railway, Renfe , experimented with passenger cars that combined the Talgo bogie with a new passive tilting system. This system used a large A-frame connected to the centre of the bogie that was as high as the cars. At the top of the A was a bearing system that the cars attached to, and a spring and damping system to smooth its motion. Because the cars were connected at this high point, they could swing to either side around
18228-540: The effects of centrifugal force on the human body, but they can still cause nausea , a problem that was widely seen on early "passive" tilting trains that exactly balanced the outward force. The effect could be felt under maximum speed and tilt, when the combination of tilting outside view and lack of corresponding sideways force can be disconcerting to passengers, like that of a " thrill ride ". More limited and slower tilt could be achieved using active, or 'forced', tilting mechanisms. In trains adopting these mechanisms tilt
18414-608: The effects of electrification on the WCML which improved journey times 20 to 30%, they concluded that every 1 mile per hour (1.6 km/h) increase in speed would result in a 1% increase in passengers. This basic rule was apparently proven in Japan, when the Tokyo-Osaka Shinkansen line was operating from 1964 to huge success. The Shinkansen provided a smooth ride at speeds as high as 125 mph (201 km/h) by laying new lines dedicated to high speed travel. BR's most used route,
18600-412: The end of the platform. Although all auxiliary equipment such as lighting, air conditioning and air compressors was powered by motor alternators driven from the 25 kV overhead line, it was recognised that if there were a power failure, conditions in the passenger vehicles would quickly become unbearable and even unsafe. Each driving van trailer i.e. the leading and trailing vehicles, was equipped with
18786-490: The engines were progressively upgraded to 330 horsepower (250 kW). After many months studying various transmission systems, with time on the definition phase ending they finally decided to use an electric transmission, like a diesel-electric locomotive. Finally, due to schedule pressure, it was decided not to use a single articulated bogie between the cars, and two conventional bogies would be used on each car. Jim Wildhamer, recently hired from Westland Helicopters , designed
18972-468: The engines. Over time a number of these contracts were withdrawn and the teams took the design in-house, cancelling the suspensions contract with Hawker Siddeley in February 1970. Design of the bogies was taken over with the physical construction contracted to British Rail Engineering, while the power car construction was let to Metro-Cammell . While this work was underway, work on an experiential facility for
19158-417: The entire vehicle. Wickens concluded that a properly damped suspension system could eliminate the problem. The key realization was that the suspension had to be both vertical, as it had been in the past when based on leaf springs , but also horizontally to avoid small displacements triggering oscillation. Computers were used to simulate the motion and develop rules for how much damping would be needed to avoid
19344-406: The firing. For both Mark 1 and Mark 2 Sea Slug there were drill rounds (painted blue) for the purpose of training and display rounds (painted red) which could be loaded onto the launcher for port visits and public relations. In addition, a nuclear-armed variant was planned using a low-yield fission warhead code-named Winkle . Winkle was never built as it was quickly supplanted by Pixie ,
19530-530: The first test launches of LOPGAP from converted QF 3.7-inch air-aircraft gun mounts within two months. The same mounts had also been used, with different modifications, for Stooge and Brakemine. They predicted the final system would be about 19 ft (5.8 m) long and a twin-launcher would take up about the same room as a twin 5.25-inch gun turret. An April Staff Target called for the system to be able to engage an aircraft flying at 500 mph (800 km/h) at altitudes up to 40,000 ft (12,000 m) with
19716-404: The fixed pantographs limited this to 2°. Shortly after the train had gone into service, the tilting technology was disabled as many passengers experienced motion sickness because the pivotal point was too low. The next attempt was made with DMUs and the proven Italian hydraulic active tilting system. Between 1988 and 1990, DB commissioned 20 Class 610 units for fast regional traffic. This time
19902-447: The flameout. The missile was made fully controllable about ten seconds after firing, followed by a radio-beacon while it was centered in the radar beam; and armed the infra-red proximity fuze at about 1 km (1,100 yd) from the target, if 'hot', while if 'cold' the missile was detonated by command sent from the ship. The range could be even more than 35,000 yards, especially at high altitude, with head-on supersonic targets. One of
20088-407: The floor. The traditional solution to this problem is to tilt the rails into the turns, an effect known as superelevation or cant . This has the effect of making the lateral forces more inline with the floor, reducing sideways forces. Because larger amounts of cant are more difficult to construct and maintain, and also because of the need to account for slower-moving traffic or the possibility of
20274-440: The government was willing to support, and whether a new design should be aimed at higher-speed intercity service, where a new locomotive would be needed to replace the ageing Deltics anyway, or a simpler system for better performance in the suburbs. In 1965, Wickens had hired an intern, Dutch engineer A.J. Ispeert, and had him do some early work on active tilt systems. These would replace the passive pendulum-like Talgo system with
20460-467: The immediate area of the ship, and thus did not meet the need for a longer-ranged missile capable of dealing with stand-off weapons. Accordingly, Fairey was ordered to stop work on Stooge in favour of LOPGAP. Development was slowed by the Air Ministry who were opposed to the project as it might take resources away from jet fighter production and a lack of urgency on the part of both the Admiralty and Ministry of Supply . A March 1945 report called for
20646-420: The late 1960s, through the 591 Series that developed into the highly successful Hitachi 381 series , that has been in service since 1973. In parallel Fiat Ferroviaria produced the experimental Y 0160 in 1970, that would evolve into the Pendolino family, in 1976, and operated in 11 countries. All of these had problems with short curves like those in switchyards, where they tended to sway about. Also, because of
20832-493: The latter, even if below the normal 200 km/h (124 mph) threshold, whilst operating at 250 km/h (155 mph) or faster, usually with tilt disabled, on the high speed lines. The first experimental tilting train concept was the pendulum-suspension "chair" cars designed by the Pacific Railway Equipment Company. The first prototype, with an articulated bogie system, was built in 1937 and tested on
21018-488: The lines. Eventually a series of six HSFV designs would be tested until 1976, and the last, HSFV-6, entered service that year. During this period, BR's Passenger Business division produced a report suggesting rail could compete with road and air, but only if the trains ran faster. Studying the increase in ridership due to the introduction of the British Rail Class 55 "Deltic" engines on the East Coast Main Line , and
21204-493: The longest shots recorded was made by HMS Antrim against a target over 58,000 yd (33 mi; 53 km) away, with an impact at 34.500 with about 46 seconds flight time. The missile was capable of reaching potentially even higher altitude and longer range than nominally attested: even after the engine flameout (over 40 seconds after launch), it retained very high speeds and one of them even surpassed 85,000 ft (26,000 m) before self-destructing, about one minute after
21390-415: The main motor ignited to power the missile to the target. The booster motors were positioned at the side of the missile, but this unusual arrangement with the motor nozzles both angled outwards at 22.5° and 22.5° to the left, the missile entered a gentle roll at launch, evening out differences in the thrusts of the boosters. This meant that large stabilising fins as used on contemporary missiles in service with
21576-693: The media describing the initial revenue run as both fifteen years late , and the queasy rider ; the sets only briefly entering full revenue operation in 1985, before being withdrawn and the associated technologies sold to Alstom / Fiat Ferroviaria . By this time, the Canadian LRC design had become the first active tilting train to enter full commercial service, starting with Via Rail in 1981. Aeroplanes and bicycles tilt inwards when cornering, but automobiles and trains cannot do this on their own. Vehicles with high centres of gravity rounding sharp curves at high speeds may topple over. To make their turns easier,
21762-462: The missile system. Seaslug was only fired in anger once as an anti-aircraft missile, from HMS Antrim during the Falklands War, but missed its target. Later improvements meant that it could also be used against ships and ground targets. It was planned that Seaslug's medium-range role was to be supplanted by a very long-range missile known as Blue Envoy , but this was passed over in favour of
21948-640: The more capable Mk 2 version. A proposal to refit the Batch 1 ships with ADAWS was dropped in 1968. During the Falklands War Seaslug was only launched once against an aircraft target, by HMS Antrim , and without success. On 21 May 1982 in Falkland Sound , the Antrim which had already had an unexploded 1,000 lb bomb pass through the Seaslug magazine, fired a single missile (some sources say two ) at one of
22134-404: The motor car rapidly became more popular through the 1950s and 60s. By 1970, passenger numbers were roughly half what they had been immediately prior to World War II . In an attempt to maintain a level of profitability, the government commissioned a report that resulted in the abandonment of many lines as part of the 1963 " Beeching Axe ". In spite of this significant restructuring, the organisation
22320-490: The network. Engineers at the research division , opened in 1964, had done fundamental work on vehicle dynamics, with the APT to a degree an extension of this. The existing Chief Mechanical and Electrical Engineers department was overlooked by the new project, creating resentment with its engineers. The work included experimentation with aluminium bodies, turbines, suspension and bogies, in cab signalling, automatic train protection, and active tilt. The APT-E (E for experimental)
22506-456: The newly developed tilting system as well as chassis and axles, and was judged unsuccessful. The tilting system was out of service until 2006, when hardened axles and system updates solved the problems. In consideration of these problems DB ordered a full re-engineering, resulting in the development of Class 612 . Starting in 1998, a total of 192 units were commissioned by DB. The tilting system proved to be reliable. In 2004, cracks were detected in
22692-497: The other engine would be fed power through a coupling along the roof. Power was converted to direct current by ASEA thyristors , supplying four 1 megawatt (1,300 hp) DC traction motors mounted in each power car. The traction motors were moved from the bogies to inside the car body, thereby reducing unsprung weight. The motors transmitted their power through internal gearboxes, cardan shafts and quill final drives . Other changes suggested by experience on APT-E included changes to
22878-446: The outer edge of a roadway of a high-speed highway or outer rail of a railway may be canted (raised) upward around the curve. The combination of tilt and centrifugal force combines to produce an effective acceleration that is down through the floor, reducing or eliminating any sideways component. The particular angle of tilt ("superelevation") is determined by the intended vehicle speed — higher speeds require more banking. However, with
23064-419: The parts out, so the decision was made to roughly double the length of the power cars. This turned out to be easy to do; the frameworks already under construction at Metro-Cammell simply had additional sections of steel tube inserted and construction was barely affected. The POP cars were skinless, topped with a space frame holding ballast to simulate the various parts of the prospective design. The "POP" acronym
23250-422: The passenger compartment at a comfortable level even at further increased speeds. Talgo introduced the first practical design for a tilting carriage in the late 1950s. This consisted of a single bogie placed between the train cars with the car bodies suspended from an A-frame centered on the bogie with a pivot near the top. When the train rounded a bend, the centrifugal forces caused the car body to swing out like
23436-461: The plans changed to build four electric versions for operation on the WCML, and another two turbine versions. From that point the turbine versions fell progressively further behind, and were eventually cancelled. This may have been a blessing in disguise; the 1973 oil crisis caused fuel prices to rise as much as three times, and turbine engines were notoriously thirsty; the TurboTrain used between 50 and 100% more fuel than conventional sets running on
23622-500: The previous Mk 1. The boosters gave a total of about 60 tons-force, with 186 kg (410 lb) fuel for each one (145 kg in the Mk 1), accelerating it to over Mach 2. When they separated because the extreme drag made by the rings all around the missile, the solid fuel sustainer Deerhound started to burn its 440 kg (970 lb) of propellant (390 kg for the Mk 1) and gave about 1,820 kg/s (241,000 lb/min) for 38 seconds. The slender missile remained at over Mach 2-2.5 until
23808-463: The problem could be traced to a problem known as hunting oscillation . This was well known in the railway world, but tended to happen only at high speeds. On the BR network, especially on freight cars with worn wheels, it was being seen at speeds as low as 20 miles per hour (32 km/h). Jones was convinced that hunting oscillation was an effect similar to the problem of aeroelastic flutter encountered in aerodynamics , and decided to hire someone from
23994-419: The problem for any given speed. By 1964 this work had produced the first High Speed Freight Vehicle , HSFV-1, a bogieless freight car capable of travelling safely at speeds up to 140 mph (225 km/h). The same work suggested there was no practical upper limit to the achievable speeds in terms of dynamics, and that any limitations on maximum performance would be due to other factors like traction or wear on
24180-473: The project because of financial problems, and the project was temporarily interrupted, as the service in 1983. The train was used in demonstration campaigns to foreign countries like Germany, Switzerland, Czechoslovakia and Yugoslavia. A second unit was built for service to the wide-gauge Renfe Spanish lines in 1977, under the nickname of Platanito. The service didn't last of long, because problems with Spanish tracks made Platanito of little use. New interest by
24366-447: The projected APT-S production vehicles in numbers. Despite being an eventual success, the project was scrapped by British Rail in 1986, more for political reasons than technical. Sea Slug (missile) Seaslug was intended to engage high-flying targets such as reconnaissance aircraft or bombers before they could launch stand-off weapons. It was only fitted to the Royal Navy's eight County-class destroyers which were designed around
24552-513: The projected weight of the radar doubled, to the point where it could still potentially be mounted on cruisers, but was rejected for destroyers because it would have meant sacrificing their 4.5 in gun armament. The gun armament was regarded as essential for the navy's wider role outside the hot war mission. The solution adopted with the first batch of the County-class destroyers was to network them with ships carrying Type 984. The destroyers were given
24738-541: The prototype meant that the brake units had to be stored for an extended period before being installed. The change from oil to water-glycol mix required the cylinders to be covered internally with an anti-corrosion coating, which broke down during storage. In testing the cylinders repeatedly failed, and the loss of pressure caused the train to take nearly as long to slow from 25 mph to a standstill as it did to slow from 125 mph to 25 mph. During commissioning, because of this and other development issues, every axle on
24924-463: The prototypes into service, with the first runs along the London – Glasgow route taking place in December 1981. The problems were eventually solved and the trains quietly reintroduced in 1984 with much greater success. By this time the competing High Speed Train , powered by a conventional diesel engine and lacking the APT's tilt and performance, had gone through development and testing at a rapid rate and
25110-585: The results were quite satisfying and allowed a significant reduction of running times. The Class 610 sets was followed by the Class 611 , which basically was built for the same purpose (fast regional traffic with up to 160 km/h (99 mph) on twisting non-electrified lines). The Class 611's tilting system was electric, with a maximum 8° tilt, based on military technology from the Leopard tank . After entering service in 1996, this 50-unit class experienced problems both with
25296-550: The return and similar modification of the second power car, formerly used at the lab. The rebuilt four car train returned to service in June 1974. On 10 August 1975 it hit 152.3 mph (245.1 km/h) on the Western Region between Swindon and Reading, setting the UK record. It then set the route record from Leicester to London St. Pancras in 58 minutes 30 seconds on 30 October 1975, at an average speed of just over 101 miles per hour (163 km/h) through this twisty route. It
25482-636: The same routes. Leyland's use of a recuperator improved this considerably, but proved a maintenance problem. With the decision to move primarily to electrification made in November 1972, Jones began building a larger management team to carry the design forward to service. This resulted in the April 1973 transfer of the design from the research division to the Office of the Chief Mechanical and Electrical Engineer. A review
25668-444: The service prototype APT-P at 162.2 miles per hour (261.0 km/h) in December 1979. Development of the service prototypes dragged on, and by the late 1970s the design had been under construction for a decade and the trains were still not ready for service. The election of Margaret Thatcher brought matters to a head and she alluded to funding cuts for the project. Facing the possibility of cancellation, BR management decided to put
25854-404: The ships. A solution for long-range anti-aircraft was required. On 16 March 1944 the first meeting of the "Guided Anti-Aircraft Projectile Committee", or GAP Committee, was held. The Admiralty Signals Establishment (ASE), in charge of the Navy's radar development, was working on new radars featuring radar lock-on that allowed them to accurately track aircraft at long range. This was part of
26040-513: The shops for a second overhaul in March 1974. Among the many changes for this round was the switching of the turbines formerly dedicated to power delivery for the passenger cars to add additional power to the traction motors, while at the same time replacing all of the turbines with an upgraded 330 horsepower (250 kW) version, improving total power per car from 1,200 to 1,650 horsepower (890 to 1,230 kW). Other changes included new motor bearings and
26226-600: The slow and twisty nature of its conventional-speed, narrow gauge network, tilting trains were introduced as a way to speed up services on its congested main lines. The interurban Odakyu Electric Railway began Japan's first experiments in tilting technology in the 1960s by fitting pneumatic bogies to their electric railcars, while the Japanese National Railways pioneered their form of passive-tilt technology on their experimental 591 series EMU with commercial express services on mountain lines in mind. The 381 series
26412-557: The solution, initially considering the Rolls-Royce Dart . When the funding was secured a number of design notes were still not finalised, so the timeline was stretched into July 1971 to provide extra time for the project definition stage. By May 1969 these issues had been decided and the final design emerged. The experimental train would have four cars; two power cars placed at either end, and two passenger cars between them filled with experimental measurement and recording systems. During
26598-416: The team move the train back to Derby at night. This resulted in a one-day national strike that cost more than the entire APT-E project. By this point the POP had demonstrated a number of problems, and the engineers took the opportunity to start a major overhaul of the design. The main problem was the design of the non-driven bogies, which were not stable and could not be used for high speed runs. One power car
26784-399: The team studied conventional two-axle bogies and quickly discovered that, as Jones had suspected, the problem was dynamic instability. Out of this work came the concept of a critical speed at which point hunting would become a problem. This work was then extended to the unique two-axle bogieless car designs used on the BR freight network, where the problem was further modified by the dynamics of
26970-399: The tilt mechanisms are being removed to reduce weight and maintenance costs. Bombardier has since used updated versions of the LRC carriages for Amtrak 's Acela , the third generation of tilting ICE, the new generation of fast British trains ( Super Voyager ) and the experimental JetTrain . The Advanced Passenger Train (APT) was initially an experimental project by British Rail , with
27156-409: The tilt slightly, so that there was still some sensation of cornering. The APT-P trains were quietly reintroduced to service in mid-1984 and ran regularly for a year, the teething problems having been corrected. However, under an in-house engineering management who felt slighted and by-passed in a project they had not developed, there was no political or managerial will to continue the project by building
27342-415: The time Jones was arranging funding, an experimental engine built by Leyland for trucks became available, which was designed to be much less expensive. The Dart was dropped, and power would be supplied by four 300 horsepower (220 kW) Leyland 2S/350 gas turbines in each power car, along with a fifth turbine connected to a generator to power the equipment in the passenger cars. During the testing period
27528-413: The train entering limited service in December 1981 . Although eventually abandoned, the train was the pioneer of active tilt to negotiate tight curves at higher speeds than previous passive tilting trains. In the 1970s and 1980s, British Rail wanted an advanced fast train to negotiate Britain's twisting and winding Victorian-era rail system. Conventional trains were limited in speed due to the curvature of
27714-404: The train apart. The passenger cars retained the articulated design, but a number of changes were made due to experience on APT-E. Finally, a system that would cause the tilt system to fail into the upright position was desired, as APT-E had failed into a tilted position on several occasions. As part of the same review, the team noticed that a slight reduction in maximum speed would greatly simplify
27900-419: The train to derail . Tilting trains are designed to counteract this by tilting the carriages towards the inside of the curve, thus compensating for the g-force. The train may be constructed such that inertial forces cause the tilting ( passive tilt ), or it may have a computer-controlled powered mechanism ( active tilt ). The first passive tilting car design was built in the US in 1937, and an improved version
28086-455: The train to negotiate curves up to 35% faster than conventional Intercity trains (locomotive plus coaches). The body, which exploits large aluminium extrusion technology, has substantial modularity and allows for extremely low axle weight, whilst fully respecting the highest safety standards, and allows the best exploitation of the space with different loading gauges. ETR 460 was built in only 10 units. Improved versions include ETR 470 for
28272-580: The train to round corners 40% faster. They named the proposal the Advanced Passenger Train. Jones took the proposal to the BR chairman, Stanley Raymond, who liked the idea. However, the board was unable to provide enough funding to develop it, and encouraged Jones to approach the Ministry of Transport for additional funding. Jones did so, and spent the next two years walking the corridors of Whitehall when one civil servant after another agreed that it
28458-414: The train was relatively straightforward, a number of more serious problems appeared in the power and control systems. Thus the decision was made to build two additional power cars as unfinished frameworks with no power. These cars would instead be hauled by conventional locomotives to provide data on the tilting and braking systems as well as the dynamics of the vehicles. A contract for the additional two cars
28644-407: The train, but concerns were raised over excessive buckling forces when pushing the train at high speeds with the tilt feature active. So, finally, the design team chose to place the engines back-to-back in the centre of the train. The two engines would be identical and both would carry a pantograph to pick up power, but in normal operation only the rear of the two engines would raise its pantograph, and
28830-440: The train, changed some of the prime and proven engineering aspects. For example, they changed the active tilt mechanism to pneumatic , rather than the well-developed and proven hydraulics . The trains were introduced in 1981, but almost immediately taken out of service. During initial tests, some passengers complained of being nauseous due to the tilting motion. Subsequently, it was learned that this could be prevented by reducing
29016-474: The trains was modified and exchanged. Tilting train A tilting train is a train that has a mechanism enabling increased speed on regular rail tracks . As a train (or other vehicle) rounds a curve at speed, objects inside the train experience centrifugal force . This can cause packages to slide about or seated passengers to feel squashed by the outboard armrest, and standing passengers to lose their balance. In such excessive speeds, it could even cause
29202-418: The vertical suspension from conventional hydraulic shock absorbers to air bags, which would both improve the ride quality and have lower maintenance requirements. For service reasons, the power cars were redesigned to have their own bogies in a Bo-Bo arrangement, so they could be easily removed from the train, unlike the former articulated design that connected adjacent cars together and made it difficult to split
29388-439: The way the carriages always swung outward, they placed more weight on the outside of the curve, which limited their improvement in cornering speed to about 20%. Starting in the late 1960s, British Rail also began experiments with its Advanced Passenger Train (APT) which pioneered the active-tilt concept, along with in-cab signalling, to permit High Speed Rail services on conventional tracks. The APT family used hydraulic rams on
29574-438: The writing on the wall". He answered an ad for BR, and during the interview, he replied that he had no knowledge of, and little interest in, railway bogie design. It was later revealed this was the reason he was hired. Over the next several years, Wickens' team carried out what is considered to be the most detailed study of the dynamics of steel wheels on rails ever conducted. Starting with incomplete work by F.W. Carter from 1930,
29760-532: Was a 17 kn (31 km/h) vessel that would provide direct cover over seagoing convoys, while the 12 kn (22 km/h) Coastal Convoy Escort would do the same closer to shore. At that time it was believed that aircraft carriers would be able to provide adequate cover over convoys or fleets in the ocean, so attention turned to the Coastal Convoy Escort. Beginning in May 1953 a Beachy Head-class repair ship
29946-689: Was a great idea but that it was really the job of someone else to approve it. In spite of being repeatedly put off, Jones persisted, especially with Government Chief Scientist, Solly Zuckerman , to arrange a stable funding system for the entire topic of railway research. This was finalised as the Joint Programme between the Ministry of Transport and the British Railways Board, sharing the costs 50:50. The Programme would run sixteen years from January 1969 to March 1985. The first two programmes were APT and
30132-406: Was a passage through the power cars that connected the two-halves of the train, but it was noisy, cramped and not permitted for passengers. Instead, each end of the train now required its own dining car and similar facilities. The split design also presented problems in the stations, where only the two ends of the platforms could now be used, whereas normal equipment could park with the locomotives off
30318-425: Was a small unpowered Brakemine-like system devoted to the development of the guidance systems, launched using three RP-3 rocket motors and controlled through the coast phase. A series of CTV designs followed, providing ever-increasing amounts of telemetry for the guidance and control systems work. GAP became a purely research-oriented system, RTV.1 (rocket test vehicle), as opposed to a prototype missile design, and
30504-629: Was also tested extensively on the Midland Main Line out of St. Pancras and on the Old Dalby Test Track, where in January 1976 it attained a speed of 143.6 mph (231.1 km/h). APT-E testing ended in 1976, and the single train was sent directly to the National Railway Museum in York on 11 June 1976. During its testing it covered approximately 23,500 miles (37,800 km), ending a career that
30690-425: Was at this time working on a missile project for the Ministry of Supply, Stooge . Stooge was more like an armed drone aircraft than a missile. It was flown to a location in front of the target and then cruised toward it until its warhead was triggered by the operator. It was designed primarily to defeat kamikaze attacks at short range. Its low speed and manual guidance meant it was not useful for interceptions outside
30876-454: Was built in 1939. The beginning of World War II ended development. Talgo introduced a version based on their articulated bogie design in 1950s, and this concept was used on a number of commercial services. Among these was the UAC TurboTrain , which was the first (albeit short-lived) tilting train to enter commercial service in 1968 in the US and Canada. Japan similarly experimented, from
31062-415: Was carried out by a joint team from the two divisions, led by David Boocock. As a result of this review a number of additional changes were made to the design. A major problem was the recent discovery that the overhead lines on the WCML were subject to the creation of large waves in the lines at speeds over 200 kilometres per hour (120 mph). This was not a problem for two trains following each other with
31248-476: Was commissioned. While classes 401 to 403 (without tilting technology) were to cover the newly built or modernized high speed lines at up to 300 km/h (186 mph) (ICE 3 Class 403), Classes 411 and 415 with maximum speed of 230 km/h (143 mph) were designed for older twisting main lines. A total of 60 Class 411 and 11 Class 415 (shorter version) have been built so far. Both classes worked reliably until late 2008 when cracks were found on an axle during
31434-507: Was converted into a prototype escort ship, HMS Girdle Ness , to test this fitting. For this role, the densest possible storage was required, so the initial design of a single booster rocket at the base end of the missile. This led to a very long design, as was the case for most contemporary designs, this was abandoned in favour of four smaller boosters wrapped around the fuselage, giving shorter overall length of about 20 ft (6.1 m). The boosters were positioned so they lay within
31620-542: Was delivered to Trenitalia and Cisalpino as the ETR 600 and the ETR 610 from 2006. Italian Pendolinos and their derivatives still represent the most popular solution for active tilting in passenger trains. The technology still in use today is almost the same developed by Fiat Ferroviaria in the 1960s-70s. The British version of the Pendolino, the British Rail Class 390 , is a 225 km/h (140 mph) electric tilting train operated by Avanti West Coast . It runs on
31806-517: Was driven by a redundant onboard computer system using Intel 4004 microprocessors. The track units were essentially the same as the modern French Balise beacons. The hydrokinetic brake system was successful and reliable on the APT-E and was retained for the APT-P with a number of design improvements from the lessons learnt on APT-E. However, as an energy-cutting measure, the hydraulically actuated friction brakes used for low speed were modified to be fed by
31992-424: Was ever deployed. The County-class destroyers were specifically built to carry Seaslug and its associated control equipment. The magazine was positioned amidships and missiles were assembled in a central gallery forward of the magazine before being passed to the launcher on the quarterdeck. The handling arrangements were designed with a nuclear-war environment in mind and were therefore entirely under cover. Some of
32178-572: Was fired from RAF Aberporth out over Cardigan Bay in Wales. The desire to reclaim the RTVs as well led to the opening of a parallel launch facility at the RAAF Woomera Range Complex and a program that led development of supersonic parachutes. As RTV testing continued, the decision was made to build a larger version, RTV.2, which would be more typical of a production missile. During early testing,
32364-525: Was just in front of the mid-mounted wings. As experimental work progressed, the Ministry of Supply began forming an industry team to build production systems. In 1949 this gave rise to the 'Project 502' group from industry, with Armstrong Whitworth Aircraft and Sperry in March and GEC in September. The 29 July 1949 update of the Staff Target called for a maximum range of 30,000 yd (27 km) and
32550-400: Was later reduced back to a twin-launcher when it was realized accessing the missile in the middle launcher would make maintenance difficult. When the deployment of the Seaslug was first being considered, three classes of custom missile-firing ships were considered. The Task Force Ship would be capable of 30 kn (56 km/h) and would tasked with fleet air defence. The Ocean Convoy Escort
32736-409: Was now forming the backbone of BR's passenger service. All support for the APT project collapsed as anyone in authority distanced themselves from what was being derided as a failure. Plans for a production version, APT-S, were abandoned, and the three APT-Ps ran for just over a year before being withdrawn again over the winter of 1985/6. Two of the three sets were broken up, and parts of the third sent to
32922-442: Was organised under Mike Newman, while Alastair Gilchrist headed the research side. Newman noted that a single car was unlikely to answer practical questions like how the train would operate as a complete unit, and that a dummy body would not answer the question of whether the tilt mechanism could really be built under the floor without projecting into the cabin. Accordingly, later that same November, Newman and Wickens drew up plans for
33108-440: Was powered by gas turbines; the APT-P (P for prototype) was electric. With no tilting, the train was developed to break the British rail speed record. Tilting trains using passive tilt were not new, but it was uncommon and not widely implemented. The engineers decided that active tilt was the key to negotiating curves at much higher speeds. The train had hydro-dynamic brakes and lightweight articulated bodies, with two power cars in
33294-492: Was powered by the Deerhound sustainer motor, with Retriever boosters. Control was by a modified Type 901M radar and it had an improved infra-red proximity fuze and a continuous-rod warhead with a smaller, 56 lb (25 kg), explosive charge (RDX-TNT) and an unfold diameter of about 70 feet (10 mm steel rods were used) The capabilities of the new Sea Slug Mk 2, an almost 2.5 ton missile, were much improved compared to
33480-421: Was retained at the lab while the other and the two passenger cars were sent to the nearby Derby Works for modification. The main changes were to stiffen the power cars and replace the suspect bogies with a version of the powered bogie with the motors removed. Other changes included the removal of the ceramic recuperators from the turbines for reliability reasons, although this dramatically increased fuel use, and
33666-476: Was sent out on 14 April 1970, and ran for the first time in September 1971. The name "POP" was assigned, an acronym for "power-zero-power", indicating the two power car layout with no passenger cars in the middle. The selection of a space frame design for the power cars turned out to be fortunate, as during construction the engineers concluded that the packaging of the various elements within the car would render it dynamically unstable. They needed more room to spread
33852-439: Was soon rendered inaccurate when a passenger car was added to make a three-car train, at which time the power cars were also given bodies. The POP underwent a number of changes, notably trialling different bogie designs, over its lifetime. While POP was proving the basic concepts, construction of the test train continued at the Derby lab. The set was sufficiently complete by late 1971 for an official naming ceremony, where it became
34038-472: Was still built on lines that were pre-war, with routings dating into the 1800s. Maintaining the network created problems with derailments increasingly common. In 1962, Dr. Sydney Jones was hired away from the weapons department at R.A.E. Farnborough with the eventual aim of having him take over as BR's research lead from Colin Ingles, who retired in 1964. Looking into the derailment problem, they found that much of
34224-489: Was the UAC TurboTrain , used by Canadian National in 1968. Some figures have considered it to be the first tilting train in service in the world. It provided daily service between Montreal and Toronto at speeds of 160 km/h (99 mph), until it was replaced by Bombardier LRC trains in 1982, reaching the maximum speed of 225 km/h (140 mph) during Canadian trials. TurboTrains were also operated by Amtrak between Boston and New York. The UAC Turbos had
34410-590: Was the first commercial tilting EMU in Asia, entering service in 1973 on the Shinano limited express services that operated on the hilly Chūō Main Line . The sets remained in operation until June 2024, when the last regularly scheduled trains ended on the Yakumo service. During the final years of the Japanese National Railways , experimentation on mechanically-regulated passive tilt -
34596-581: Was used primarily as a platform for testing the rocket motors. The GAP/RTV.1 efforts would be directed at the Stage 1 design, which would essentially be the Seaslug requirement. The relatively small CTV could safely be launched at the Larkhill Range, part of the Royal School of Artillery . It was equipped with a parachute that allowed it to be recovered. This was not possible for the much longer-ranged RTV, which
#965034