Misplaced Pages

AN/APG-65 radar family

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The AN/APG-65 and AN/APG-73 are designations for a family of all-weather multimode airborne radar systems designed by Hughes Aircraft (now Raytheon ) for the F/A-18 Hornet , and used on a variety of fighter aircraft types. The APG-79 is an upgraded AESA version.

#362637

31-466: These I band (8 to 12 GHz ) pulse-Doppler radar systems are designed for both air-to-air and air-to-surface missions. For air-to-air operations they incorporate a variety of search, track and track-while-scan modes to give the pilot a complete look-down/shoot-down capability. Air-to-surface modes include Doppler beam sharpened sector and patch mapping, medium range synthetic aperture radar , fixed and moving ground target track and sea surface search. In

62-499: A process to move these stations to UHF bands to free up valuable VHF spectrum for its original purpose of FM radio. In addition, by 1985 the federal government decided new TV stations are to be broadcast on the UHF band. Two new VHF channels, 9A and 12, have since been made available and are being used primarily for digital services (e.g. ABC in capital cities) but also for some new analogue services in regional areas. Because channel 9A

93-666: A proposed transmitter station. VHF is the first band at which wavelengths are small enough that efficient transmitting antennas are short enough to mount on vehicles and handheld devices, a quarter wave whip antenna at VHF frequencies is 25 cm to 2.5 meter (10 inches to 8 feet) long. So the VHF and UHF wavelengths are used for two-way radios in vehicles, aircraft, and handheld transceivers and walkie-talkies . Portable radios usually use whips or rubber ducky antennas , while base stations usually use larger fiberglass whips or collinear arrays of vertical dipoles. For directional antennas,

124-505: A result, FM radio receivers such as those found in automobiles which are designed to tune into this frequency range could receive the audio for analog-mode programming on the local TV channel 6 while in North America. The practice largely ended with the DTV transition in 2009, although some still exist. The FM broadcast channel at 87.9 MHz is normally off-limits for FM audio broadcasting; it

155-656: Is a stub . You can help Misplaced Pages by expanding it . Very high frequency Very high frequency ( VHF ) is the ITU designation for the range of radio frequency electromagnetic waves ( radio waves ) from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter. Frequencies immediately below VHF are denoted high frequency (HF), and the next higher frequencies are known as ultra high frequency (UHF). VHF radio waves propagate mainly by line-of-sight , so they are blocked by hills and mountains, although due to refraction they can travel somewhat beyond

186-524: Is a radio band which, in most of the world, is used for FM broadcasting . In North America , however, this bandwidth is allocated to VHF television channel 6 (82–88 MHz). The analog audio for TV channel 6 is broadcast at 87.75 MHz (adjustable down to 87.74). Several stations, known as Frankenstations , most notably those joining the Pulse 87 franchise, have operated on this frequency as radio stations, though they use television licenses. As

217-558: Is less of a problem in this and higher frequency bands than at lower frequencies. The VHF band is the first band at which efficient transmitting antennas are small enough that they can be mounted on vehicles and portable devices, so the band is used for two-way land mobile radio systems , such as walkie-talkies , and two way radio communication with aircraft ( Airband ) and ships ( marine radio ). Occasionally, when conditions are right, VHF waves can travel long distances by tropospheric ducting due to refraction by temperature gradients in

248-463: Is not used for television services in or near Sydney, Melbourne, Brisbane, Adelaide or Perth, digital radio in those cities are broadcast on DAB frequencies blocks 9A, 9B and 9C. VHF radio is also used for marine Radio as per its long-distance reachability comparing UHF frequencies. Example allocation of VHF–UHF frequencies: Until 2013, the four main free-to-air TV stations in New Zealand used

279-592: Is reserved for displaced class D stations which have no other frequencies in the normal 88.1–107.9 MHz subband to move to. So far, only two stations have qualified to operate on 87.9 MHz: 10–watt KSFH in Mountain View, California and 34–watt translator K200AA in Sun Valley, Nevada . In some countries, particularly the United States and Canada, limited low-power license-free operation

310-1159: The Cold War period. Since 1992, frequency allocations, allotment and assignments are in line with the NATO Joint Civil/Military Frequency Agreement (NJFA). However, in order to identify military radio spectrum requirements, e.g. for crisis management planning, training, electronic warfare activities, or in military operations, this system is still in use. ELF 3 Hz/100 Mm 30 Hz/10 Mm SLF 30 Hz/10 Mm 300 Hz/1 Mm ULF 300 Hz/1 Mm 3 kHz/100 km VLF 3 kHz/100 km 30 kHz/10 km LF 30 kHz/10 km 300 kHz/1 km MF 300 kHz/1 km 3 MHz/100 m HF 3 MHz/100 m 30 MHz/10 m VHF 30 MHz/10 m 300 MHz/1 m UHF 300 MHz/1 m 3 GHz/100 mm SHF 3 GHz/100 mm 30 GHz/10 mm EHF 30 GHz/10 mm 300 GHz/1 mm THF 300 GHz/1 mm 3 THz/0.1 mm This article about wireless technology

341-709: The German and Greek F-4 Phantom aircraft, and the AV-8B Harrier II Plus for the U.S. Marine Corps and the Spanish and Italian Navies. The APG-73 is a late 1980s "upgrade of the APG-65 that provides higher throughputs, greater memory capacity, improved reliability, and easier maintenance". To reduce production costs, many of the upgraded radar's modules are common with the APG-70 (F-15E Strike Eagle) radar ; its software engineers chose

SECTION 10

#1732837313363

372-735: The HF band there is only some reflection at lower frequencies from the ionosphere ( skywave propagation). They do not follow the contour of the Earth as ground waves and so are blocked by hills and mountains, although because they are weakly refracted (bent) by the atmosphere they can travel somewhat beyond the visual horizon out to about 160 km (100 miles). They can penetrate building walls and be received indoors, although in urban areas reflections from buildings cause multipath propagation , which can interfere with television reception. Atmospheric radio noise and interference ( RFI ) from electrical equipment

403-628: The JOVIAL programming language so that they could borrow and adapt existing software written for the APG-70. When fitted with a motion-sensing subsystem and stretch waveform generator and special test equipment, the APG-73 can generate high resolution ground maps and make use of 'advanced' image correlation algorithms to enhance weapon designation accuracy. Since 1992 the APG-73 has been operational in U.S. Navy and Marine Corps F/A-18C/D Hornet aircraft; early models of

434-611: The Yagi antenna is the most widely used as a high gain or "beam" antenna. For television reception, the Yagi is used, as well as the log-periodic antenna due to its wider bandwidth. Helical and turnstile antennas are used for satellite communication since they employ circular polarization . For even higher gain, multiple Yagis or helicals can be mounted together to make array antennas . Vertical collinear arrays of dipoles can be used to make high gain omnidirectional antennas , in which more of

465-597: The visual horizon out to about 160 km (100 miles). Common uses for radio waves in the VHF band are Digital Audio Broadcasting (DAB) and FM radio broadcasting, television broadcasting , two-way land mobile radio systems (emergency, business, private use and military), long range data communication up to several tens of kilometers with radio modems , amateur radio , and marine communications . Air traffic control communications and air navigation systems (e.g. VOR and ILS ) work at distances of 100 kilometres (62 miles) or more to aircraft at cruising altitude. In

496-435: The 10 VHF channels were insufficient to support the growth of television services. This was rectified by the addition of three additional frequencies-channels 0, 5A and 11. Older television sets using rotary dial tuners required adjustment to receive these new channels. Most TVs of that era were not equipped to receive these broadcasts, and so were modified at the owners' expense to be able to tune into these bands; otherwise

527-538: The 625-line colour signal), with the exception of BBC2 (which had always broadcast solely on UHF). The last British VHF TV transmitters closed down on January 3, 1985. VHF band III is now used in the UK for digital audio broadcasting , and VHF band II is used for FM radio , as it is in most of the world. Unusually, the UK has an amateur radio allocation at 4 metres , 70–70.5 MHz. Frequency assignments between US and Canadian users are closely coordinated since much of

558-453: The Americas and many other parts of the world, VHF Band I was used for the transmission of analog television . As part of the worldwide transition to digital terrestrial television most countries require broadcasters to air television in the VHF range using digital, rather than analog encoding. Radio waves in the VHF band propagate mainly by line-of-sight and ground-bounce paths; unlike in

589-549: The Canadian population is within VHF radio range of the US border. Certain discrete frequencies are reserved for radio astronomy . The general services in the VHF band are: Cable television , though not transmitted aerially, uses a spectrum of frequencies overlapping VHF. The U.S. FCC allocated television broadcasting to a channelized roster as early as 1938 with 19 channels. That changed three more times: in 1940 when Channel 19

620-473: The F/A-18, the radar is installed in a slide-out nose rack to facilitate maintenance. The APG-65 was developed in the late 1970s and has been operational since 1983. The radar includes a velocity search (to provide maximum detection range capability against nose aspect targets), range-while-search (to detect all-aspect targets), track-while-scan (which, when combined with an autonomous missile such as AIM-120 , gives

651-411: The U.S. Navy F/A-18E/F Super Hornet ; and in the air forces of Finland , Switzerland , Malaysia , Canada , and Australia . A total of 932 APG-73 systems were delivered, with the final delivery in 2006. I band (NATO) The NATO I band is the obsolete designation given to the radio frequencies from 8,000 to 10,000  MHz (equivalent to wavelengths between 3.75 and 3 cm) during

SECTION 20

#1732837313363

682-468: The VHF television bands ( Band I and Band III ) to transmit to New Zealand households. Other stations, including a variety of pay and regional free-to-air stations, were forced to broadcast in the UHF band, since the VHF band had been very overloaded with four stations sharing a very small frequency band, which was so overcrowded that one or more channels would not be available in some smaller towns. However, at

713-540: The aircraft a fire-and-forget capability), single target track, gun director and raid assessment (which enables the operator to expand the region centred on a single tracked target, permitting radar separation of closely spaced targets) operating modes. Although no longer in production, the APG-65 remains in service in F/A-18 Hornet strike fighters of the U.S. Navy and Marine Corps , and the air forces of Canada , Kuwait , and Spain . It has also been adapted to upgrade

744-455: The antenna's power is radiated in horizontal directions. Television and FM broadcasting stations use collinear arrays of specialized dipole antennas such as batwing antennas . Certain subparts of the VHF band have the same use around the world. Some national uses are detailed below. The VHF TV band in Australia was originally allocated channels 1 to 10-with channels 2, 7 and 9 assigned for

775-427: The atmosphere. VHF transmission range is a function of transmitter power, receiver sensitivity, and distance to the horizon, since VHF signals propagate under normal conditions as a near line-of-sight phenomenon. The distance to the radio horizon is slightly extended over the geometric line of sight to the horizon, as radio waves are weakly bent back toward the Earth by the atmosphere. An approximation to calculate

806-468: The end of 2013 , all television channels stopped broadcasting on the VHF bands, as New Zealand moved to digital television broadcasting, requiring all stations to either broadcast on UHF or satellite (where UHF was unavailable) utilising the Freeview service. Refer to Australasian television frequencies for more information. British television originally used VHF band I and band III . Television on VHF

837-552: The initial services in Sydney and Melbourne , and later the same channels were assigned in Brisbane , Adelaide and Perth . Other capital cities and regional areas used a combination of these and other frequencies as available. The initial commercial services in Hobart and Darwin were respectively allocated channels 6 and 8 rather than 7 or 9. By the early 1960s it became apparent that

868-408: The line-of-sight horizon distance (on Earth) is: These approximations are only valid for antennas at heights that are small compared to the radius of the Earth. They may not necessarily be accurate in mountainous areas, since the landscape may not be transparent enough for radio waves. In engineered communications systems, more complex calculations are required to assess the probable coverage area of

899-558: The owner had to buy a new TV. Several TV stations were allocated to VHF channels 3, 4 and 5, which were within the FM radio bands although not yet used for that purpose. A couple of notable examples were NBN-3 Newcastle , WIN-4 Wollongong and ABC Newcastle on channel 5. While some Channel 5 stations were moved to 5A in the 1970s and 80s, beginning in the 1990s, the Australian Broadcasting Authority began

930-406: Was deleted and several channels changed frequencies, then in 1946 with television going from 18 channels to 13 channels, again with different frequencies, and finally in 1948 with the removal of Channel 1 (analog channels 2–13 remain as they were, even on cable television ). Channels 14–19 later appeared on the UHF band, while channel 1 remains unused. 87.5–87.9 MHz

961-399: Was in black and white with 405-line format (although there were experiments with all three colour systems- NTSC , PAL , and SECAM -adapted for the 405-line system in the late 1950s and early 1960s). British colour television was broadcast on UHF (channels 21–69), beginning in the late 1960s. From then on, TV was broadcast on both VHF and UHF (VHF being a monochromatic downconversion from

AN/APG-65 radar family - Misplaced Pages Continue

#362637