Misplaced Pages

List of radars

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#332667

86-645: A radar is an electronic system used to determine and detect the range of target and maps various types of targets. This is a list of radars. Early S-band RADAR Designations From February 1943 the US used a universal system to identify radar variants, consisting of three letters and a number, respectively designating platform, type of equipment, function, and version. This system was continued after WWII with multiservice designations being prefixed by 'AN/' for Army-Navy. BuShips 1943 classifications Multi-service classifications Multi-service classification codes according to

172-466: A fractal surface, such as rocks or soil, and are used by navigation radars. A radar beam follows a linear path in vacuum but follows a somewhat curved path in atmosphere due to variation in the refractive index of air, which is called the radar horizon . Even when the beam is emitted parallel to the ground, the beam rises above the ground as the curvature of the Earth sinks below the horizon. Furthermore,

258-572: A spark gap , whereby a spark would be seen upon detection of EM waves. He placed the apparatus in a darkened box to see the spark better. He observed that the maximum spark length was reduced when in the box. A glass panel placed between the source of EM waves and the receiver absorbed UV that assisted the electrons in jumping across the gap. When removed, the spark length would increase. He observed no decrease in spark length when he substituted quartz for glass, as quartz does not absorb UV radiation. Hertz concluded his months of investigation and reported

344-404: A transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna , a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the objects. Radio waves (pulsed or continuous) from the transmitter reflect off the objects and return to the receiver, giving information about

430-424: A transmitter that emits radio waves known as radar signals in predetermined directions. When these signals contact an object they are usually reflected or scattered in many directions, although some of them will be absorbed and penetrate into the target. Radar signals are reflected especially well by materials of considerable electrical conductivity —such as most metals, seawater , and wet ground. This makes

516-459: A Heinrich Hertz memorial medal was cast. The IEEE Heinrich Hertz Medal , established in 1987, is " for outstanding achievements in Hertzian waves [...] presented annually to an individual for achievements which are theoretical or experimental in nature ". The Submillimeter Radio Telescope at Mt. Graham, Arizona, constructed in 1992 is named after him. A crater that lies on the far side of

602-585: A bout of severe migraines ) and underwent operations to treat the illness. He died due to complications after surgery which had attempted to cure his condition, some consider his ailment to have been caused by a malignant bone condition. He died at the age of 36 in Bonn , Germany, in 1894, and was buried in the Ohlsdorf Cemetery in Hamburg. Hertz's wife, Elisabeth Hertz ( née Doll; 1864–1941), did not remarry. He

688-840: A common noun, losing all capitalization . The modern uses of radar are highly diverse, including air and terrestrial traffic control, radar astronomy , air-defense systems , anti-missile systems , marine radars to locate landmarks and other ships, aircraft anti-collision systems, ocean surveillance systems, outer space surveillance and rendezvous systems, meteorological precipitation monitoring, radar remote sensing , altimetry and flight control systems , guided missile target locating systems, self-driving cars , and ground-penetrating radar for geological observations. Modern high tech radar systems use digital signal processing and machine learning and are capable of extracting useful information from very high noise levels. Other systems which are similar to radar make use of other parts of

774-482: A different dielectric constant or diamagnetic constant from the first, the waves will reflect or scatter from the boundary between the materials. This means that a solid object in air or in a vacuum , or a significant change in atomic density between the object and what is surrounding it, will usually scatter radar (radio) waves from its surface. This is particularly true for electrically conductive materials such as metal and carbon fibre, making radar well-suited to

860-530: A form of electromagnetic radiation obeying the Maxwell equations. Hertz did not realize the practical importance of his radio wave experiments. He stated that, It's of no use whatsoever ... this is just an experiment that proves Maestro Maxwell was right—we just have these mysterious electromagnetic waves that we cannot see with the naked eye. But they are there. Asked about the applications of his discoveries, Hertz replied, Nothing, I guess Hertz's proof of

946-535: A full radar system, that he called a telemobiloscope . It operated on a 50 cm wavelength and the pulsed radar signal was created via a spark-gap. His system already used the classic antenna setup of horn antenna with parabolic reflector and was presented to German military officials in practical tests in Cologne and Rotterdam harbour but was rejected. In 1915, Robert Watson-Watt used radio technology to provide advance warning of thunderstorms to airmen and during

SECTION 10

#1732848045333

1032-448: A glass sphere upon a lens as the basis of assuming that the pressure exerted by the sphere follows an elliptical distribution . He used the formation of Newton's rings again while validating his theory with experiments in calculating the displacement which the sphere has into the lens. Kenneth L. Johnson , K. Kendall and A. D. Roberts (JKR) used this theory as a basis while calculating the theoretical displacement or indentation depth in

1118-458: A graphical means of determining the properties of moist air when subjected to adiabatic changes. In the introduction of his 1894 book Principles of Mechanics , Hertz discusses the different "pictures" used to represent physics in his time including the picture of Newtonian mechanics (based on mass and forces), a second picture (based on energy conservation and Hamilton's principle ) and his own picture (based uniquely on space, time, mass and

1204-729: A physics instructor at the Imperial Russian Navy school in Kronstadt , developed an apparatus using a coherer tube for detecting distant lightning strikes. The next year, he added a spark-gap transmitter . In 1897, while testing this equipment for communicating between two ships in the Baltic Sea , he took note of an interference beat caused by the passage of a third vessel. In his report, Popov wrote that this phenomenon might be used for detecting objects, but he did nothing more with this observation. The German inventor Christian Hülsmeyer

1290-496: A position of Professor of Physics and Director of the Physics Institute in Bonn on 3 April 1889, a position he held until his death. During this time he worked on theoretical mechanics with his work published in the book Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt ( The Principles of Mechanics Presented in a New Form ), published posthumously in 1894. In 1892, Hertz was diagnosed with an infection (after

1376-542: A post as a lecturer in theoretical physics at the University of Kiel . In 1885, Hertz became a full professor at the University of Karlsruhe . In 1886, Hertz married Elisabeth Doll, the daughter of Max Doll, a lecturer in geometry at Karlsruhe. They had two daughters: Johanna, born on 20 October 1887 and Mathilde , born on 14 January 1891, who went on to become a notable biologist. During this time Hertz conducted his landmark research into electromagnetic waves. Hertz took

1462-495: A proposal for further intensive research on radio-echo signals from moving targets to take place at NRL, where Taylor and Young were based at the time. Similarly, in the UK, L. S. Alder took out a secret provisional patent for Naval radar in 1928. W.A.S. Butement and P. E. Pollard developed a breadboard test unit, operating at 50 cm (600 MHz) and using pulsed modulation which gave successful laboratory results. In January 1931,

1548-698: A pulsed system, and the first such elementary apparatus was demonstrated in December 1934 by the American Robert M. Page , working at the Naval Research Laboratory . The following year, the United States Army successfully tested a primitive surface-to-surface radar to aim coastal battery searchlights at night. This design was followed by a pulsed system demonstrated in May 1935 by Rudolf Kühnhold and

1634-679: A repeated event occurs per second. It was adopted by the CGPM (Conférence générale des poids et mesures) in 1960, officially replacing the previous name, " cycles per second " (cps). In 1928 the Heinrich-Hertz Institute for Oscillation Research was founded in Berlin. Today known as the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI . In 1969, in East Germany ,

1720-442: A rescue. For similar reasons, objects intended to avoid detection will not have inside corners or surfaces and edges perpendicular to likely detection directions, which leads to "odd" looking stealth aircraft . These precautions do not totally eliminate reflection because of diffraction , especially at longer wavelengths. Half wavelength long wires or strips of conducting material, such as chaff , are very reflective but do not direct

1806-593: A resonant single- loop antenna with a micrometer spark gap between the ends. This experiment produced and received what are now called radio waves in the very high frequency range. Between 1886 and 1889 Hertz conducted a series of experiments that would prove the effects he was observing were results of Maxwell's predicted electromagnetic waves. Starting in November 1887 with his paper "On Electromagnetic Effects Produced by Electrical Disturbances in Insulators", Hertz sent

SECTION 20

#1732848045333

1892-481: A series of papers to Helmholtz at the Berlin Academy, including papers in 1888 that showed transverse free space electromagnetic waves traveling at a finite speed over a distance. In the apparatus Hertz used, the electric and magnetic fields radiated away from the wires as transverse waves . Hertz had positioned the oscillator about 12 meters from a zinc reflecting plate to produce standing waves . Each wave

1978-662: A system might do, Wilkins recalled the earlier report about aircraft causing radio interference. This revelation led to the Daventry Experiment of 26 February 1935, using a powerful BBC shortwave transmitter as the source and their GPO receiver setup in a field while a bomber flew around the site. When the plane was clearly detected, Hugh Dowding , the Air Member for Supply and Research , was very impressed with their system's potential and funds were immediately provided for further operational development. Watson-Watt's team patented

2064-514: A wide region and direct fighter aircraft towards targets. Marine radars are used to measure the bearing and distance of ships to prevent collision with other ships, to navigate, and to fix their position at sea when within range of shore or other fixed references such as islands, buoys, and lightships. In port or in harbour, vessel traffic service radar systems are used to monitor and regulate ship movements in busy waters. Meteorologists use radar to monitor precipitation and wind. It has become

2150-855: A writeup on the apparatus was entered in the Inventions Book maintained by the Royal Engineers. This is the first official record in Great Britain of the technology that was used in coastal defence and was incorporated into Chain Home as Chain Home (low) . Before the Second World War , researchers in the United Kingdom, France , Germany , Italy , Japan , the Netherlands , the Soviet Union , and

2236-452: Is a simplification for transmission in a vacuum without interference. The propagation factor accounts for the effects of multipath and shadowing and depends on the details of the environment. In a real-world situation, pathloss effects are also considered. Frequency shift is caused by motion that changes the number of wavelengths between the reflector and the radar. This can degrade or enhance radar performance depending upon how it affects

2322-451: Is as follows, where F D {\displaystyle F_{D}} is Doppler frequency, F T {\displaystyle F_{T}} is transmit frequency, V R {\displaystyle V_{R}} is radial velocity, and C {\displaystyle C} is the speed of light: Passive radar is applicable to electronic countermeasures and radio astronomy as follows: Only

2408-560: Is intended. Radar relies on its own transmissions rather than light from the Sun or the Moon, or from electromagnetic waves emitted by the target objects themselves, such as infrared radiation (heat). This process of directing artificial radio waves towards objects is called illumination , although radio waves are invisible to the human eye as well as optical cameras. If electromagnetic waves travelling through one material meet another material, having

2494-417: Is the range. This yields: This shows that the received power declines as the fourth power of the range, which means that the received power from distant targets is relatively very small. Additional filtering and pulse integration modifies the radar equation slightly for pulse-Doppler radar performance , which can be used to increase detection range and reduce transmit power. The equation above with F = 1

2580-542: The Blue and Brown Books . Because Hertz's family converted from Judaism to Lutheranism two decades before his birth, his legacy ran afoul of the Nazi government in the 1930s, a regime that classified people by "race" instead of religious affiliation. Hertz's name was removed from streets and institutions and there was even a movement to rename the frequency unit named in his honor (hertz) after Hermann von Helmholtz instead, keeping

2666-591: The Gelehrtenschule des Johanneums in Hamburg, Hertz showed an aptitude for sciences as well as languages, learning Arabic . He studied sciences and engineering in the German cities of Dresden , Munich and Berlin , where he studied under Gustav R. Kirchhoff and Hermann von Helmholtz . In 1880, Hertz obtained his PhD from the University of Berlin , and for the next three years remained for post-doctoral study under Helmholtz, serving as his assistant. In 1883, Hertz took

List of radars - Misplaced Pages Continue

2752-582: The Hertz principle ), comparing them in terms of 'permissibility', 'correctness' and 'appropriateness'. Hertz wanted to remove "empty assumptions" and argue against the Newtonian concept of force and against action at a distance . Philosopher Ludwig Wittgenstein inspired by Hertz's work, extended his picture theory into a picture theory of language in his 1921 Tractatus Logico-Philosophicus which influenced logical positivism . Wittgenstein also quotes him in

2838-568: The Joint Electronics Type Designation System . Specific radar systems Radar Radar is a system that uses radio waves to determine the distance ( ranging ), direction ( azimuth and elevation angles ), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft , ships , spacecraft , guided missiles , motor vehicles , map weather formations , and terrain . A radar system consists of

2924-623: The Nyquist frequency , since the returned frequency otherwise cannot be distinguished from shifting of a harmonic frequency above or below, thus requiring: Or when substituting with F D {\displaystyle F_{D}} : As an example, a Doppler weather radar with a pulse rate of 2 kHz and transmit frequency of 1 GHz can reliably measure weather speed up to at most 150 m/s (340 mph), thus cannot reliably determine radial velocity of aircraft moving 1,000 m/s (2,200 mph). In all electromagnetic radiation ,

3010-714: The RAF's Pathfinder . The information provided by radar includes the bearing and range (and therefore position) of the object from the radar scanner. It is thus used in many different fields where the need for such positioning is crucial. The first use of radar was for military purposes: to locate air, ground and sea targets. This evolved in the civilian field into applications for aircraft, ships, and automobiles. In aviation , aircraft can be equipped with radar devices that warn of aircraft or other obstacles in or approaching their path, display weather information, and give accurate altitude readings. The first commercial device fitted to aircraft

3096-440: The electromagnetic spectrum . One example is lidar , which uses predominantly infrared light from lasers rather than radio waves. With the emergence of driverless vehicles, radar is expected to assist the automated platform to monitor its environment, thus preventing unwanted incidents. As early as 1886, German physicist Heinrich Hertz showed that radio waves could be reflected from solid objects. In 1895, Alexander Popov ,

3182-543: The electromagnetic waves predicted by James Clerk Maxwell 's equations of electromagnetism . The SI unit of frequency , the hertz (Hz), is named after him. Heinrich Rudolf Hertz was born in 1857 in Hamburg , then a sovereign state of the German Confederation , into a prosperous and cultured Hanseatic family. His father was Gustav Ferdinand Hertz . His mother was Anna Elisabeth Pfefferkorn. While studying at

3268-405: The photoelectric effect (which was later explained by Albert Einstein ) when he noticed that a charged object loses its charge more readily when illuminated by ultraviolet radiation (UV). In 1887, he made observations of the photoelectric effect and of the production and reception of electromagnetic (EM) waves, published in the journal Annalen der Physik . His receiver consisted of a coil with

3354-407: The reflective surfaces . A corner reflector consists of three flat surfaces meeting like the inside corner of a cube. The structure will reflect waves entering its opening directly back to the source. They are commonly used as radar reflectors to make otherwise difficult-to-detect objects easier to detect. Corner reflectors on boats, for example, make them more detectable to avoid collision or during

3440-690: The "Berlin Prize" problem that year at the Prussian Academy of Sciences for anyone who could experimentally prove an electromagnetic effect in the polarization and depolarization of insulators , something predicted by Maxwell's theory. Helmholtz was sure Hertz was the most likely candidate to win it. Not seeing any way to build an apparatus to experimentally test this, Hertz thought it was too difficult, and worked on electromagnetic induction instead. Hertz did produce an analysis of Maxwell's equations during his time at Kiel, showing they did have more validity than

3526-527: The "new boy" Arnold Frederic Wilkins to conduct an extensive review of available shortwave units. Wilkins would select a General Post Office model after noting its manual's description of a "fading" effect (the common term for interference at the time) when aircraft flew overhead. By placing a transmitter and receiver on opposite sides of the Potomac River in 1922, U.S. Navy researchers A. Hoyt Taylor and Leo C. Young discovered that ships passing through

List of radars - Misplaced Pages Continue

3612-413: The 1920s went on to lead the U.K. research establishment to make many advances using radio techniques, including the probing of the ionosphere and the detection of lightning at long distances. Through his lightning experiments, Watson-Watt became an expert on the use of radio direction finding before turning his inquiry to shortwave transmission. Requiring a suitable receiver for such studies, he told

3698-517: The Nobel Prize in physics for their "contributions to the development of wireless telegraphy". Today radio is an essential technology in global telecommunication networks, and the communications medium used by modern wireless devices. In 1883, he tried to prove that the cathode rays are electrically neutral and got what he interpreted as a confident absence of deflection in electrostatic field. However, as J. J. Thomson explained in 1897, Hertz placed

3784-770: The United States, independently and in great secrecy, developed technologies that led to the modern version of radar. Australia, Canada, New Zealand, and South Africa followed prewar Great Britain's radar development, Hungary and Sweden generated its radar technology during the war. In France in 1934, following systematic studies on the split-anode magnetron , the research branch of the Compagnie générale de la télégraphie sans fil (CSF) headed by Maurice Ponte with Henri Gutton, Sylvain Berline and M. Hugon, began developing an obstacle-locating radio apparatus, aspects of which were installed on

3870-402: The actual prize had expired uncollected in 1882). He used a dipole antenna consisting of two collinear one-meter wires with a spark gap between their inner ends, and zinc spheres attached to the outer ends for capacitance , as a radiator. The antenna was excited by pulses of high voltage of about 30 kilovolts applied between the two sides from a Ruhmkorff coil . He received the waves with

3956-533: The arrest of Oshchepkov and his subsequent gulag sentence. In total, only 607 Redut stations were produced during the war. The first Russian airborne radar, Gneiss-2 , entered into service in June 1943 on Pe-2 dive bombers. More than 230 Gneiss-2 stations were produced by the end of 1944. The French and Soviet systems, however, featured continuous-wave operation that did not provide the full performance ultimately synonymous with modern radar systems. Full radar evolved as

4042-531: The assumption of zero adhesion. This DMT theory proved to be premature and needed several revisions before it came to be accepted as another material contact theory in addition to the JKR theory. Both the DMT and the JKR theories form the basis of contact mechanics upon which all transition contact models are based and used in material parameter prediction in nanoindentation and atomic force microscopy . These models are central to

4128-475: The beam path caused the received signal to fade in and out. Taylor submitted a report, suggesting that this phenomenon might be used to detect the presence of ships in low visibility, but the Navy did not immediately continue the work. Eight years later, Lawrence A. Hyland at the Naval Research Laboratory (NRL) observed similar fading effects from passing aircraft; this revelation led to a patent application as well as

4214-488: The classical theory of elasticity and continuum mechanics . The most significant flaw of his theory was the neglect of any nature of adhesion between the two solids, which proves to be important as the materials composing the solids start to assume high elasticity. It was natural to neglect adhesion at the time, however, as there were no experimental methods of testing for it. To develop his theory Hertz used his observation of elliptical Newton's rings formed upon placing

4300-412: The deflecting electrodes in a highly-conductive area of the tube, resulting in a strong screening effect close to their surface. Nine years later Hertz began experimenting and demonstrated that cathode rays could penetrate very thin metal foil (such as aluminium). Philipp Lenard , a student of Heinrich Hertz, further researched this " ray effect ". He developed a version of the cathode tube and studied

4386-408: The detection of aircraft and ships. Radar absorbing material , containing resistive and sometimes magnetic substances, is used on military vehicles to reduce radar reflection . This is the radio equivalent of painting something a dark colour so that it cannot be seen by the eye at night. Radar waves scatter in a variety of ways depending on the size (wavelength) of the radio wave and the shape of

SECTION 50

#1732848045333

4472-471: The detection process. As an example, moving target indication can interact with Doppler to produce signal cancellation at certain radial velocities, which degrades performance. Sea-based radar systems, semi-active radar homing , active radar homing , weather radar , military aircraft, and radar astronomy rely on the Doppler effect to enhance performance. This produces information about target velocity during

4558-411: The detection process. This also allows small objects to be detected in an environment containing much larger nearby slow moving objects. Doppler shift depends upon whether the radar configuration is active or passive. Active radar transmits a signal that is reflected back to the receiver. Passive radar depends upon the object sending a signal to the receiver. The Doppler frequency shift for active radar

4644-606: The device in patent GB593017. Development of radar greatly expanded on 1 September 1936, when Watson-Watt became superintendent of a new establishment under the British Air Ministry , Bawdsey Research Station located in Bawdsey Manor , near Felixstowe, Suffolk. Work there resulted in the design and installation of aircraft detection and tracking stations called " Chain Home " along the East and South coasts of England in time for

4730-538: The electric field is perpendicular to the direction of propagation, and the electric field direction is the polarization of the wave. For a transmitted radar signal, the polarization can be controlled to yield different effects. Radars use horizontal, vertical, linear, and circular polarization to detect different types of reflections. For example, circular polarization is used to minimize the interference caused by rain. Linear polarization returns usually indicate metal surfaces. Random polarization returns usually indicate

4816-473: The entire area in front of it, and then used one of Watson-Watt's own radio direction finders to determine the direction of the returned echoes. This fact meant CH transmitters had to be much more powerful and have better antennas than competing systems but allowed its rapid introduction using existing technologies. A key development was the cavity magnetron in the UK, which allowed the creation of relatively small systems with sub-meter resolution. Britain shared

4902-507: The existence of airborne electromagnetic waves led to an explosion of experimentation with this new form of electromagnetic radiation, which was called "Hertzian waves" until around 1910 when the term " radio waves " became current. Within 10 years researchers such as Oliver Lodge , Ferdinand Braun , and Guglielmo Marconi employed radio waves in the first wireless telegraphy radio communication systems, leading to radio broadcasting , and later television. In 1909, Braun and Marconi received

4988-414: The field of tribology and he was named as one of the 23 "Men of Tribology" by Duncan Dowson . Despite preceding his great work on electromagnetism (which he himself considered with his characteristic soberness to be trivial ), Hertz's research on contact mechanics has facilitated the age of nanotechnology . Hertz also described the " Hertzian cone ", a type of fracture mode in brittle solids caused by

5074-461: The firm GEMA  [ de ] in Germany and then another in June 1935 by an Air Ministry team led by Robert Watson-Watt in Great Britain. In 1935, Watson-Watt was asked to judge recent reports of a German radio-based death ray and turned the request over to Wilkins. Wilkins returned a set of calculations demonstrating the system was basically impossible. When Watson-Watt then asked what such

5160-623: The objects' locations and speeds. Radar was developed secretly for military use by several countries in the period before and during World War II . A key development was the cavity magnetron in the United Kingdom , which allowed the creation of relatively small systems with sub-meter resolution. The term RADAR was coined in 1940 by the United States Navy as an acronym for "radio detection and ranging". The term radar has since entered English and other languages as an anacronym ,

5246-494: The ocean liner Normandie in 1935. During the same period, Soviet military engineer P.K. Oshchepkov , in collaboration with the Leningrad Electrotechnical Institute , produced an experimental apparatus, RAPID, capable of detecting an aircraft within 3 km of a receiver. The Soviets produced their first mass production radars RUS-1 and RUS-2 Redut in 1939 but further development was slowed following

SECTION 60

#1732848045333

5332-520: The outbreak of World War II in 1939. This system provided the vital advance information that helped the Royal Air Force win the Battle of Britain ; without it, significant numbers of fighter aircraft, which Great Britain did not have available, would always have needed to be in the air to respond quickly. The radar formed part of the " Dowding system " for collecting reports of enemy aircraft and coordinating

5418-439: The penetration by X-rays of various materials. However, Lenard did not realize that he was producing X-rays. Hermann von Helmholtz formulated mathematical equations for X-rays. He postulated a dispersion theory before Röntgen made his discovery and announcement. It was formed on the basis of the electromagnetic theory of light ( Wiedmann's Annalen , Vol. XLVIII). However, he did not work with actual X-rays. Hertz helped establish

5504-402: The presence of adhesion in 1971. Hertz's theory is recovered from their formulation if the adhesion of the materials is assumed to be zero. Similar to this theory, however using different assumptions, B. V. Derjaguin , V. M. Muller and Y. P. Toporov published another theory in 1975, which came to be known as the DMT theory in the research community, which also recovered Hertz's formulations under

5590-706: The primary tool for short-term weather forecasting and watching for severe weather such as thunderstorms , tornadoes , winter storms , precipitation types, etc. Geologists use specialized ground-penetrating radars to map the composition of Earth's crust . Police forces use radar guns to monitor vehicle speeds on the roads. Automotive radars are used for adaptive cruise control and emergency breaking on vehicles by ignoring stationary roadside objects that could cause incorrect brake application and instead measuring moving objects to prevent collision with other vehicles. As part of Intelligent Transport Systems , fixed-position stopped vehicle detection (SVD) radars are mounted on

5676-432: The radial component of the velocity is relevant. When the reflector is moving at right angle to the radar beam, it has no relative velocity. Objects moving parallel to the radar beam produce the maximum Doppler frequency shift. When the transmit frequency ( F T {\displaystyle F_{T}} ) is pulsed, using a pulse repeat frequency of F R {\displaystyle F_{R}} ,

5762-414: The response. Given all required funding and development support, the team produced working radar systems in 1935 and began deployment. By 1936, the first five Chain Home (CH) systems were operational and by 1940 stretched across the entire UK including Northern Ireland. Even by standards of the era, CH was crude; instead of broadcasting and receiving from an aimed antenna, CH broadcast a signal floodlighting

5848-410: The resulting frequency spectrum will contain harmonic frequencies above and below F T {\displaystyle F_{T}} with a distance of F R {\displaystyle F_{R}} . As a result, the Doppler measurement is only non-ambiguous if the Doppler frequency shift is less than half of F R {\displaystyle F_{R}} , called

5934-729: The results obtained. He did not further pursue investigation of this effect, nor did he make any attempt at explaining how the observed phenomenon was brought about. In 1881 and 1882, Hertz published two articles on what was to become known as the field of contact mechanics , which proved to be an important basis for later theories in the field. Joseph Valentin Boussinesq published some critically important observations on Hertz's work, nevertheless establishing this work on contact mechanics to be of immense importance. His work basically summarises how two axi-symmetric objects placed in contact will behave under loading , he obtained results based upon

6020-427: The roadside to detect stranded vehicles, obstructions and debris by inverting the automotive radar approach and ignoring moving objects. Smaller radar systems are used to detect human movement . Examples are breathing pattern detection for sleep monitoring and hand and finger gesture detection for computer interaction. Automatic door opening, light activation and intruder sensing are also common. A radar system has

6106-407: The scattered energy back toward the source. The extent to which an object reflects or scatters radio waves is called its radar cross-section . The power P r returning to the receiving antenna is given by the equation: where In the common case where the transmitter and the receiver are at the same location, R t = R r and the term R t ² R r ² can be replaced by R , where R

6192-404: The signal is attenuated by the medium the beam crosses, and the beam disperses. The maximum range of conventional radar can be limited by a number of factors: Heinrich Hertz Heinrich Rudolf Hertz ( / h ɜːr t s / HURTS ; German: [ˈhaɪnʁɪç hɛʁts] ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of

6278-625: The symbol (Hz) unchanged. His family was also persecuted for their non-Aryan status. Hertz's youngest daughter, Mathilde, lost a lectureship at Berlin University after the Nazis came to power and within a few years she, her sister, and their mother left Germany and settled in England. Heinrich Hertz's nephew, Gustav Ludwig Hertz was a Nobel Prize winner, and Gustav's son Carl Helmut Hertz invented medical ultrasonography . His daughter Mathilde Carmen Hertz

6364-491: The target. If the wavelength is much shorter than the target's size, the wave will bounce off in a way similar to the way light is reflected by a mirror . If the wavelength is much longer than the size of the target, the target may not be visible because of poor reflection. Low-frequency radar technology is dependent on resonances for detection, but not identification, of targets. This is described by Rayleigh scattering , an effect that creates Earth's blue sky and red sunsets. When

6450-569: The technology with the U.S. during the 1940 Tizard Mission . In April 1940, Popular Science showed an example of a radar unit using the Watson-Watt patent in an article on air defence. Also, in late 1941 Popular Mechanics had an article in which a U.S. scientist speculated about the British early warning system on the English east coast and came close to what it was and how it worked. Watson-Watt

6536-445: The then prevalent " action at a distance " theories. In the autumn of 1886, after Hertz received his professorship at Karlsruhe, he was experimenting with a pair of Riess spirals when he noticed that discharging a Leyden jar into one of these coils produced a spark in the other coil. With an idea on how to build an apparatus, Hertz now had a way to proceed with the "Berlin Prize" problem of 1879 on proving Maxwell's theory (although

6622-531: The transmission of stress waves. Hertz always had a deep interest in meteorology , probably derived from his contacts with Wilhelm von Bezold (who was his professor in a laboratory course at the Munich Polytechnic in the summer of 1878). As an assistant to Helmholtz in Berlin , he contributed a few minor articles in the field, including research on the evaporation of liquids, a new kind of hygrometer , and

6708-879: The transmitter. The reflected radar signals captured by the receiving antenna are usually very weak. They can be strengthened by electronic amplifiers . More sophisticated methods of signal processing are also used in order to recover useful radar signals. The weak absorption of radio waves by the medium through which they pass is what enables radar sets to detect objects at relatively long ranges—ranges at which other electromagnetic wavelengths, such as visible light , infrared light , and ultraviolet light , are too strongly attenuated. Weather phenomena, such as fog, clouds, rain, falling snow, and sleet, that block visible light are usually transparent to radio waves. Certain radio frequencies that are absorbed or scattered by water vapour, raindrops, or atmospheric gases (especially oxygen) are avoided when designing radars, except when their detection

6794-487: The two length scales are comparable, there may be resonances . Early radars used very long wavelengths that were larger than the targets and thus received a vague signal, whereas many modern systems use shorter wavelengths (a few centimetres or less) that can image objects as small as a loaf of bread. Short radio waves reflect from curves and corners in a way similar to glint from a rounded piece of glass. The most reflective targets for short wavelengths have 90° angles between

6880-467: The use of radar altimeters possible in certain cases. The radar signals that are reflected back towards the radar receiver are the desirable ones that make radar detection work. If the object is moving either toward or away from the transmitter, there will be a slight change in the frequency of the radio waves due to the Doppler effect . Radar receivers are usually, but not always, in the same location as

6966-608: Was a 1938 Bell Lab unit on some United Air Lines aircraft. Aircraft can land in fog at airports equipped with radar-assisted ground-controlled approach systems in which the plane's position is observed on precision approach radar screens by operators who thereby give radio landing instructions to the pilot, maintaining the aircraft on a defined approach path to the runway. Military fighter aircraft are usually fitted with air-to-air targeting radars, to detect and target enemy aircraft. In addition, larger specialized military aircraft carry powerful airborne radars to observe air traffic over

7052-485: Was a well-known biologist and comparative psychologist. Hertz's grandnephew Hermann Gerhard Hertz, professor at the University of Karlsruhe , was a pioneer of NMR-spectroscopy and in 1995 published Hertz's laboratory notes. The SI unit hertz (Hz) was established in his honor by the International Electrotechnical Commission in 1930 for frequency , an expression of the number of times that

7138-413: Was about 4 meters long. Using the ring detector, he recorded how the wave's magnitude and component direction varied. Hertz measured Maxwell's waves and demonstrated that the velocity of these waves was equal to the velocity of light. The electric field intensity , polarization and reflection of the waves were also measured by Hertz. These experiments established that light and these waves were both

7224-748: Was sent to the U.S. in 1941 to advise on air defense after Japan's attack on Pearl Harbor . Alfred Lee Loomis organized the secret MIT Radiation Laboratory at Massachusetts Institute of Technology , Cambridge, Massachusetts which developed microwave radar technology in the years 1941–45. Later, in 1943, Page greatly improved radar with the monopulse technique that was used for many years in most radar applications. The war precipitated research to find better resolution, more portability, and more features for radar, including small, lightweight sets to equip night fighters ( aircraft interception radar ) and maritime patrol aircraft ( air-to-surface-vessel radar ), and complementary navigation systems like Oboe used by

7310-778: Was survived by his daughters, Johanna (1887–1967) and Mathilde (1891–1975). Neither ever married or had children, hence Hertz has no living descendants. In 1864 Scottish mathematical physicist James Clerk Maxwell proposed a comprehensive theory of electromagnetism, now called Maxwell's equations . Maxwell's theory predicted that coupled electric and magnetic fields could travel through space as an " electromagnetic wave ". Maxwell proposed that light consisted of electromagnetic waves of short wavelength, but no one had been able to prove this, or generate or detect electromagnetic waves of other wavelengths. During Hertz's studies in 1879 Helmholtz suggested that Hertz's doctoral dissertation be on testing Maxwell's theory. Helmholtz had also proposed

7396-459: Was the first to use radio waves to detect "the presence of distant metallic objects". In 1904, he demonstrated the feasibility of detecting a ship in dense fog, but not its distance from the transmitter. He obtained a patent for his detection device in April 1904 and later a patent for a related amendment for estimating the distance to the ship. He also obtained a British patent on 23 September 1904 for

#332667