Misplaced Pages

AN/ALQ-218

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The AN/ALQ-218 is an American airborne electronic warfare radar warning receiver (RWR) system, found on Grumman/Northrop Grumman EA-6B Prowler and Boeing EA-18G Growler aircraft.

#444555

53-454: The AN/ALQ-218 is an airborne passive Radar warning receiver / electronic warfare support measures / electronic signals intelligence (RWR/ESM/ELINT) sensor system designed for airborne situational awareness and signal intelligence gathering. The AN/ALQ-218 detects, identifies, locates and analyzes sources of radio frequency emission. The current version AN/ALQ-218(V)2 is manufactured by Northrop Grumman . The Next Generation Jammer Mid-Band

106-404: A combustion chamber , and accelerate the exhaust rearwards to provide thrust. Different jet engine configurations include the turbojet and turbofan , sometimes with the addition of an afterburner . Those with no rotating turbomachinery include the pulsejet and ramjet . These mechanically simple engines produce no thrust when stationary, so the aircraft must be launched to flying speed using

159-433: A lifting gas such as helium , hydrogen or hot air , which is less dense than the surrounding air. When the weight of the lifting gas is added to the weight of the aircraft itself, it is same or less than the mass of the air that the craft displaces. Small hot-air balloons, called sky lanterns , were first invented in ancient China prior to the 3rd century BC and used primarily in cultural celebrations, and were only

212-599: A Countermeasure Dispensing System (CMDS), which can eject countermeasures such as chaff , to aid in avoidance. Aircraft An aircraft ( pl. : aircraft) is a vehicle that is able to fly by gaining support from the air . It counters the force of gravity by using either static lift or the dynamic lift of an airfoil , or, in a few cases, direct downward thrust from its engines. Common examples of aircraft include airplanes , helicopters , airships (including blimps ), gliders , paramotors , and hot air balloons . The human activity that surrounds aircraft

265-557: A catapult, like the V-1 flying bomb , or a rocket, for example. Other engine types include the motorjet and the dual-cycle Pratt & Whitney J58 . Compared to engines using propellers, jet engines can provide much higher thrust, higher speeds and, above about 40,000 ft (12,000 m), greater efficiency. They are also much more fuel-efficient than rockets . As a consequence nearly all large, high-speed or high-altitude aircraft use jet engines. Some rotorcraft, such as helicopters , have

318-617: A greater wingspan (94m/260 ft) than any current aircraft and a tail height equal to the tallest (Airbus A380-800 at 24.1m/78 ft) — flew only one short hop in the late 1940s and never flew out of ground effect . The largest civilian airplanes, apart from the above-noted An-225 and An-124, are the Airbus Beluga cargo transport derivative of the Airbus A300 jet airliner, the Boeing Dreamlifter cargo transport derivative of

371-670: A marginal case. The forerunner of the fixed-wing aircraft is the kite . Whereas a fixed-wing aircraft relies on its forward speed to create airflow over the wings, a kite is tethered to the ground and relies on the wind blowing over its wings to provide lift. Kites were the first kind of aircraft to fly and were invented in China around 500 BC. Much aerodynamic research was done with kites before test aircraft, wind tunnels , and computer modelling programs became available. The first heavier-than-air craft capable of controlled free-flight were gliders . A glider designed by George Cayley carried out

424-772: A maximum loaded weight of 550–700 t (1,210,000–1,540,000 lb), it was also the heaviest aircraft built to date. It could cruise at 500 mph (800 km/h; 430 kn). The aircraft was destroyed during the Russo-Ukrainian War . The largest military airplanes are the Ukrainian Antonov An-124 Ruslan (world's second-largest airplane, also used as a civilian transport), and American Lockheed C-5 Galaxy transport, weighing, loaded, over 380 t (840,000 lb). The 8-engine, piston/propeller Hughes H-4 Hercules "Spruce Goose" — an American World War II wooden flying boat transport with

477-560: A payload of up to 22,050 lb (10,000 kg). The largest aircraft by weight and largest regular fixed-wing aircraft ever built, as of 2016 , was the Antonov An-225 Mriya . That Soviet-built ( Ukrainian SSR ) six-engine transport of the 1980s was 84 m (276 ft) long, with an 88 m (289 ft) wingspan. It holds the world payload record, after transporting 428,834 lb (194,516 kg) of goods, and has flown 100 t (220,000 lb) loads commercially. With

530-583: A powered "tug" aircraft. For a glider to maintain its forward air speed and lift, it must descend in relation to the air (but not necessarily in relation to the ground). Many gliders can "soar", i.e. , gain height from updrafts such as thermal currents. The first practical, controllable example was designed and built by the British scientist and pioneer George Cayley , whom many recognise as the first aeronautical engineer. Common examples of gliders are sailplanes , hang gliders and paragliders . Balloons drift with

583-491: A powered rotary wing or rotor , where the rotor disc can be angled slightly forward so that a proportion of its lift is directed forwards. The rotor may, like a propeller, be powered by a variety of methods such as a piston engine or turbine. Experiments have also used jet nozzles at the rotor blade tips . Aircraft are designed according to many factors such as customer and manufacturer demand, safety protocols and physical and economic constraints. For many types of aircraft

SECTION 10

#1732844859445

636-416: A radar straight ahead displayed at the top of the circle, directly behind at the bottom, etc.). The distance from the center of the circle, depending on the type of unit, can represent the estimated distance from the generating radar, or to categorize the severity of threats to the aircraft, with tracking radars placed closer to the center than search radars. The symbol itself is related to the type of radar or

689-577: A rigid basket or gondola slung below it to carry its payload. Early aircraft, including airships , often employed flexible doped aircraft fabric covering to give a reasonably smooth aeroshell stretched over a rigid frame. Later aircraft employed semi- monocoque techniques, where the skin of the aircraft is stiff enough to share much of the flight loads. In a true monocoque design there is no internal structure left. The key structural parts of an aircraft depend on what type it is. Lighter-than-air types are characterised by one or more gasbags, typically with

742-420: A supporting structure of flexible cables or a rigid framework called its hull. Other elements such as engines or a gondola may also be attached to the supporting structure. Heavier-than-air types are characterised by one or more wings and a central fuselage . The fuselage typically also carries a tail or empennage for stability and control, and an undercarriage for takeoff and landing. Engines may be located on

795-420: A visual display somewhere prominent in the cockpit (in some modern aircraft, in multiple locations in the cockpit) and also generates audible tones which feed into the pilot's (and perhaps RIO /co-pilot/ GIB 's in a multi-seat aircraft) headset. The visual display often takes the form of a circle, with symbols displaying the detected radars according to their direction relative to the current aircraft heading (i.e.

848-517: Is a lifting body , which has no wings, though it may have small stabilizing and control surfaces. Wing-in-ground-effect vehicles are generally not considered aircraft. They "fly" efficiently close to the surface of the ground or water, like conventional aircraft during takeoff. An example is the Russian ekranoplan nicknamed the " Caspian Sea Monster ". Man-powered aircraft also rely on ground effect to remain airborne with minimal pilot power, but this

901-437: Is a powered one. A powered, steerable aerostat is called a dirigible . Sometimes this term is applied only to non-rigid balloons, and sometimes dirigible balloon is regarded as the definition of an airship (which may then be rigid or non-rigid). Non-rigid dirigibles are characterized by a moderately aerodynamic gasbag with stabilizing fins at the back. These soon became known as blimps . During World War II , this shape

954-712: Is able to integrate with AN/ALQ-218. The ALQ-218 is mainly featured aboard the U.S. Navy 's Boeing EA-18G Growler aircraft, which has replaced the EA-6B Prowler in the U.S. Navy. The ALQ-218 was previously on the Grumman EA-6B Prowler , which the Improved Capability III ALQ-218 was modified and integrated into the EA-18G's Airborne Electronic Attack (AEA) system. Avionics from the EA-6B were modified to fit into

1007-478: Is called aviation . The science of aviation, including designing and building aircraft, is called aeronautics . Crewed aircraft are flown by an onboard pilot , whereas unmanned aerial vehicles may be remotely controlled or self-controlled by onboard computers . Aircraft may be classified by different criteria, such as lift type, aircraft propulsion (if any), usage and others. Flying model craft and stories of manned flight go back many centuries; however,

1060-446: Is designed for, it can be as simple as detecting the presence of energy in a specific radar band, such as the frequencies of known surface-to-air missile systems. Modern RWR systems are often capable of classifying the source of the radar by the signal's strength, phase and signal details. The information about the signal's strength and waveform can then be used to estimate the type of threat the detected radar poses. The RWR usually has

1113-452: Is only because they are so underpowered—in fact, the airframe is capable of flying higher. Rotorcraft, or rotary-wing aircraft, use a spinning rotor with aerofoil cross-section blades (a rotary wing ) to provide lift. Types include helicopters , autogyros , and various hybrids such as gyrodynes and compound rotorcraft. Helicopters have a rotor turned by an engine-driven shaft. The rotor pushes air downward to create lift. By tilting

SECTION 20

#1732844859445

1166-623: Is stored in tanks, usually in the wings but larger aircraft also have additional fuel tanks in the fuselage . Propeller aircraft use one or more propellers (airscrews) to create thrust in a forward direction. The propeller is usually mounted in front of the power source in tractor configuration but can be mounted behind in pusher configuration . Variations of propeller layout include contra-rotating propellers and ducted fans . Many kinds of power plant have been used to drive propellers. Early airships used man power or steam engines . The more practical internal combustion piston engine

1219-465: Is the Lockheed SR-71 Blackbird , a U.S. reconnaissance jet fixed-wing aircraft, having reached 3,530 km/h (2,193 mph) on 28 July 1976. Gliders are heavier-than-air aircraft that do not employ propulsion once airborne. Take-off may be by launching forward and downward from a high location, or by pulling into the air on a tow-line, either by a ground-based winch or vehicle, or by

1272-453: Is to issue a warning when a radar signal that might be a threat is detected, like a fighter aircraft 's fire control radar . The warning can then be used, manually or automatically, to evade the detected threat. RWR systems can be installed in all kind of airborne, sea-based, and ground-based assets such as aircraft , ships , automobiles , military bases . Depending on the market the RWR system

1325-619: The Bell Boeing V-22 Osprey ), tiltwing , tail-sitter , and coleopter aircraft have their rotors/ propellers horizontal for vertical flight and vertical for forward flight. The smallest aircraft are toys/recreational items, and nano aircraft . The largest aircraft by dimensions and volume (as of 2016) is the 302 ft (92 m) long British Airlander 10 , a hybrid blimp, with helicopter and fixed-wing features, and reportedly capable of speeds up to 90 mph (140 km/h; 78 kn), and an airborne endurance of two weeks with

1378-682: The Boeing 747 jet airliner/transport (the 747-200B was, at its creation in the 1960s, the heaviest aircraft ever built, with a maximum weight of over 400 t (880,000 lb)), and the double-decker Airbus A380 "super-jumbo" jet airliner (the world's largest passenger airliner). The fastest fixed-wing aircraft and fastest glider, is the Space Shuttle , which re-entered the atmosphere at nearly Mach 25 or 17,500 mph (28,200 km/h) The fastest recorded powered aircraft flight and fastest recorded aircraft flight of an air-breathing powered aircraft

1431-628: The Harrier jump jet and Lockheed Martin F-35B take off and land vertically using powered lift and transfer to aerodynamic lift in steady flight. A pure rocket is not usually regarded as an aerodyne because its flight does not depend on interaction with the air at all (and thus can even fly in the vacuum of outer space ); however, many aerodynamic lift vehicles have been powered or assisted by rocket motors. Rocket-powered missiles that obtain aerodynamic lift at very high speed due to airflow over their bodies are

1484-435: The 1930s, large intercontinental flying boats were also sometimes referred to as "ships of the air" or "flying-ships".  — though none had yet been built. The advent of powered balloons, called dirigible balloons, and later of rigid hulls allowing a great increase in size, began to change the way these words were used. Huge powered aerostats, characterized by a rigid outer framework and separate aerodynamic skin surrounding

1537-412: The RWR display. The pilot then can take evasive action to break the missile lock-on or dodge the missile . The pilot may even be able to visually acquire the missile after being alerted to the possible launch. What's more, if an actively guided missile is tracking the aircraft, the pilot can use the direction and distance display of the RWR to work out which evasive maneuvers to perform to outrun or dodge

1590-447: The RWR. Especially at high altitude (more than 30,000 feet AGL ), very few threats exist that don't emit radiation. As long as the pilot is careful to check for aircraft that might try to sneak up without radar, say with the assistance of AWACS or GCI , it should be able to steer clear of SAMs, fighter aircraft and high altitude, radar-directed AAA . SEAD and ELINT aircraft often have sensitive and sophisticated RWR equipment like

1643-415: The U.S. HTS ( HARM targeting system) pod which is able to find and classify threats which are much further away than those detected by a typical RWR, and may be able to overlay threat circles on a map in the aircraft's multi-function display (MFD), providing much better information for avoiding or engaging threats, and may even store information to be analyzed later or transmitted to the ground to help

AN/ALQ-218 - Misplaced Pages Continue

1696-470: The aircraft's weight. There are two ways to produce dynamic upthrust — aerodynamic lift by having air flowing past an aerofoil (such dynamic interaction of aerofoils with air is the origin of the term "aerodyne"), or powered lift in the form of reactional lift from downward engine thrust . Aerodynamic lift involving wings is the most common, and can be achieved via two methods. Fixed-wing aircraft ( airplanes and gliders ) achieve airflow past

1749-501: The autogyro moves forward, air blows upward across the rotor, making it spin. This spinning increases the speed of airflow over the rotor, to provide lift. Rotor kites are unpowered autogyros, which are towed to give them forward speed or tethered to a static anchor in high-wind for kited flight. Compound rotorcraft have wings that provide some or all of the lift in forward flight. They are nowadays classified as powered lift types and not as rotorcraft. Tiltrotor aircraft (such as

1802-440: The commanders plan future missions. The RWR can be an important tool for evading threats if avoidance has failed. For example, if a SAM system or enemy fighter aircraft has fired a missile (for example, a SARH -guided missile ) at the aircraft, the RWR may be able to detect the change in mode that the radar must use to guide the missile and notify the pilot with much more insistent warning tones and flashing, bracketed symbols on

1855-435: The design process is regulated by national airworthiness authorities. The key parts of an aircraft are generally divided into three categories: The approach to structural design varies widely between different types of aircraft. Some, such as paragliders, comprise only flexible materials that act in tension and rely on aerodynamic pressure to hold their shape. A balloon similarly relies on internal gas pressure, but may have

1908-477: The first manned ascent — and safe descent — in modern times took place by larger hot-air balloons developed in the 18th century. Each of the two World Wars led to great technical advances. Consequently, the history of aircraft can be divided into five eras: Lighter-than-air aircraft or aerostats use buoyancy to float in the air in much the same way that ships float on the water. They are characterized by one or more large cells or canopies, filled with

1961-532: The first true manned, controlled flight in 1853. The first powered and controllable fixed-wing aircraft (the airplane or aeroplane) was invented by Wilbur and Orville Wright . Besides the method of propulsion (if any), fixed-wing aircraft are in general characterized by their wing configuration . The most important wing characteristics are: A variable geometry aircraft can change its wing configuration during flight. A flying wing has no fuselage, though it may have small blisters or pods. The opposite of this

2014-418: The fuselage or wings. On a fixed-wing aircraft the wings are rigidly attached to the fuselage, while on a rotorcraft the wings are attached to a rotating vertical shaft. Smaller designs sometimes use flexible materials for part or all of the structure, held in place either by a rigid frame or by air pressure. The fixed parts of the structure comprise the airframe . The source of motive power for an aircraft

2067-503: The gas bags, were produced, the Zeppelins being the largest and most famous. There were still no fixed-wing aircraft or non-rigid balloons large enough to be called airships, so "airship" came to be synonymous with these aircraft. Then several accidents, such as the Hindenburg disaster in 1937, led to the demise of these airships. Nowadays a "balloon" is an unpowered aerostat and an "airship"

2120-555: The gun bay and wing tip pods of the Growler. The EA-18G may carry an additional five jamming pods on under wing pylons. The system is being considered for modification to serve on unmanned aerial vehicles . The Growler is part of the same family of aircraft as the F/A-18E/F Super Hornet . Radar warning receiver Radar warning receiver ( RWR ) systems detect the radio emissions of radar systems. Their primary purpose

2173-408: The missile. For example, the rate of closure and aspect of the incoming missile may allow the pilot to determine that if they dive away from the missile, it is unlikely to catch up, or if it is closing fast, that it is time to jettison external supplies and turn toward the missile in an attempt to out-turn it. The RWR may be able to send a signal to another defensive system on board the aircraft, such as

AN/ALQ-218 - Misplaced Pages Continue

2226-411: The rotor forward, the downward flow is tilted backward, producing thrust for forward flight. Some helicopters have more than one rotor and a few have rotors turned by gas jets at the tips. Some have a tail rotor to counteract the rotation of the main rotor, and to aid directional control. Autogyros have unpowered rotors, with a separate power plant to provide thrust. The rotor is tilted backward. As

2279-436: The second type of aircraft to fly, the first being kites , which were also first invented in ancient China over two thousand years ago (see Han Dynasty ). A balloon was originally any aerostat, while the term airship was used for large, powered aircraft designs — usually fixed-wing. In 1919, Frederick Handley Page was reported as referring to "ships of the air," with smaller passenger types as "Air yachts." In

2332-410: The signals are first deinterleaved to sort the mixture of incoming signals by emitter type. These data are then further sorted by threat priority and displayed. The RWR is used for identifying, avoiding, evading or engaging threats. For example, a fighter aircraft on a combat air patrol (CAP) might notice enemy fighters on the RWR and subsequently use its own radar set to find and eventually engage

2385-530: The tether or kite line ; they rely on virtual or real wind blowing over and under them to generate lift and drag. Kytoons are balloon-kite hybrids that are shaped and tethered to obtain kiting deflections, and can be lighter-than-air, neutrally buoyant, or heavier-than-air. Powered aircraft have one or more onboard sources of mechanical power, typically aircraft engines although rubber and manpower have also been used. Most aircraft engines are either lightweight reciprocating engines or gas turbines . Engine fuel

2438-549: The threat. In addition, the RWR helps identify and classify threats—it's hard to tell which blips on a radar console-screen are dangerous, but since different fighter aircraft typically have different types of radar sets, once they turn them on and point them near the aircraft in question it may be able to tell, by the direction and strength of the signal, which of the blips is which type of fighter. A non-combat aircraft , or one attempting to avoid engagements, might turn its own radar off and attempt to steer around threats detected on

2491-481: The type of vehicle that carries it, often with a distinction made between ground-based radars and airborne radars. The typical airborne RWR system consists of multiple wideband antennas placed around the aircraft which receive the radar signals. The receiver periodically scans across the frequency band and determines various parameters of the received signals, like frequency, signal shape, direction of arrival, pulse repetition frequency , etc. By using these measurements,

2544-460: The wind, though normally the pilot can control the altitude, either by heating the air or by releasing ballast, giving some directional control (since the wind direction changes with altitude). A wing-shaped hybrid balloon can glide directionally when rising or falling; but a spherically shaped balloon does not have such directional control. Kites are aircraft that are tethered to the ground or other object (fixed or mobile) that maintains tension in

2597-431: The wing. A flexible wing is a wing made of fabric or thin sheet material, often stretched over a rigid frame, similar to the flight membranes on many flying and gliding animals . A kite is tethered to the ground and relies on the speed of the wind over its wings, which may be flexible or rigid, fixed, or rotary. With powered lift, the aircraft directs its engine thrust vertically downward. V/STOL aircraft, such as

2650-402: The wings by having the entire aircraft moving forward through the air, while rotorcraft ( helicopters and autogyros ) do so by having mobile, elongated wings spinning rapidly around a mast in an assembly known as the rotor . As aerofoils, there must be air flowing over the wing to create pressure difference between above and below, thus generating upward lift over the entire wetted area of

2703-657: Was of the NASA X-43 A Pegasus , a scramjet -powered, hypersonic , lifting body experimental research aircraft, at Mach 9.68 or 6,755 mph (10,870 km/h) on 16 November 2004. Prior to the X-43A, the fastest recorded powered airplane flight, and still the record for the fastest manned powered airplane, was the North American X-15 , rocket-powered airplane at Mach 6.7 or 7,274 km/h (4,520 mph) on 3 October 1967. The fastest manned, air-breathing powered airplane

SECTION 50

#1732844859445

2756-490: Was used for virtually all fixed-wing aircraft until World War II and is still used in many smaller aircraft. Some types use turbine engines to drive a propeller in the form of a turboprop or propfan . Human-powered flight has been achieved, but has not become a practical means of transport. Unmanned aircraft and models have also used power sources such as electric motors and rubber bands. Jet aircraft use airbreathing jet engines , which take in air, burn fuel with it in

2809-439: Was widely adopted for tethered balloons ; in windy weather, this both reduces the strain on the tether and stabilizes the balloon. The nickname blimp was adopted along with the shape. In modern times, any small dirigible or airship is called a blimp, though a blimp may be unpowered as well as powered. Heavier-than-air aircraft or aerodynes are denser than air and thus must find some way to obtain enough lift that can overcome

#444555