The Wendelstein Cable Car ( Wendelstein-Seilbahn ) is a 2,953-metre (9,688-foot) long cable car (US: aerial tramway) running from the village of Bayrischzell Osterhofen to Mount Wendelstein in the Bavarian Alps in Germany . It has a maximum speed of 10 m/s (32.8 ft/s) (36 km/h or 22.4 mph) and its travel time is 6.5 minutes. The cabins each take up to 50 passengers, and the cable car system has a transport capacity of 450 people per hour. The cable car climbs an altitude difference of 932 metres (3,058 feet).
43-515: The cable car has a 50 mm (1.97 in) track rope and a 30 mm (1.18 in) haulage rope. Its engine has a maximum output of 490 hp (370 kW ). It has one 75-metre (246-foot) tall pylon . 47°41′49″N 11°59′56″E / 47.697°N 11.999°E / 47.697; 11.999 This article about transport in Germany is a stub . You can help Misplaced Pages by expanding it . Horsepower Horsepower ( hp )
86-415: A ' brewery horse ' could produce 32,400 foot-pounds [43,929 J] per minute." James Watt and Matthew Boulton standardized that figure at 33,000 foot-pounds (44,742 J) per minute the next year. A common legend states that the unit was created when one of Watt's first customers, a brewer, specifically demanded an engine that would match a horse, and chose the strongest horse he had and driving it to
129-429: A group of engineers modified a dynometer to be able to measure how much horsepower a horse can produce. This horse was measured to 5.7 hp (4.3 kW). When torque T is in pound-foot units, rotational speed N is in rpm , the resulting power in horsepower is The constant 5252 is the rounded value of (33,000 ft⋅lbf/min)/(2π rad/rev). When torque T is in inch-pounds, The constant 63,025
172-526: A healthy human can produce about 1.2 hp (0.89 kW) briefly (see orders of magnitude ) and sustain about 0.1 hp (0.075 kW) indefinitely; trained athletes can manage up to about 2.5 hp (1.9 kW) briefly and 0.35 hp (0.26 kW) for a period of several hours. The Jamaican sprinter Usain Bolt produced a maximum of 3.5 hp (2.6 kW) 0.89 seconds into his 9.58 second 100-metre (109.4 yd) sprint world record in 2009. In 2023
215-399: A lowering of 10% was too great, and one should not lower their basal rate at all next time. If blood sugar levels remained relatively constant, a drop in basal rate of 10% was sufficient. Just as the action to change basal rate should be gradual in nature, the actual response from changing basal rate does not happen instantly. A change in basal rate is felt around two hours after the action
258-453: A similar effect. In healthy individuals, basal rate is monitored by the pancreas, which provides a regular amount of insulin at all times. The body requires this flow of insulin to enable the body to utilize glucose in the blood stream, so the energy in glucose can be used to carry out bodily functions. Basal rate requirements can differ for individuals depending on the activities they will carry out on that particular day. For example, if one
301-400: Is a unit of measurement of power , or the rate at which work is done, usually in reference to the output of engines or motors. There are many different standards and types of horsepower. Two common definitions used today are the imperial horsepower as in "hp" or "bhp" which is about 745.7 watts , and the metric horsepower as in "cv" or "PS" which is approximately 735.5 watts. The term
344-415: Is a coefficient of theoretical brake horsepower and cylinder pressures during combustion. Nominal horsepower (nhp) is an early 19th-century rule of thumb used to estimate the power of steam engines. It assumed a steam pressure of 7 psi (48 kPa). Basal rate Basal rate , in biology , is the rate of continuous supply of some chemical or process. In the case of diabetes mellitus , it
387-417: Is a low rate of continuous insulin supply needed for such purposes as controlling cellular glucose and amino acid uptake. Together with a bolus of insulin, the basal insulin completes the total insulin needs of an insulin-dependent person. An insulin pump and wristop controller is one way to arrange for a closely controlled basal insulin rate. The slow-release insulins (e.g., Lantus and Levemir) can provide
430-420: Is also used in many places to symbolize brake horsepower. Drawbar power (dbp) is the power a railway locomotive has available to haul a train or an agricultural tractor to pull an implement. This is a measured figure rather than a calculated one. A special railway car called a dynamometer car coupled behind the locomotive keeps a continuous record of the drawbar pull exerted, and the speed. From these,
473-447: Is being eaten. The liver will supply glucose either from fats or from previously eaten foods. Therefore, the basal rate can be thought of as a sort of "second bolus" after the initial bolus intake of insulin. Most adult diabetics (over the age of 21) will have a fairly constant ratio of bolus:basal of 60%:40%, where 60% of all insulin intake in a single 24-hour period will be attributed to meals (bolus) and 40% should then be attributed to
SECTION 10
#1732876400717516-465: Is done. This is especially important for those with diabetes to note, as it affects when they should act to monitor their basal rates. For example, if there is a particular time in the day when one notices a problem with blood glucose levels, they should act to change their basal rate accordingly two hours prior to when the problem was previously experienced. The liver is the primary contributing organ which produces glucose continuously even when nothing
559-460: Is equivalent to a boiler heat output of 33,469 Btu/h (9.809 kW). Present industrial practice is to define "boiler horsepower" as a boiler thermal output equal to 33,475 Btu/h (9.811 kW), which is very close to the original and revised definitions. Boiler horsepower is still used to measure boiler output in industrial boiler engineering in the US. Boiler horsepower is abbreviated BHP, which
602-450: Is equivalent to a boiler heat output of 33,485 Btu/h (9.813 kW). A few years later in 1884, the ASME re-defined the boiler horsepower as the thermal output equal to the evaporation of 34.5 pounds per hour of water "from and at" 212 °F (100 °C). This considerably simplified boiler testing, and provided more accurate comparisons of the boilers at that time. This revised definition
645-481: Is in psi, and flow rate is in US gallons per minute. Drilling rigs are powered mechanically by rotating the drill pipe from above. Hydraulic power is still needed though, as 1 500 to 5 000 W are required to push mud through the drill bit to clear waste rock. Additional hydraulic power may also be used to drive a down-hole mud motor to power directional drilling . When using SI units, the equation becomes coherent and there
688-465: Is needed to pull a drawbar load of 2,025 pounds-force at 5 miles per hour? { P } h p = 2025 × 5 375 = 27. {\displaystyle \{P\}_{\mathrm {hp} }={\frac {2025\times 5}{375}}=27.} The constant 375 is because 1 hp = 375 lbf⋅mph. If other units are used, the constant is different. When using coherent SI units (watts, newtons, and metres per second), no constant
731-507: Is needed, and the formula becomes P = Fv . This formula may also be used to calculate the power of a jet engine, using the speed of the jet and the thrust required to maintain that speed. Example: how much power is generated with a thrust of 4000 pounds at 400 miles per hour? { P } h p = 4000 × 400 375 = 4266.7. {\displaystyle \{P\}_{\mathrm {hp} }={\frac {4000\times 400}{375}}=4266.7.} This measure
774-434: Is no dividing constant. where pressure is in pascals (Pa), and flow rate is in cubic metres per second (m ). Boiler horsepower is a boiler 's capacity to deliver steam to a steam engine and is not the same unit of power as the 550 ft lb/s definition. One boiler horsepower is equal to the thermal energy rate required to evaporate 34.5 pounds (15.6 kg) of fresh water at 212 °F (100 °C) in one hour. In
817-415: Is not highly active on a certain day, they will have a decreased basal rate because they are not using a lot of energy. On the other hand, basal rate increases dramatically when an individual is highly active. Basal rates often even vary from hour to hour throughout the day. For example, one's insulin needs vary from activity to activity. Activities, such as sports, housework, shopping, gardening, tidying
860-506: Is ordinarily stated in watts or kilowatts. In the United States, the power output is stated in horsepower which, for this purpose, is defined as exactly 746 W. Hydraulic horsepower can represent the power available within hydraulic machinery , power through the down-hole nozzle of a drilling rig , or can be used to estimate the mechanical power needed to generate a known hydraulic flow rate. It may be calculated as where pressure
903-738: Is the approximation of Assuming the third CGPM (1901, CR 70) definition of standard gravity , g n = 9.80665 m/s , is used to define the pound-force as well as the kilogram force, and the international avoirdupois pound (1959), one imperial horsepower is: Or given that 1 hp = 550 ft⋅lbf/s, 1 ft = 0.3048 m, 1 lbf ≈ 4.448 N, 1 J = 1 N⋅m, 1 W = 1 J/s: 1 hp ≈ 745.7 W The various units used to indicate this definition ( PS , KM , cv , hk , pk , k , ks and ch ) all translate to horse power in English. British manufacturers often intermix metric horsepower and mechanical horsepower depending on
SECTION 20
#1732876400717946-749: The kilowatt as the official power-measuring unit in EEC directives. Other names for the metric horsepower are the Italian cavallo vapore (cv) , Dutch paardenkracht (pk) , the French cheval-vapeur (ch) , the Spanish caballo de vapor and Portuguese cavalo-vapor (cv) , the Russian лошадиная сила (л. с.) , the Swedish hästkraft (hk) , the Finnish hevosvoima (hv) ,
989-501: The 1926 Iowa State Fair , they reported that the peak power over a few seconds has been measured to be as high as 14.88 hp (11.10 kW) and also observed that for sustained activity, a work rate of about 1 hp (0.75 kW) per horse is consistent with agricultural advice from both the 19th and 20th centuries and also consistent with a work rate of about four times the basal rate expended by other vertebrates for sustained activity. When considering human-powered equipment ,
1032-820: The Estonian hobujõud (hj) , the Norwegian and Danish hestekraft (hk) , the Hungarian lóerő (LE) , the Czech koňská síla and Slovak konská sila (k or ks ), the Serbo-Croatian konjska snaga (KS) , the Bulgarian конска сила , the Macedonian коњска сила (KC) , the Polish koń mechaniczny (KM) ( lit. ' mechanical horse ' ), Slovenian konjska moč (KM) ,
1075-648: The Ukrainian кінська сила (к. с.) , the Romanian cal-putere (CP) , and the German Pferdestärke (PS) . In the 19th century, revolutionary-era France had its own unit used to replace the cheval vapeur (horsepower); based on a 100 kgf ⋅m/s standard, it was called the poncelet and was abbreviated p . Tax or fiscal horsepower is a non-linear rating of a motor vehicle for tax purposes. Tax horsepower ratings were originally more or less directly related to
1118-402: The basal rate. This ratio will fluctuate from person to person depending on their size, activity level, and caloric intake as well but is a good baseline for determining the correct basal rate for an adult diabetic. Thus, the basal rate could theoretically be set based on an averaged bolus insulin intake of several days. Averaging the total bolus, and then dividing this number by 36 would then give
1161-529: The blood stream. Those with diabetes also may eat carbohydrates or sugars to account for low blood sugar. However one monitors and regulates their blood sugar levels and basal rates, it is important to make changes gradually. An initial lowering in basal rate should be no more than 10% of the original. After the initial lowering point, one must note the factor by which one's blood sugar changes. If blood sugar levels decreased, one should lower their basal rate by 20% next time. If their blood sugar levels increased,
1204-508: The body has an overwhelming supply of glucose, and glucose levels need to decrease. To induce this decrease, basal rate needs to increase to increase insulin release to absorb some of the excess glucose from the blood stream. Those with diabetes mellitus must be aware of their basal rates and regulate them accordingly. Basal rate can be raised and lowered through various methods. For example, individuals with diabetes mellitus often use an insulin pump to supply an increased amount of insulin into
1247-652: The early days of steam use, the boiler horsepower was roughly comparable to the horsepower of engines fed by the boiler. The term "boiler horsepower" was originally developed at the Philadelphia Centennial Exhibition in 1876, where the best steam engines of that period were tested. The average steam consumption of those engines (per output horsepower) was determined to be the evaporation of 30 pounds (14 kg) of water per hour, based on feed water at 100 °F (38 °C), and saturated steam generated at 70 psi (480 kPa). This original definition
1290-522: The engine's bore size, number of cylinders, and a (now archaic) presumption of engine efficiency. As new engines were designed with ever-increasing efficiency, it was no longer a useful measure, but was kept in use by UK regulations, which used the rating for tax purposes . The United Kingdom was not the only country that used the RAC rating; many states in Australia used RAC hp to determine taxation. The RAC formula
1333-499: The engine. The situation persisted for several generations of four- and six-cylinder British engines: For example, Jaguar's 3.4-litre XK engine of the 1950s had six cylinders with a bore of 83 mm (3.27 in) and a stroke of 106 mm (4.17 in), where most American automakers had long since moved to oversquare (large bore, short stroke) V8 engines . See, for example, the early Chrysler Hemi engine . The power of an engine may be measured or estimated at several points in
Wendelstein Cable Car - Misplaced Pages Continue
1376-484: The horse could pull with a force of 180 pounds-force (800 N). So: Engineering in History recounts that John Smeaton initially estimated that a horse could produce 22,916 foot-pounds (31,070 J) per minute. John Desaguliers had previously suggested 44,000 foot-pounds (59,656 J) per minute, and Thomas Tredgold suggested 27,500 foot-pounds (37,285 J) per minute. "Watt found by experiment in 1782 that
1419-414: The house, and consuming alcohol all require a lowering in basal rate. These activities all require energy and, thus, use glucose; basal rate must decrease in order to keep glucose levels high enough to be used as fuel for the body. On the other hand, fevers, having a cold, taking a nap, taking cortisone-containing medication, and moments of excitement call for different basal rate needs. In these instances,
1462-637: The implementation of the EU Directive 80/181/EEC on 1 January 2010, the use of horsepower in the EU is permitted only as a supplementary unit. The development of the steam engine provided a reason to compare the output of horses with that of the engines that could replace them. In 1702, Thomas Savery wrote in The Miner's Friend : The idea was later used by James Watt to help market his improved steam engine. He had previously agreed to take royalties of one-third of
1505-450: The limit. In that legend, Watt accepted the challenge and built a machine that was actually even stronger than the figure achieved by the brewer, and the output of that machine became the horsepower. In 1993, R. D. Stevenson and R. J. Wassersug published correspondence in Nature summarizing measurements and calculations of peak and sustained work rates of a horse. Citing measurements made at
1548-505: The origin of the engine in question. DIN 66036 defines one metric horsepower as the power to raise a mass of 75 kilograms against the Earth's gravitational force over a distance of one metre in one second: 75 kg × 9.80665 m/s × 1 m / 1 s = 75 kgf ⋅m/s = 1 PS. This is equivalent to 735.49875 W, or 98.6% of an imperial horsepower. In 1972, the PS was replaced by
1591-670: The power generated can be calculated. To determine the maximum power available, a controllable load is required; it is normally a second locomotive with its brakes applied, in addition to a static load. If the drawbar force ( F ) is measured in pounds-force (lbf) and speed ( v ) is measured in miles per hour (mph), then the drawbar power ( P ) in horsepower (hp) is { P } h p = { F } l b f { v } m p h 375 . {\displaystyle \{P\}_{\mathrm {hp} }={\frac {\{F\}_{\mathrm {lbf} }\{v\}_{\mathrm {mph} }}{375}}.} Example: How much power
1634-408: The savings in coal from the older Newcomen steam engines . This royalty scheme did not work with customers who did not have existing steam engines but used horses instead. Watt determined that a horse could turn a mill wheel 144 times in an hour (or 2.4 times a minute). The wheel was 12 feet (3.7 m) in radius; therefore, the horse travelled 2.4 × 2π × 12 feet in one minute. Watt judged that
1677-423: The size of the engine; but as of 2000, many countries changed over to systems based on CO 2 emissions, so are not directly comparable to older ratings. The Citroën 2CV is named for its French fiscal horsepower rating, "deux chevaux" (2CV). Nameplates on electrical motors show their power output, not the power input (the power delivered at the shaft, not the power consumed to drive the motor). This power output
1720-502: The transmission of the power from its generation to its application. A number of names are used for the power developed at various stages in this process, but none is a clear indicator of either the measurement system or definition used. In general: All the above assumes that no power inflation factors have been applied to any of the readings. Engine designers use expressions other than horsepower to denote objective targets or performance, such as brake mean effective pressure (BMEP). This
1763-478: Was adopted in the late 18th century by Scottish engineer James Watt to compare the output of steam engines with the power of draft horses . It was later expanded to include the output power of other power-generating machinery such as piston engines , turbines , and electric motors . The definition of the unit varied among geographical regions. Most countries now use the SI unit watt for measurement of power. With
Wendelstein Cable Car - Misplaced Pages Continue
1806-531: Was instituted by the Royal Automobile Club and was used to denote the power of early 20th-century British cars. Many cars took their names from this figure (hence the Austin Seven and Riley Nine), while others had names such as "40/50 hp", which indicated the RAC figure followed by the true measured power. Taxable horsepower does not reflect developed horsepower; rather, it is a calculated figure based on
1849-470: Was sometimes applied in British colonies as well, such as Kenya (British East Africa) . where Since taxable horsepower was computed based on bore and number of cylinders, not based on actual displacement, it gave rise to engines with "undersquare" dimensions (bore smaller than stroke), which tended to impose an artificially low limit on rotational speed , hampering the potential power output and efficiency of
#716283