WDP-4B : 130 km/h (81 mph)
78-406: WDP-4B : 40,775 kgf (399.87 kN) The Indian locomotive class WDP-4 (EMD GT46PAC) is a passenger-hauling diesel–electric locomotive with AC electric transmission designed by General Motors Electro-Motive Division and built by both GM-EMD and under license by Banaras Locomotive Works (BLW) of Varanasi , India for Indian Railways as the classes WDP4, WDP4B and WDP4D. The GT46PAC
156-548: A Piggy-face profile, to increase the field of view from the control cab and the WDP-4B variant was also produced with the same widened cab profile. This was the first attempt of the Railways to improve upon the successful WDP-4 locomotive. The Bo1-1Bo was found inadequate for hauling 24 coach passenger trains due to the reduced tractive effort. As a result, DLW, reconfigured the chassis to be Co-Co instead. This led to better adhesion with
234-471: A consist respond in the same way to throttle position. Binary encoding also helps to minimize the number of trainlines (electrical connections) that are required to pass signals from unit to unit. For example, only four trainlines are required to encode all possible throttle positions if there are up to 14 stages of throttling. North American locomotives, such as those built by EMD or General Electric , have eight throttle positions or "notches" as well as
312-429: A "reverser" to allow them to operate bi-directionally. Many UK-built locomotives have a ten-position throttle. The power positions are often referred to by locomotive crews depending upon the throttle setting, such as "run 3" or "notch 3". In older locomotives, the throttle mechanism was ratcheted so that it was not possible to advance more than one power position at a time. The engine driver could not, for example, pull
390-609: A Rational Heat Motor ). However, the large size and poor power-to-weight ratio of early diesel engines made them unsuitable for propelling land-based vehicles. Therefore, the engine's potential as a railroad prime mover was not initially recognized. This changed as research and development reduced the size and weight of the engine. In 1906, Rudolf Diesel, Adolf Klose and the steam and diesel engine manufacturer Gebrüder Sulzer founded Diesel-Sulzer-Klose GmbH to manufacture diesel-powered locomotives. Sulzer had been manufacturing diesel engines since 1898. The Prussian State Railways ordered
468-508: A bidding process. Indian Railway was planning for a dual mode locomotive from 2015. In 2019 Banaras Locomotive Works Varanasi, RDSO and CLW together have got the successes of producing a new class of dual mode locomotive named WDAP-5 which can run on both diesel and electric. The design of the locomotive is based on WDP-4D and the bogies were taken from WDG-5. It has been designed for a speed capable of 135kmph. It will produce 4500Hp in diesel mode and 5500Hp in electric mode. The fuel tank capacity
546-583: A diesel locomotive from the company in 1909, and after test runs between Winterthur and Romanshorn , Switzerland, the diesel–mechanical locomotive was delivered in Berlin in September 1912. The world's first diesel-powered locomotive was operated in the summer of 1912 on the same line from Winterthur but was not a commercial success. During test runs in 1913 several problems were found. The outbreak of World War I in 1914 prevented all further trials. The locomotive weight
624-499: A diesel-driven charging circuit. ALCO acquired the McIntosh & Seymour Engine Company in 1929 and entered series production of 300 hp (220 kW) and 600 hp (450 kW) single-cab switcher units in 1931. ALCO would be the pre-eminent builder of switch engines through the mid-1930s and would adapt the basic switcher design to produce versatile and highly successful, albeit relatively low powered, road locomotives. GM, seeing
702-465: A flashover (also known as an arc fault ), which could result in immediate generator failure and, in some cases, start an engine room fire. Current North American practice is for four axles for high-speed passenger or "time" freight, or for six axles for lower-speed or "manifest" freight. The most modern units on "time" freight service tend to have six axles underneath the frame. Unlike those in "manifest" service, "time" freight units will have only four of
780-560: A major manufacturer of diesel engines for marine and stationary applications, in 1930. Supported by the General Motors Research Division, GM's Winton Engine Corporation sought to develop diesel engines suitable for high-speed mobile use. The first milestone in that effort was delivery in early 1934 of the Winton 201A, a two-stroke , mechanically aspirated , uniflow-scavenged , unit-injected diesel engine that could deliver
858-622: A nearly imperceptible start. The positioning of the reverser and movement of the throttle together is conceptually like shifting an automobile's automatic transmission into gear while the engine is idling. WDP-3A The Indian locomotive class WDP-3A , colloquially nicknamed the Toaster , is a class of diesel–electric locomotive that was developed in 1998 by Banaras Locomotive Works , Varanasi for Indian Railways . The model name stands for broad gauge ( W ) , Diesel ( D ), Passenger traffic ( P ) locomotive with 3,100 horsepower ( 3A ). The WDP-3A
SECTION 10
#1733084767936936-409: A point where one could be mounted in a locomotive. Internal combustion engines only operate efficiently within a limited power band , and while low-power gasoline engines could be coupled to mechanical transmissions , the more powerful diesel engines required the development of new forms of transmission. This is because clutches would need to be very large at these power levels and would not fit in
1014-421: A prototype diesel–electric locomotive for "special uses" (such as for runs where water for steam locomotives was scarce) using electrical equipment from Westinghouse Electric Company . Its twin-engine design was not successful, and the unit was scrapped after a short testing and demonstration period. Industry sources were beginning to suggest "the outstanding advantages of this new form of motive power". In 1929,
1092-477: A real prospect with existing diesel technology. Before diesel power could make inroads into mainline service, the limitations of diesel engines circa 1930 – low power-to-weight ratios and narrow output range – had to be overcome. A major effort to overcome those limitations was launched by General Motors after they moved into the diesel field with their acquisition of the Winton Engine Company ,
1170-661: A standard 2.5 m (8 ft 2 in)-wide locomotive frame, or would wear too quickly to be useful. The first successful diesel engines used diesel–electric transmissions , and by 1925 a small number of diesel locomotives of 600 hp (450 kW) were in service in the United States. In 1930, Armstrong Whitworth of the United Kingdom delivered two 1,200 hp (890 kW) locomotives using Sulzer -designed engines to Buenos Aires Great Southern Railway of Argentina. In 1933, diesel–electric technology developed by Maybach
1248-451: Is 3000 liters which is half of the WDP-4's due to weight saving. Only 1 unit has been produced until now and it is in trial with RDSO. Diesel%E2%80%93electric locomotive A diesel locomotive is a type of railway locomotive in which the power source is a diesel engine . Several types of diesel locomotives have been developed, differing mainly in the means by which mechanical power
1326-480: Is a later classification of earlier WDP-2. They entered service in 1998. A total of 44 were built between 1998 and 2001. They are the fastest ALCo based locomotive found in India with a top speed of 160 km/h, on par with the premier electric locomotives. The WDP-3A served IR for over 25 years. A significant number of these locomotives are still in use, both on mainline and departmental duties. As of November 2024, few of
1404-537: Is a passenger version of the previous Indian Railways EMD GT46MAC freight locomotive. The locomotive has a 16-cylinder 710G3B diesel engine and is one of the fastest diesel–electric locomotives in service in Indian Railways. The WDP-4 was the loco originally designed by GM EMD and 10 of them were dispatched to India by June 2001. Later on Banaras Locomotive Works , Varanasi started building them initially using knocked-down kits and later indigenously. Starting 2003,
1482-533: Is better able to cope with overload conditions that often destroyed the older types of motors. A diesel–electric locomotive's power output is independent of road speed, as long as the unit's generator current and voltage limits are not exceeded. Therefore, the unit's ability to develop tractive effort (also referred to as drawbar pull or tractive force , which is what actually propels the train) will tend to inversely vary with speed within these limits. (See power curve below). Maintaining acceptable operating parameters
1560-413: Is conveyed to the driving wheels . The most common are diesel–electric locomotives and diesel–hydraulic. Early internal combustion locomotives and railcars used kerosene and gasoline as their fuel. Rudolf Diesel patented his first compression-ignition engine in 1898, and steady improvements to the design of diesel engines reduced their physical size and improved their power-to-weight ratios to
1638-502: Is generally limited to low-powered, low-speed shunting (switching) locomotives, lightweight multiple units and self-propelled railcars . The mechanical transmissions used for railroad propulsion are generally more complex and much more robust than standard-road versions. There is usually a fluid coupling interposed between the engine and gearbox, and the gearbox is often of the epicyclic (planetary) type to permit shifting while under load. Various systems have been devised to minimise
SECTION 20
#17330847679361716-414: Is the same as placing an automobile's transmission into neutral while the engine is running. To set the locomotive in motion, the reverser control handle is placed into the correct position (forward or reverse), the brake is released and the throttle is moved to the run 1 position (the first power notch). An experienced engine driver can accomplish these steps in a coordinated fashion that will result in
1794-647: The Pallavan Express , Vaigai Express , Rockfort Express , Nellai Express and Pothigai Express to name a few. A problem with the WDP-3A was that it would get uncomfortably hot inside the driving cabin on the radiator side and the locos were nicknamed “toasters” by the locomotive pilots. The WDP-3A was best known for hauling the Trivandrum Rajdhani and later on the Mumbai CSMT - Karmali Tejas Express through
1872-490: The Budd Company . The economic recovery from World War II hastened the widespread adoption of diesel locomotives in many countries. They offered greater flexibility and performance than steam locomotives , as well as substantially lower operating and maintenance costs. The earliest recorded example of the use of an internal combustion engine in a railway locomotive is the prototype designed by William Dent Priestman , which
1950-637: The Burlington Route and Union Pacific used custom-built diesel " streamliners " to haul passengers, starting in late 1934. Burlington's Zephyr trainsets evolved from articulated three-car sets with 600 hp power cars in 1934 and early 1935, to the Denver Zephyr semi-articulated ten car trainsets pulled by cab-booster power sets introduced in late 1936. Union Pacific started diesel streamliner service between Chicago and Portland Oregon in June 1935, and in
2028-717: The Busch-Sulzer company in 1911. Only limited success was achieved in the early twentieth century with internal combustion engined railcars, due, in part, to difficulties with mechanical drive systems. General Electric (GE) entered the railcar market in the early twentieth century, as Thomas Edison possessed a patent on the electric locomotive, his design actually being a type of electrically propelled railcar. GE built its first electric locomotive prototype in 1895. However, high electrification costs caused GE to turn its attention to internal combustion power to provide electricity for electric railcars. Problems related to co-ordinating
2106-600: The Canadian National Railways became the first North American railway to use diesels in mainline service with two units, 9000 and 9001, from Westinghouse. However, these early diesels proved expensive and unreliable, with their high cost of acquisition relative to steam unable to be realized in operating cost savings as they were frequently out of service. It would be another five years before diesel–electric propulsion would be successfully used in mainline service, and nearly ten years before fully replacing steam became
2184-490: The DFH1 , began in 1964 following the construction of a prototype in 1959. In Japan, starting in the 1920s, some petrol–electric railcars were produced. The first diesel–electric traction and the first air-streamed vehicles on Japanese rails were the two DMU3s of class Kiha 43000 (キハ43000系). Japan's first series of diesel locomotives was class DD50 (国鉄DD50形), twin locomotives, developed since 1950 and in service since 1953. In 1914,
2262-490: The Electro Motive Diesel (EMD) of (General Motors) while road numbers 20011 upwards have been manufactured by Banaras Locomotive Works (DLW) of Varanasi in collaboration with GM (General motors). Siemens and Medha are part of this group providing a large number of components of the electronics on board this loco such as the control stand and traction inverters. Additional components are acquired through tenders and
2340-527: The Konkan Railway at a top speed of 120 kmh single-handedly. In 2018, a couple of GOC-based WDP-3A locomotives were rebuilt at DMW Patiala with better bogies for riding comfort. Such rebuilt toasters bear the suffix 'R' to their road numbers. However, due to age issues and cracking of bogie underframes, the WDP-3A locomotives of DLS, GOC, and KYN were withdrawn gradually from hauling passenger trains and were relegated to departmental use. In 2021, GOC announced
2418-484: The Società per le Strade Ferrate del Mediterrano in southern Italy in 1926, following trials in 1924–25. The six-cylinder two-stroke motor produced 440 horsepower (330 kW) at 500 rpm, driving four DC motors, one for each axle. These 44 tonnes (43 long tons; 49 short tons) locomotives with 45 km/h (28 mph) top speed proved quite successful. In 1924, two diesel–electric locomotives were taken in service by
Indian locomotive class WDP-4 - Misplaced Pages Continue
2496-981: The Soviet railways , almost at the same time: In 1935, Krauss-Maffei , MAN and Voith built the first diesel–hydraulic locomotive, called V 140 , in Germany. Diesel–hydraulics became the mainstream in diesel locomotives in Germany since the German railways (DRG) were pleased with the performance of that engine. Serial production of diesel locomotives in Germany began after World War II. In many railway stations and industrial compounds, steam shunters had to be kept hot during many breaks between scattered short tasks. Therefore, diesel traction became economical for shunting before it became economical for hauling trains. The construction of diesel shunters began in 1920 in France, in 1925 in Denmark, in 1926 in
2574-406: The electrification of the line in 1944. Afterwards, the company kept them in service as boosters until 1965. Fiat claims to have built the first Italian diesel–electric locomotive in 1922, but little detail is available. Several Fiat- TIBB Bo'Bo' diesel–locomotives were built for service on the 950 mm ( 3 ft 1 + 3 ⁄ 8 in ) narrow gauge Ferrovie Calabro Lucane and
2652-432: The 1,500 kW (2,000 hp) British Rail 10100 locomotive), though only few have proven successful (such as the 1,342 kW (1,800 hp) DSB Class MF ). In a diesel–electric locomotive , the diesel engine drives either an electrical DC generator (generally, less than 3,000 hp (2,200 kW) net for traction), or an electrical AC alternator-rectifier (generally 3,000 hp net or more for traction),
2730-456: The 1960s, the DC generator was replaced by an alternator using a diode bridge to convert its output to DC. This advance greatly improved locomotive reliability and decreased generator maintenance costs by elimination of the commutator and brushes in the generator. Elimination of the brushes and commutator, in turn, eliminated the possibility of a particularly destructive type of event referred to as
2808-513: The 1990s, starting with the Electro-Motive SD70MAC in 1993 and followed by General Electric's AC4400CW in 1994 and AC6000CW in 1995. The Trans-Australian Railway built 1912 to 1917 by Commonwealth Railways (CR) passes through 2,000 km of waterless (or salt watered) desert terrain unsuitable for steam locomotives. The original engineer Henry Deane envisaged diesel operation to overcome such problems. Some have suggested that
2886-582: The CR worked with the South Australian Railways to trial diesel traction. However, the technology was not developed enough to be reliable. As in Europe, the usage of internal combustion engines advanced more readily in self-propelled railcars than in locomotives: A diesel–mechanical locomotive uses a mechanical transmission in a fashion similar to that employed in most road vehicles. This type of transmission
2964-602: The GT46PAC came in the form of the WDP-4D. The locomotive is the most distinctively identifiable of the three thanks to the addition of a second cab at the long hood end of the locomotive. Due to the heat generated from the radiator at the second cab end of the locomotive, DLW had to install air conditioning to protect both the electrical components and the loco-pilot from the high temperatures. The existing features from WDP-4B have been carried forward to this class and it exclusively features
3042-877: The Netherlands, and in 1927 in Germany. After a few years of testing, hundreds of units were produced within a decade. Diesel-powered or "oil-engined" railcars, generally diesel–mechanical, were developed by various European manufacturers in the 1930s, e.g. by William Beardmore and Company for the Canadian National Railways (the Beardmore Tornado engine was subsequently used in the R101 airship). Some of those series for regional traffic were begun with gasoline motors and then continued with diesel motors, such as Hungarian BC (The class code doesn't tell anything but "railmotor with 2nd and 3rd class seats".), 128 cars built 1926–1937, or German Wismar railbuses (57 cars 1932–1941). In France,
3120-408: The WDP-4B and brake system equipment of KNORR/NYAB CCB type. This loco again with Dual-Cab, but with More Power and Better Fuel Consumption and State-of-the-Art features compared to ALCo DL560C, along with an Air Conditioned Hood Cab, became a very efficient replacement of WDP-3A ( ALCO DL560C ) alias "Toaster". The first set of 10 locos starting from road number 20000 to 20009 were manufactured by
3198-490: The War Production Board put a halt to building new passenger equipment and gave naval uses priority for diesel engine production. During the petroleum crisis of 1942–43 , coal-fired steam had the advantage of not using fuel that was in critically short supply. EMD was later allowed to increase the production of its FT locomotives and ALCO-GE was allowed to produce a limited number of DL-109 road locomotives, but most in
Indian locomotive class WDP-4 - Misplaced Pages Continue
3276-451: The axle load to 20.2 tonnes (19.9 long tons; 22.3 short tons). The locomotive also has a self-load test feature that allows it to test the net output of the engine. In Siemens and EMD systems, the loco has been provided with 2 traction inverters (TCC-1 and TCC-2, for the respective bogies) while in the Medha system, it has 6 traction inverters, one for each traction motor. The final alterations to
3354-433: The axles connected to traction motors, with the other two as idler axles for weight distribution. In the late 1980s, the development of high-power variable-voltage/variable-frequency (VVVF) drives, or "traction inverters", allowed the use of polyphase AC traction motors, thereby also eliminating the motor commutator and brushes. The result is a more efficient and reliable drive that requires relatively little maintenance and
3432-706: The benefits of an electric locomotive without the railroad having to bear the sizeable expense of electrification. The unit successfully demonstrated, in switching and local freight and passenger service, on ten railroads and three industrial lines. Westinghouse Electric and Baldwin collaborated to build switching locomotives starting in 1929. However, the Great Depression curtailed demand for Westinghouse's electrical equipment, and they stopped building locomotives internally, opting to supply electrical parts instead. In June 1925, Baldwin Locomotive Works outshopped
3510-420: The break in transmission during gear changing, such as the S.S.S. (synchro-self-shifting) gearbox used by Hudswell Clarke . Diesel–mechanical propulsion is limited by the difficulty of building a reasonably sized transmission capable of coping with the power and torque required to move a heavy train. A number of attempts to use diesel–mechanical propulsion in high power applications have been made (for example,
3588-443: The engine governor and electrical or electronic components, including switchgear , rectifiers and other components, which control or modify the electrical supply to the traction motors. In the most elementary case, the generator may be directly connected to the motors with only very simple switchgear. Originally, the traction motors and generator were DC machines. Following the development of high-capacity silicon rectifiers in
3666-419: The engine and traction motor with a single lever; subsequent improvements were also patented by Lemp. Lemp's design solved the problem of overloading and damaging the traction motors with excessive electrical power at low speeds, and was the prototype for all internal combustion–electric drive control systems. In 1917–1918, GE produced three experimental diesel–electric locomotives using Lemp's control design,
3744-423: The engine driver operates the controls. When the throttle is in the idle position, the prime mover receives minimal fuel, causing it to idle at low RPM. In addition, the traction motors are not connected to the main generator and the generator's field windings are not excited (energized) – the generator does not produce electricity without excitation. Therefore, the locomotive will be in "neutral". Conceptually, this
3822-456: The first diesel railcar was Renault VH , 115 units produced 1933/34. In Italy, after six Gasoline cars since 1931, Fiat and Breda built a lot of diesel railmotors, more than 110 from 1933 to 1938 and 390 from 1940 to 1953, Class 772 known as Littorina , and Class ALn 900. In the 1930s, streamlined highspeed diesel railcars were developed in several countries: In 1945, a batch of 30 Baldwin diesel–electric locomotives, Baldwin 0-6-6-0 1000 ,
3900-480: The first known to be built in the United States. Following this development, the 1923 Kaufman Act banned steam locomotives from New York City, because of severe pollution problems. The response to this law was to electrify high-traffic rail lines. However, electrification was uneconomical to apply to lower-traffic areas. The first regular use of diesel–electric locomotives was in switching (shunter) applications, which were more forgiving than mainline applications of
3978-499: The following year would add Los Angeles, CA , Oakland, CA , and Denver, CO to the destinations of diesel streamliners out of Chicago. The Burlington and Union Pacific streamliners were built by the Budd Company and the Pullman-Standard Company , respectively, using the new Winton engines and power train systems designed by GM's Electro-Motive Corporation . EMC's experimental 1800 hp B-B locomotives of 1935 demonstrated
SECTION 50
#17330847679364056-406: The freight market including their own F series locomotives. GE subsequently dissolved its partnership with ALCO and would emerge as EMD's main competitor in the early 1960s, eventually taking the top position in the locomotive market from EMD. Early diesel–electric locomotives in the United States used direct current (DC) traction motors but alternating current (AC) motors came into widespread use in
4134-555: The limitations of contemporary diesel technology and where the idling economy of diesel relative to steam would be most beneficial. GE entered a collaboration with the American Locomotive Company (ALCO) and Ingersoll-Rand (the "AGEIR" consortium) in 1924 to produce a prototype 300 hp (220 kW) "boxcab" locomotive delivered in July 1925. This locomotive demonstrated that the diesel–electric power unit could provide many of
4212-431: The locomotive business were restricted to making switch engines and steam locomotives. In the early postwar era, EMD dominated the market for mainline locomotives with their E and F series locomotives. ALCO-GE in the late 1940s produced switchers and road-switchers that were successful in the short-haul market. However, EMD launched their GP series road-switcher locomotives in 1949, which displaced all other locomotives in
4290-533: The locomotives still retain "operational status" on the mainline as WDP-3A, with further examples having been scrapped. The first one was delivered in October 1998, under the name of WDP-2. 44 units produced until February 2001 (Indian Railway road number 15501-15544) had dual cab forward design different from other classes of locos built by DLW ( WDM-2 , WDM-3A , WDG-3A and WDP-1 ). These new locomotives have control stand similar to many electric locomotives. They are
4368-473: The locomotives were produced in large numbers by BLW. The locomotive features self diagnostics control using EM2000 onboard microprocessor which was a new technology for Indian Railways back then. Unlike the Co-Co wheel arrangement featured on most locomotives, including its freight hauling variant, WDG-4 , this loco has a Bo1-1Bo wheel arrangement meaning that it has two powered and one unpowered axle per bogie. This
4446-572: The mid-1950s. Generally, diesel traction in Italy was of less importance than in other countries, as it was amongst the most advanced countries in the electrification of the main lines and as Italian geography makes freight transport by sea cheaper than rail transportation even on many domestic connections. Adolphus Busch purchased the American manufacturing rights for the diesel engine in 1898 but never applied this new form of power to transportation. He founded
4524-543: The multiple-unit control systems used for the cab/booster sets and the twin-engine format used with the later Zephyr power units. Both of those features would be used in EMC's later production model locomotives. The lightweight diesel streamliners of the mid-1930s demonstrated the advantages of diesel for passenger service with breakthrough schedule times, but diesel locomotive power would not fully come of age until regular series production of mainline diesel locomotives commenced and it
4602-402: The output of which provides power to the traction motors that drive the locomotive. There is no mechanical connection between the diesel engine and the wheels. The important components of diesel–electric propulsion are the diesel engine (also known as the prime mover ), the main generator/alternator-rectifier, traction motors (usually with four or six axles), and a control system consisting of
4680-580: The performance and reliability of the new 567 model engine in passenger locomotives, EMC was eager to demonstrate diesel's viability in freight service. Following the successful 1939 tour of EMC's FT demonstrator freight locomotive set, the stage was set for dieselization of American railroads. In 1941, ALCO-GE introduced the RS-1 road-switcher that occupied its own market niche while EMD's F series locomotives were sought for mainline freight service. The US entry into World War II slowed conversion to diesel;
4758-478: The prime mover and electric motor were immediately encountered, primarily due to limitations of the Ward Leonard current control system that had been chosen. GE Rail was formed in 1907 and 112 years later, in 2019, was purchased by and merged with Wabtec . A significant breakthrough occurred in 1914, when Hermann Lemp , a GE electrical engineer, developed and patented a reliable control system that controlled
SECTION 60
#17330847679364836-410: The rails to provide better acceleration with heavy trains. Moreover, the original EMD 710 engine was tweaked to produce an output of 4,500 HP instead of the original 4,000 HP. this Up-rated engine was designated as EMD 16N-710G3B-EC, with an RPM of 910 at Notch-8. This locomotive came to be known as the "GT46PACe". One more important change added to this loco was the inclusion of Blended Brake System. This
4914-584: The re-geared versions of the WDM-3A . This was IR's attempt to build a high speed loco on ALCO platform. But the EMD locos came with a much better performance with higher HP rating to kill the prospect of WDP-3As. These units have air brakes only and the gear ratio is 64:19. These locos (classified as WDP-2s at the time) were introduced initially the Chennai Egmore - Kanyakumari Section, hauling many prestigious trains like
4992-450: The required performance for a fast, lightweight passenger train. The second milestone, and the one that got American railroads moving towards diesel, was the 1938 delivery of GM's Model 567 engine that was designed specifically for locomotive use, bringing a fivefold increase in life of some mechanical parts and showing its potential for meeting the rigors of freight service. Diesel–electric railroad locomotion entered mainline service when
5070-405: The success of the custom streamliners, sought to expand the market for diesel power by producing standardized locomotives under their Electro-Motive Corporation . In 1936, EMC's new factory started production of switch engines. In 1937, the factory started producing their new E series streamlined passenger locomotives, which would be upgraded with more reliable purpose-built engines in 1938. Seeing
5148-432: The throttle from notch 2 to notch 4 without stopping at notch 3. This feature was intended to prevent rough train handling due to abrupt power increases caused by rapid throttle motion ("throttle stripping", an operating rules violation on many railroads). Modern locomotives no longer have this restriction, as their control systems are able to smoothly modulate power and avoid sudden changes in train loading regardless of how
5226-479: The throttle setting, as determined by the engine driver and the speed at which the prime mover is running (see Control theory ). Locomotive power output, and therefore speed, is typically controlled by the engine driver using a stepped or "notched" throttle that produces binary -like electrical signals corresponding to throttle position. This basic design lends itself well to multiple unit (MU) operation by producing discrete conditions that assure that all units in
5304-432: The widened cab profile. Since it is a Dual Cab now, it is called as "JT46PACe". The loco features a completely different desk control stand, provided by Medha with digital display screens allowing for remote fault diagnostics. Many locos also have GSM-R based transmission antennae to transmit critical loco info for use by maintenance and signalling staff. It features electro-pneumatic microprocessor based control adapted from
5382-657: The world's first functional diesel–electric railcars were produced for the Königlich-Sächsische Staatseisenbahnen ( Royal Saxon State Railways ) by Waggonfabrik Rastatt with electric equipment from Brown, Boveri & Cie and diesel engines from Swiss Sulzer AG . They were classified as DET 1 and DET 2 ( de.wiki ). Because of a shortage of petrol products during World War I, they remained unused for regular service in Germany. In 1922, they were sold to Swiss Compagnie du Chemin de fer Régional du Val-de-Travers , where they were used in regular service up to
5460-467: Was 95 tonnes and the power was 883 kW (1,184 hp) with a maximum speed of 100 km/h (62 mph). Small numbers of prototype diesel locomotives were produced in a number of countries through the mid-1920s. One of the first domestically developed Diesel vehicles of China was the Dongfeng DMU (东风), produced in 1958 by CSR Sifang . Series production of China's first Diesel locomotive class,
5538-482: Was added to maximise the use of Dynamic brakes by the loco-pilot and therefore minimise the wear and tear on the fixed brake rigging of the coaches and the locomotive. The addition of blended brake is responsible for the subclass to be designated with a 'B'. Some more features are the widened piggy-face cab profile to aid visibility, change in the Traction Motor blower by installing a higher power motor and increase in
5616-592: Was built for the Royal Arsenal in Woolwich , England, using an engine designed by Herbert Akroyd Stuart . It was not a diesel, because it used a hot-bulb engine (also known as a semi-diesel), but it was the precursor of the diesel. Rudolf Diesel considered using his engine for powering locomotives in his 1893 book Theorie und Konstruktion eines rationellen Wärmemotors zum Ersatz der Dampfmaschine und der heute bekannten Verbrennungsmotoren ( Theory and Construction of
5694-678: Was delivered from the United States to the railways of the Soviet Union. In 1947, the London, Midland and Scottish Railway (LMS) introduced the first of a pair of 1,600 hp (1,200 kW) Co-Co diesel–electric locomotives (later British Rail Class D16/1 ) for regular use in the United Kingdom, although British manufacturers such as Armstrong Whitworth had been exporting diesel locomotives since 1930. Fleet deliveries to British Railways, of other designs such as Class 20 and Class 31, began in 1957. Series production of diesel locomotives in Italy began in
5772-442: Was done to reduce the weight of the loco to make it suitable for passenger operations and also to reduce maintenance. The use of the locomotive with the long hood forward configuration has been criticised with respect to the driver's visibility as it is affected due to the protruding radiator section at the hood-end. This criticism has been rejected by the Railways. However, in response, the cab profile of some WDP-4s were widened with
5850-453: Was examined by William Thomson, 1st Baron Kelvin in 1888 who described it as a " Priestman oil engine mounted upon a truck which is worked on a temporary line of rails to show the adaptation of a petroleum engine for locomotive purposes." In 1894, a 20 hp (15 kW) two-axle machine built by Priestman Brothers was used on the Hull Docks . In 1896, an oil-engined railway locomotive
5928-400: Was one of the principal design considerations that had to be solved in early diesel–electric locomotive development and, ultimately, led to the complex control systems in place on modern units. The prime mover's power output is primarily determined by its rotational speed ( RPM ) and fuel rate, which are regulated by a governor or similar mechanism. The governor is designed to react to both
6006-490: Was shown suitable for full-size passenger and freight service. Following their 1925 prototype, the AGEIR consortium produced 25 more units of 300 hp (220 kW) "60 ton" AGEIR boxcab switching locomotives between 1925 and 1928 for several New York City railroads, making them the first series-produced diesel locomotives. The consortium also produced seven twin-engine "100 ton" boxcabs and one hybrid trolley/battery unit with
6084-493: Was used to propel the DRG Class SVT 877 , a high-speed intercity two-car set, and went into series production with other streamlined car sets in Germany starting in 1935. In the United States, diesel–electric propulsion was brought to high-speed mainline passenger service in late 1934, largely through the research and development efforts of General Motors dating back to the late 1920s and advances in lightweight car body design by
#935064