A drumlin , from the Irish word droimnín ("little ridge"), first recorded in 1833, in the classical sense is an elongated hill in the shape of an inverted spoon or half-buried egg formed by glacial ice acting on underlying unconsolidated till or ground moraine . Assemblages of drumlins are referred to as fields or swarms; they can create a landscape which is often described as having a 'basket of eggs topography'.
52-617: Vooremaa (" Drumlin Land" in Estonian ; also Saadjärv Drumlin Field) is a 977 km (377 sq mi) landscape region mostly in Jõgeva County , Estonia . It consists of drumlins and depressions that were formed by glacial accumulation and erosion . All the landscape elements such as relief, vegetation, waterbodies and watercourses as well as settlements follow the northwest-southeast direction of
104-544: A hydrofracture breccia. Hydrothermal clastic rocks are generally restricted to those formed by hydrofracture , the process by which hydrothermal circulation cracks and brecciates the wall rocks and fills them in with veins. This is particularly prominent in epithermal ore deposits and is associated with alteration zones around many intrusive rocks, especially granites . Many skarn and greisen deposits are associated with hydrothermal breccias. A fairly rare form of clastic rock may form during meteorite impact. This
156-431: A biased view of the original mineralogy of the rock. Porosity can also be affected by this process. For example, clay minerals tend to fill up pore space and thereby reducing porosity. In the process of burial, it is possible that siliciclastic deposits may subsequently be uplifted as a result of a mountain building event or erosion . When uplift occurs, it exposes buried deposits to a radically new environment. Because
208-410: A considerably lesser portion of framework grains and minerals. They only make up about 15 percent of framework grains in sandstones and 5% of minerals in shales. Clay mineral groups are mostly present in mudrocks (comprising more than 60% of the minerals) but can be found in other siliciclastic sedimentary rocks at considerably lower levels. Accessory minerals are associated with those whose presence in
260-523: A drumlin as it is repositioned and deposited. A hypothesis that catastrophic sub-glacial floods form drumlins by deposition or erosion challenges conventional explanations for drumlins. It includes deposition of glaciofluvial sediment in cavities scoured into a glacier bed by subglacial meltwater, and remnant ridges left behind by erosion of soft sediment or hard rock by turbulent meltwater. This hypothesis requires huge, subglacial meltwater floods, each of which would raise sea level by tens of centimeters in
312-486: A few weeks. Studies of erosional forms in bedrock at French River, Ontario, Canada, provide evidence for such floods. The recent retreat of a marginal outlet glacier of Hofsjökull in Iceland exposed a drumlin field with more than 50 drumlins ranging from 90 to 320 m (300–1,050 ft) in length, 30 to 105 m (100–340 ft) in width, and 5 to 10 m (16–33 ft) in height. These formed through
364-481: A great resistance to decomposition are categorized as stable, while those that do not are considered less stable. The most common stable mineral in siliciclastic sedimentary rocks is quartz (SiO 2 ). Quartz makes up approximately 65 percent of framework grains present in sandstones and about 30 percent of minerals in the average shale. Less stable minerals present in this type of rocks are feldspars , including both potassium and plagioclase feldspars. Feldspars comprise
416-463: A length to width ratio of between 1.7 and 4.1 and it has been suggested that this ratio can indicate the velocity of the glacier. That is, since ice flows in laminar flow, the resistance to flow is frictional and depends on area of contact; thus, a more elongated drumlin would indicate a lower velocity and a shorter one would indicate a higher velocity. Drumlins and drumlin swarms are glacial landforms composed primarily of glacial till . They form near
468-602: A logarithmic size scale. Siliciclastic rocks are clastic noncarbonate rocks that are composed almost exclusively of silicon, either as forms of quartz or as silicates. The composition of siliciclastic sedimentary rocks includes the chemical and mineralogical components of the framework as well as the cementing material that make up these rocks. Boggs divides them into four categories; major minerals, accessory minerals, rock fragments, and chemical sediments. Major minerals can be categorized into subdivisions based on their resistance to chemical decomposition. Those that possess
520-546: A muddy matrix that leaves little space for precipitation to occur. This is often the case for mudrocks as well. As a result of compaction, the clayey sediments comprising mudrocks are relatively impermeable. Dissolution of framework silicate grains and previously formed carbonate cement may occur during deep burial. Conditions that encourage this are essentially opposite of those required for cementation. Rock fragments and silicate minerals of low stability, such as plagioclase feldspar, pyroxenes , and amphiboles , may dissolve as
572-552: A progression of subglacial depositional and erosional processes, with each horizontal till bed within the drumlin created by an individual surge of the glacier. The above theory for the formation of these Icelandic drumlins best explains one type of drumlin. However, it does not provide a unifying explanation of all drumlins. For example, drumlin fields including drumlins composed entirely of hard bedrock cannot be explained by deposition and erosion of unconsolidated beds. Furthermore, hairpin scours around many drumlins are best explained by
SECTION 10
#1732884640350624-437: A result of increasing burial temperatures and the presence of organic acids in pore waters. The dissolution of frame work grains and cements increases porosity particularly in sandstones. This refers to the process whereby one mineral is dissolved and a new mineral fills the space via precipitation. Replacement can be partial or complete. Complete replacement destroys the identity of the original minerals or rock fragments giving
676-491: A sample's environment of deposition . An example of clastic environment would be a river system in which the full range of grains being transported by the moving water consist of pieces eroded from solid rock upstream. Grain size varies from clay in shales and claystones ; through silt in siltstones ; sand in sandstones ; and gravel , cobble , to boulder sized fragments in conglomerates and breccias . The Krumbein phi (φ) scale numerically orders these terms in
728-498: A sediment is deposited, it becomes subject to cementation through the various stages of diagenesis discussed below. Eogenesis refers to the early stages of diagenesis. This can take place at very shallow depths, ranging from a few meters to tens of meters below the surface. The changes that occur during this diagenetic phase mainly relate to the reworking of the sediments. Compaction and grain repacking, bioturbation , as well as mineralogical changes all occur at varying degrees. Due to
780-399: A stereonet, scientists are able to see if there is a correlation between each clast and the overall orientation of the drumlin: the more similar in orientation and dip of the clasts throughout the drumlin, the more likely it is that they had been deposited during the formation process. If the opposite is true, and there doesn't seem to be a link between the drumlin and the till, it suggests that
832-636: Is a stub . You can help Misplaced Pages by expanding it . Drumlin Drumlins occur in various shapes and sizes, including symmetrical (about the long axis), spindle, parabolic forms, and transverse asymmetrical forms. Generally, they are elongated, oval-shaped hills, with a long axis parallel to the orientation of ice flow and with an up-ice (stoss) face that is generally steeper than the down-ice (lee) face. Drumlins are typically between 250 and 1,000 m (820 and 3,280 ft) long and between 120 and 300 m (390 and 980 ft) wide. Drumlins generally have
884-635: Is a fragment of geological detritus , chunks, and smaller grains of rock broken off other rocks by physical weathering . Geologists use the term clastic to refer to sedimentary rocks and particles in sediment transport , whether in suspension or as bed load , and in sediment deposits. Clastic sedimentary rocks are rocks composed predominantly of broken pieces or clasts of older weathered and eroded rocks. Clastic sediments or sedimentary rocks are classified based on grain size , clast and cementing material ( matrix ) composition, and texture. The classification factors are often useful in determining
936-544: Is cemented together and lithified it becomes known as sandstone. Any particle that is larger than two millimeters is considered gravel. This category includes pebbles , cobbles and boulders. Like sandstone, when gravels are lithified they are considered conglomerates. Conglomerates are coarse grained rocks dominantly composed of gravel sized particles that are typically held together by a finer grained matrix. These rocks are often subdivided into conglomerates and breccias. The major characteristic that divides these two categories
988-412: Is compaction. As sediment transport and deposition continues, new sediments are deposited atop previously deposited beds, burying them. Burial continues and the weight of overlying sediments causes an increase in temperature and pressure. This increase in temperature and pressure causes loose grained sediments become tightly packed, reducing porosity, essentially squeezing water out of the sediment. Porosity
1040-514: Is further reduced by the precipitation of minerals into the remaining pore spaces. The final stage in the process is diagenesis and will be discussed in detail below. Cementation is the diagenetic process by which coarse clastic sediments become lithified or consolidated into hard, compact rocks, usually through the deposition or precipitation of minerals in the spaces between the individual grains of sediment. Cementation can occur simultaneously with deposition or at another time. Furthermore, once
1092-416: Is parallel to the direction of movement of the glacier at the time of formation. Inspection of aerial photos of these fields reveals glacier's progress through the landscape. The Múlajökull drumlins of Hofsjökull are also arrayed in a splayed fan distribution around an arc of 180°. This field surrounds the current lobe of the glacier and provide a view into the past, showing the previous extent and motion of
SECTION 20
#17328846403501144-456: Is reserved for mudrocks that are laminated, while mudstone refers those that are not. Siliciclastic rocks initially form as loosely packed sediment deposits including gravels, sands, and muds. The process of turning loose sediment into hard sedimentary rocks is called lithification . During the process of lithification, sediments undergo physical, chemical and mineralogical changes before becoming rock. The primary physical process in lithification
1196-429: Is the amount of rounding. The gravel sized particles that make up conglomerates are well rounded while in breccias they are angular. Conglomerates are common in stratigraphic successions of most, if not all, ages but only make up one percent or less, by weight, of the total sedimentary rock mass. In terms of origin and depositional mechanisms they are very similar to sandstones. As a result, the two categories often contain
1248-733: The Alps , in the Republic of Ireland ( County Leitrim , County Monaghan , County Mayo and County Cavan ), in Northern Ireland ( County Fermanagh , County Armagh , and in particular County Down ), Germany, Hindsholm in Denmark, Finland and Greenland . The majority of drumlins observed in North America were formed during the Wisconsin glaciation . The largest drumlin fields in the world formed beneath
1300-450: The Dott scheme , which uses the relative abundance of quartz, feldspar, and lithic framework grains and the abundance of muddy matrix between these larger grains. Rocks that are classified as mudrocks are very fine grained. Silt and clay represent at least 50% of the material that mudrocks are composed of. Classification schemes for mudrocks tend to vary, but most are based on the grain size of
1352-471: The Last Glacial Period . Recently formed drumlins often incorporate a thin "A" soil horizon (often referred to as "topsoil" which accumulated after formation) and a thin "Bw" horizon (commonly referred to as " subsoil "). The "C" horizon, which shows little evidence of being affected by soil forming processes (weathering), is close to the surface, and may be at the surface on an eroded drumlin. Below
1404-768: The Laurentide Ice Sheet and are found in Canada — Nunavut, the Northwest Territories, northern Saskatchewan, northern Manitoba, northern Ontario and northern Quebec. Drumlins occur in every Canadian province and territory. Clusters of thousands of drumlins are found in: In the United States , drumlins are common in: Drumlins are found at Tiksi , Sakha Republic , Russia. Extensive drumlin fields are found in Patagonia . A major drumlin field extends on both sides of
1456-631: The Strait of Magellan covering the surroundings of Punta Arenas' Carlos Ibáñez del Campo Airport , Isabel Island and an area south of Gente Grande Bay in Tierra del Fuego Island . Land areas around Beagle Channel host also drumlin fields; for example Gable Island and northern Navarino Island . In 2007, drumlins were observed to be forming beneath the ice of a West Antarctic ice stream. Clastic rock Clastic rocks are composed of fragments, or clasts, of pre-existing minerals and rock. A clast
1508-481: The chemical and mineralogic make-up of the single or varied fragments and the cementing material ( matrix ) holding the clasts together as a rock. These differences are most commonly used in the framework grains of sandstones. Sandstones rich in quartz are called quartz arenites , those rich in feldspar are called arkoses , and those rich in lithics are called lithic sandstones . Siliciclastic sedimentary rocks are composed of mainly silicate particles derived from
1560-742: The C horizon the drumlin consists of multiple beds of till deposited by lodgment and bed deformation. On drumlins with longer exposure (e.g. in the Lake Ontario drumlin field in New York State) soil development is more advanced, for example with the formation of clay-enriched "Bt" horizons. Besides the Icelandic drumlins mentioned above, the literature also documents extensive drumlin fields in England, Scotland and Wales, Switzerland, Poland, Estonia ( Vooremaa ), Latvia , Sweden, around Lake Constance north of
1612-547: The activity of organisms. Despite being close to the surface, eogenesis does provide conditions for important mineralogical changes to occur. This mainly involves the precipitation of new minerals. Mineralogical changes that occur during eogenesis are dependent on the environment in which that sediment has been deposited. For example, the formation of pyrite is characteristic of reducing conditions in marine environments. Pyrite can form as cement, or replace organic materials, such as wood fragments. Other important reactions include
Vooremaa - Misplaced Pages Continue
1664-430: The addition of soft sediment to a core. Thus, accretion and erosion of soft sediment by processes of subglacial deformation do not present unifying theories for all drumlins—some are composed of residual bedrock. There are two main theories of drumlin formation. The first, constructional , suggests that they form as sediment is deposited from subglacial waterways laden with till including gravel, clay, silt, and sand. As
1716-581: The composition of sandstone. They generally make up most of the gravel size particles in conglomerates but contribute only a very small amount to the composition of mudrocks . Though they sometimes are, rock fragments are not always sedimentary in origin. They can also be metamorphic or igneous . Chemical cements vary in abundance but are predominantly found in sandstones. The two major types are silicate based and carbonate based. The majority of silica cements are composed of quartz, but can include chert , opal , feldspars and zeolites . Composition includes
1768-435: The drumlin forms, the scrape and flow of the glacier continues around it and the material deposited accumulates, the clasts align themselves with direction of flow. It is because of this process that geologists are able to determine how the drumlin formed using till fabric analysis, the study of the orientation and dip of particles within a till matrix. By examining the till particles and plotting their orientation and dip on
1820-501: The drumlins. The drumlins are 2–13 km (1.2–8.1 mi) long, 1–2 km (0.62–1.24 mi) wide and up to 70 m (230 ft) high. 47% of Vooremaa is cultivated and villages are located on the feet of the drumlins. One fifth (20.3%) of the area is covered by wetlands. The highest point is Laiuse drumlin, at 144 m (472 ft). 58°39′54″N 26°35′21″E / 58.6649°N 26.5892°E / 58.6649; 26.5892 This Jõgeva County location article
1872-411: The erosive action of horseshoe vortices around obstacles in a turbulent boundary layer. Semi-submerged or drowned drumlins can be observed where rising sea-levels flooded the low-lying areas in between drumlin ridges. The most notable example of this is Clew Bay in the west of Ireland , which contains hundreds of drumlin islands and islets. It was once a field of drumlins that was "drowned" following
1924-866: The field, it may at times be difficult to distinguish between a debris flow sedimentary breccia and a colluvial breccia, especially if one is working entirely from drilling information. Sedimentary breccias are an integral host rock for many sedimentary exhalative deposits . Clastic igneous rocks include pyroclastic volcanic rocks such as tuff , agglomerate and intrusive breccias , as well as some marginal eutaxitic and taxitic intrusive morphologies. Igneous clastic rocks are broken by flow, injection or explosive disruption of solid or semi-solid igneous rocks or lavas . Igneous clastic rocks can be divided into two classes: Clastic metamorphic rocks include breccias formed in faults , as well as some protomylonite and pseudotachylite . Occasionally, metamorphic rocks can be brecciated via hydrothermal fluids, forming
1976-654: The formation of chlorite , glauconite , illite and iron oxide (if oxygenated pore water is present). The precipitation of potassium feldspar, quartz overgrowths, and carbonate cements also occurs under marine conditions. In non marine environments oxidizing conditions are almost always prevalent, meaning iron oxides are commonly produced along with kaolin group clay minerals. The precipitation of quartz and calcite cements may also occur in non marine conditions. As sediments are buried deeper, load pressures become greater resulting in tight grain packing and bed thinning. This causes increased pressure between grains thus increasing
2028-591: The ice. Drumlins may comprise layers of clay , silt , sand, gravel and boulders in various proportions; perhaps indicating that material was repeatedly added to a core, which may be of rock or glacial till . Alternatively, drumlins may be residual, with the landforms resulting from erosion of material between the landforms. The dilatancy of glacial till was invoked as a major factor in drumlin formation. In other cases, drumlin fields include drumlins made up entirely of hard bedrock (e.g. granite or well- lithified limestone ). These drumlins cannot be explained by
2080-431: The major constituents. In mudrocks, these are generally silt, and clay. According to Blatt, Middleton and Murray mudrocks that are composed mainly of silt particles are classified as siltstones. In turn, rocks that possess clay as the majority particle are called claystones. In geology, a mixture of both silt and clay is called mud. Rocks that possess large amounts of both clay and silt are called mudstones. In some cases
2132-445: The margin of glacial systems, and within zones of fast flow deep within ice sheets , and are commonly found with other major glacially-formed features (including tunnel valleys , eskers , scours, and exposed bedrock erosion ). Drumlins are often encountered in drumlin fields of similarly shaped, sized and oriented hills. Many Pleistocene drumlin fields are observed to occur in a fan-like distribution. The long axis of each drumlin
Vooremaa - Misplaced Pages Continue
2184-424: The other main theory of formation could be true. The second theory proposes that drumlins form by erosion of material from an unconsolidated bed. Erosion under a glacier in the immediate vicinity of a drumlin can be on the order of a meter's depth of sediment per year, depending heavily on the shear stress acting on the ground below the glacier from the weight of the glacier itself, with the eroded sediment forming
2236-405: The pores between grain of sediment. The cement that is produced may or may not have the same chemical composition as the sediment. In sandstones, framework grains are often cemented by silica or carbonate. The extent of cementation is dependent on the composition of the sediment. For example, in lithic sandstones, cementation is less extensive because pore space between framework grains is filled with
2288-424: The process brings material to or closer to the surface, sediments that undergo uplift are subjected to lower temperatures and pressures as well as slightly acidic rain water. Under these conditions, framework grains and cement are again subjected to dissolution and in turn increasing porosity. On the other hand, telogenesis can also change framework grains to clays, thus reducing porosity. These changes are dependent on
2340-410: The rock are not directly important to the classification of the specimen. These generally occur in smaller amounts in comparison to the quartz, and feldspars. Furthermore, those that do occur are generally heavy minerals or coarse grained micas (both muscovite and biotite ). Rock fragments also occur in the composition of siliciclastic sedimentary rocks and are responsible for about 10–15 percent of
2392-433: The same sedimentary structures. Sandstones are medium-grained rocks composed of rounded or angular fragments of sand size, that often but not always have a cement uniting them together. These sand-size particles are often quartz but there are a few common categories and a wide variety of classification schemes that classify sandstones based on composition. Classification schemes vary widely, but most geologists have adopted
2444-399: The shallow depths, sediments undergo only minor compaction and grain rearrangement during this stage. Organisms rework sediment near the depositional interface by burrowing, crawling, and in some cases sediment ingestion. This process can destroy sedimentary structures that were present upon deposition of the sediment. Structures such as lamination will give way to new structures associated with
2496-542: The solubility of grains. As a result, the partial dissolution of silicate grains occurs. This is called pressure solutions. Chemically speaking, increases in temperature can also cause chemical reaction rates to increase. This increases the solubility of most common minerals (aside from evaporites). Furthermore, beds thin and porosity decreases allowing cementation to occur by the precipitation of silica or carbonate cements into remaining pore space. In this process minerals crystallize from watery solutions that percolate through
2548-479: The specific conditions that the rock is exposed as well as the composition of the rock and pore waters. Specific pore waters, can cause the further precipitation of carbonate or silica cements. This process can also encourage the process of oxidation on a variety of iron bearing minerals. Sedimentary breccias are a type of clastic sedimentary rock which are composed of angular to subangular, randomly oriented clasts of other sedimentary rocks. They may form either: In
2600-419: The term can also be used to refer to a family of sheet silicate minerals. Silt refers to particles that have a diameter between .062 and .0039 millimeters. The term mud is used when clay and silt particles are mixed in the sediment; mudrock is the name of the rock created with these sediments. Furthermore, particles that reach diameters between .062 and 2 millimeters fall into the category of sand. When sand
2652-405: The term shale is also used to refer to mudrocks and is still widely accepted by most. However, others have used the term shale to further divide mudrocks based on the percentage of clay constituents. The plate-like shape of clay allows its particles to stack up one on top of another, creating laminae or beds. The more clay present in a given specimen, the more laminated a rock is. Shale, in this case,
SECTION 50
#17328846403502704-421: The weathering of older rocks and pyroclastic volcanism. While grain size, clast and cementing material (matrix) composition, and texture are important factors when regarding composition, siliciclastic sedimentary rocks are classified according to grain size into three major categories: conglomerates , sandstones , and mudrocks . The term clay is used to classify particles smaller than .0039 millimeters. However,
#349650