In photography, a viewfinder is a device on a camera that a photographer uses to determine exactly where the camera is pointed, and approximately how much of that view will be photographed. A viewfinder can be mechanical (indicating only direction and approximate view), with simple optical components, with precision optics and optical functions, or a digital accessory device used with digital cameras.
86-409: These cameras had no separate viewfinder. The exact image (although upside-down and reversed left-right) was viewed on a ground glass installed either in a replaceable plateholder, or in a spring back where springs hold the ground glass at the focus plane until a photographic plateholder is slid in front of it. Spring backs usually had a flip-up cover protecting the ground glass. A black focusing cloth
172-422: A softer illumination without giving hard shadows . Ground glass surfaces are often found on the glass equipment of chemical laboratories . Glass flasks, stoppers, valves, funnels, and tubing are often connected together by ground glass joints , matching pairs of conical or spherical surfaces that have been ground to a precise shape. Flasks and test tubes often have a small ground-glass label area on
258-442: A waist-level viewfinder. Single-lens reflex (SLR) cameras use the camera lens itself, to completely eliminate parallax , the significant field-of-view error for close subjects caused by the offset distance between the viewfinder's lens and the camera's lens. Early SLRs were plate cameras , with a mechanism to insert a mirror between the lens and the film which reflected the light upwards, where it could be seen at waist level on
344-430: A broad band, or extremely low reflectivity at a single wavelength. Constructive interference in thin films can create a strong reflection of light in a range of wavelengths, which can be narrow or broad depending on the design of the coating. These films are used to make dielectric mirrors , interference filters , heat reflectors , and filters for colour separation in colour television cameras. This interference effect
430-619: A changing index of refraction; this principle allows for lenses and the focusing of light. The simplest case of refraction occurs when there is an interface between a uniform medium with index of refraction n 1 and another medium with index of refraction n 2 . In such situations, Snell's Law describes the resulting deflection of the light ray: n 1 sin θ 1 = n 2 sin θ 2 {\displaystyle n_{1}\sin \theta _{1}=n_{2}\sin \theta _{2}} where θ 1 and θ 2 are
516-399: A converging lens has positive focal length, while a diverging lens has negative focal length. Smaller focal length indicates that the lens has a stronger converging or diverging effect. The focal length of a simple lens in air is given by the lensmaker's equation . Ray tracing can be used to show how images are formed by a lens. For a thin lens in air, the location of the image is given by
602-399: A desired aspect ratio . Because most films shot with spherical lenses are shot full-frame and later masked during projection to a more widescreen aspect ratio, it is important not only for the operator to be able to see the boundaries of that aspect ratio, but also for the ground glass to be properly aligned in the camera so that the markings are an exact representation of the boundaries of
688-435: A ground glass screen. When ready to take the picture, the mirror was pivoted out of the way (without moving the camera). Later SLR still cameras had a mechanism which flipped the mirror out of the way when the shutter button was pressed, opened and closed the shutter, and then moved the mirror back. The Zeiss Ikon Contax S was the first SLR camera to allow easy eye-level viewing by using a roof pentaprism to laterally reverse
774-558: A separate viewfinder. For those cameras, the electronic image is shown on a small accessory screen for composition and focusing purposes. CCTVs and webcams do not need any viewfinding device. Ground glass Ground glass is glass whose surface has been ground to produce a flat but rough ( matte ) finish, in which the glass is in small sharp fragments. Ground glass surfaces have many applications, ranging from ornamentation on windows and table glassware to scientific uses in optics and laboratory glassware . In photography ,
860-403: A sheet of ground glass is used for the manual focusing in some still and movie cameras ; the ground-glass viewer is inserted in the back of the camera, and the lens opened to its widest aperture . This projects the scene on the ground glass upside down. The photographer focuses and composes using this projected image, sometimes with the aid of a magnifying glass (or loupe ). In order to see
946-477: A single scalar quantity to represent the electric field of the light wave, rather than using a vector model with orthogonal electric and magnetic vectors. The Huygens–Fresnel equation is one such model. This was derived empirically by Fresnel in 1815, based on Huygens' hypothesis that each point on a wavefront generates a secondary spherical wavefront, which Fresnel combined with the principle of superposition of waves. The Kirchhoff diffraction equation , which
SECTION 10
#17330863395451032-522: A single point on the image, while chromatic aberration occurs because the index of refraction of the lens varies with the wavelength of the light. In physical optics, light is considered to propagate as waves. This model predicts phenomena such as interference and diffraction, which are not explained by geometric optics. The speed of light waves in air is approximately 3.0×10 m/s (exactly 299,792,458 m/s in vacuum ). The wavelength of visible light waves varies between 400 and 700 nm, but
1118-437: A spectrum. The discovery of this phenomenon when passing light through a prism is famously attributed to Isaac Newton. Some media have an index of refraction which varies gradually with position and, therefore, light rays in the medium are curved. This effect is responsible for mirages seen on hot days: a change in index of refraction air with height causes light rays to bend, creating the appearance of specular reflections in
1204-465: A thickness of one-fourth the wavelength of incident light. The reflected wave from the top of the film and the reflected wave from the film/material interface are then exactly 180° out of phase, causing destructive interference. The waves are only exactly out of phase for one wavelength, which would typically be chosen to be near the centre of the visible spectrum, around 550 nm. More complex designs using multiple layers can achieve low reflectivity over
1290-476: A variety of technologies and everyday objects, including mirrors , lenses , telescopes , microscopes , lasers , and fibre optics . Optics began with the development of lenses by the ancient Egyptians and Mesopotamians . The earliest known lenses, made from polished crystal , often quartz , date from as early as 2000 BC from Crete (Archaeological Museum of Heraclion, Greece). Lenses from Rhodes date around 700 BC, as do Assyrian lenses such as
1376-525: A wide range of scientific topics, and discussed light from four different perspectives: an epistemology of light, a metaphysics or cosmogony of light, an etiology or physics of light, and a theology of light, basing it on the works of Aristotle and Platonism. Grosseteste's most famous disciple, Roger Bacon , wrote works citing a wide range of recently translated optical and philosophical works, including those of Alhazen, Aristotle, Avicenna , Averroes , Euclid, al-Kindi, Ptolemy, Tideus, and Constantine
1462-479: Is a half mirror prism that reflect data from LCD to the optical viewfinder, so we can see both the shooting frame and the shooting data. A button can change the hybrid function to electronical viewfinder by blocking the image through the optical viewfinder with moving a half mirror prism to be a straight up mirror. Viewfinders are used for virtually all cameras whether still or movie, film, electronic analog (Television) or digital. Many digital sensor cameras do not have
1548-427: Is a simple paraxial physical optics model for the propagation of coherent radiation such as laser beams. This technique partially accounts for diffraction, allowing accurate calculations of the rate at which a laser beam expands with distance, and the minimum size to which the beam can be focused. Gaussian beam propagation thus bridges the gap between geometric and physical optics. In the absence of nonlinear effects,
1634-486: Is considered to travel in straight lines, while in physical optics, light is considered as an electromagnetic wave. Geometrical optics can be viewed as an approximation of physical optics that applies when the wavelength of the light used is much smaller than the size of the optical elements in the system being modelled. Geometrical optics , or ray optics , describes the propagation of light in terms of "rays" which travel in straight lines, and whose paths are governed by
1720-484: Is derived using Maxwell's equations, puts the Huygens-Fresnel equation on a firmer physical foundation. Examples of the application of Huygens–Fresnel principle can be found in the articles on diffraction and Fraunhofer diffraction . More rigorous models, involving the modelling of both electric and magnetic fields of the light wave, are required when dealing with materials whose electric and magnetic properties affect
1806-411: Is that ground-up glass (i.e., glass broken into tiny fragments) can kill if swallowed. In fact, this is a myth, as it is largely ineffective. The Guy de Maupassant short story " La Confession " concerns a jealous girl who poisons her older sister's suitor by inserting ground-up glass into cake. The term ground-glass, as it relates to poisoning, is a corruption of grain d'église, the term given by
SECTION 20
#17330863395451892-409: Is to the lens, the further the image is from the lens. With diverging lenses, incoming parallel rays diverge after going through the lens, in such a way that they seem to have originated at a spot one focal length in front of the lens. This is the lens's front focal point. Rays from an object at a finite distance are associated with a virtual image that is closer to the lens than the focal point, and on
1978-406: Is usually done using simplified models. The most common of these, geometric optics , treats light as a collection of rays that travel in straight lines and bend when they pass through or reflect from surfaces. Physical optics is a more comprehensive model of light, which includes wave effects such as diffraction and interference that cannot be accounted for in geometric optics. Historically,
2064-477: Is viewed through a magnifying eyepiece, and due to a rubber eyepiece it can be viewed perfectly even in bright light. The second viewfinder would be larger, of a higher resolution, and may be mounted on the side of the camera. Because it consumes more power, a method is often provided to turn it off to save energy. In late 2010, Fujifilm announced hybrid viewfinder of optical viewfinder and electronic viewfinder in one viewfinder for its highend compact cameras . There
2150-476: The Book of Optics ( Kitab al-manazir ) in which he explored reflection and refraction and proposed a new system for explaining vision and light based on observation and experiment. He rejected the "emission theory" of Ptolemaic optics with its rays being emitted by the eye, and instead put forward the idea that light reflected in all directions in straight lines from all points of the objects being viewed and then entered
2236-607: The Nimrud lens . The ancient Romans and Greeks filled glass spheres with water to make lenses. These practical developments were followed by the development of theories of light and vision by ancient Greek and Indian philosophers, and the development of geometrical optics in the Greco-Roman world . The word optics comes from the ancient Greek word ὀπτική , optikē ' appearance, look ' . Greek philosophy on optics broke down into two opposing theories on how vision worked,
2322-449: The emission theory , the idea that visual perception is accomplished by rays emitted by the eyes. He also commented on the parity reversal of mirrors in Timaeus . Some hundred years later, Euclid (4th–3rd century BC) wrote a treatise entitled Optics where he linked vision to geometry , creating geometrical optics . He based his work on Plato's emission theory wherein he described
2408-468: The intromission theory and the emission theory . The intromission approach saw vision as coming from objects casting off copies of themselves (called eidola) that were captured by the eye. With many propagators including Democritus , Epicurus , Aristotle and their followers, this theory seems to have some contact with modern theories of what vision really is, but it remained only speculation lacking any experimental foundation. Plato first articulated
2494-448: The superposition principle , which is a wave-like property not predicted by Newton's corpuscle theory. This work led to a theory of diffraction for light and opened an entire area of study in physical optics. Wave optics was successfully unified with electromagnetic theory by James Clerk Maxwell in the 1860s. The next development in optical theory came in 1899 when Max Planck correctly modelled blackbody radiation by assuming that
2580-463: The surface normal , a line perpendicular to the surface at the point where the ray hits. The incident and reflected rays and the normal lie in a single plane, and the angle between the reflected ray and the surface normal is the same as that between the incident ray and the normal. This is known as the Law of Reflection . For flat mirrors , the law of reflection implies that images of objects are upright and
2666-554: The African . Bacon was able to use parts of glass spheres as magnifying glasses to demonstrate that light reflects from objects rather than being released from them. The first wearable eyeglasses were invented in Italy around 1286. This was the start of the optical industry of grinding and polishing lenses for these "spectacles", first in Venice and Florence in the thirteenth century, and later in
Viewfinder - Misplaced Pages Continue
2752-551: The French in India to the seeds of the Jaquirity or Rosary Pea plant ( Abrus precatorius ). The seeds contain the extremely toxic lectin abrin , whose toxicity is over 30 times that of ricin . These seeds have been used in India to kill cattle, and in homicides. Captain F. C. Briggs, adjutant to General Reginald Dyer , died of 'powdered glass' poisoning before he could give evidence to
2838-714: The Hunter Commission examining the Jallianwalla Bagh massacre . This article was originally based on " Ground glass back " in Camerapedia, retrieved at an unknown date under the GNU Free Documentation License . Optical#Photography Optics is the branch of physics that studies the behaviour and properties of light , including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes
2924-548: The Huygens–Fresnel principle states that every point of a wavefront is associated with the production of a new disturbance, it is possible for a wavefront to interfere with itself constructively or destructively at different locations producing bright and dark fringes in regular and predictable patterns. Interferometry is the science of measuring these patterns, usually as a means of making precise determinations of distances or angular resolutions . The Michelson interferometer
3010-484: The amplitude of the wave, which for light is associated with a brightening of the waveform in that location. Alternatively, if the two waves of the same wavelength and frequency are out of phase, then the wave crests will align with wave troughs and vice versa. This results in destructive interference and a decrease in the amplitude of the wave, which for light is associated with a dimming of the waveform at that location. See below for an illustration of this effect. Since
3096-542: The angle of incidence. Plutarch (1st–2nd century AD) described multiple reflections on spherical mirrors and discussed the creation of magnified and reduced images, both real and imaginary, including the case of chirality of the images. During the Middle Ages , Greek ideas about optics were resurrected and extended by writers in the Muslim world . One of the earliest of these was Al-Kindi ( c. 801 –873) who wrote on
3182-435: The angles between the normal (to the interface) and the incident and refracted waves, respectively. The index of refraction of a medium is related to the speed, v , of light in that medium by n = c / v , {\displaystyle n=c/v,} where c is the speed of light in vacuum . Snell's Law can be used to predict the deflection of light rays as they pass through linear media as long as
3268-459: The behaviour of visible , ultraviolet , and infrared light. Light is a type of electromagnetic radiation , and other forms of electromagnetic radiation such as X-rays , microwaves , and radio waves exhibit similar properties. Most optical phenomena can be accounted for by using the classical electromagnetic description of light, however complete electromagnetic descriptions of light are often difficult to apply in practice. Practical optics
3354-418: The camera operator the boundaries of the frame or the center reticle , or any other important information. Because the ground glass is positioned between the mirror shutter and the viewfinder, it does not interfere with the image reaching the film and is therefore not recorded over the final image, but rather serves as a reference for the camera operator. Ground glasses commonly serve as a framing reference for
3440-449: The distance (as if on the surface of a pool of water). Optical materials with varying indexes of refraction are called gradient-index (GRIN) materials. Such materials are used to make gradient-index optics . For light rays travelling from a material with a high index of refraction to a material with a low index of refraction, Snell's law predicts that there is no θ 2 when θ 1 is large. In this case, no transmission occurs; all
3526-426: The exchange of energy between light and matter only occurred in discrete amounts he called quanta . In 1905, Albert Einstein published the theory of the photoelectric effect that firmly established the quantization of light itself. In 1913, Niels Bohr showed that atoms could only emit discrete amounts of energy, thus explaining the discrete lines seen in emission and absorption spectra . The understanding of
Viewfinder - Misplaced Pages Continue
3612-574: The eye, although he was unable to correctly explain how the eye captured the rays. Alhazen's work was largely ignored in the Arabic world but it was anonymously translated into Latin around 1200 A.D. and further summarised and expanded on by the Polish monk Witelo making it a standard text on optics in Europe for the next 400 years. In the 13th century in medieval Europe, English bishop Robert Grosseteste wrote on
3698-535: The feud between the two lasted until Hooke's death. In 1704, Newton published Opticks and, at the time, partly because of his success in other areas of physics, he was generally considered to be the victor in the debate over the nature of light. Newtonian optics was generally accepted until the early 19th century when Thomas Young and Augustin-Jean Fresnel conducted experiments on the interference of light that firmly established light's wave nature. Young's famous double slit experiment showed that light followed
3784-474: The focus to be smeared out in space. In particular, spherical mirrors exhibit spherical aberration . Curved mirrors can form images with a magnification greater than or less than one, and the magnification can be negative, indicating that the image is inverted. An upright image formed by reflection in a mirror is always virtual, while an inverted image is real and can be projected onto a screen. Refraction occurs when light travels through an area of space that has
3870-411: The gloss of surfaces such as mirrors, which reflect light in a simple, predictable way. This allows for the production of reflected images that can be associated with an actual ( real ) or extrapolated ( virtual ) location in space. Diffuse reflection describes non-glossy materials, such as paper or rock. The reflections from these surfaces can only be described statistically, with the exact distribution of
3956-464: The image better, a dark cloth is used to block out light, whence came the image of the old-time photographer with his head stuck under a large black cloth. A ground glass is also used in the reflex finder of an SLR or TLR camera. In motion-picture cameras, the ground glass is a small, usually removable piece of transparent glass that sits between the rotary disc shutter and the viewfinder. The ground glass usually contains precise markings to show
4042-435: The image recorded on film. Ground or frosted glass is widely used as a weather- and heat-proof light diffuser in ambient lighting , namely on glass covers or enclosures for lamp fixtures, and sometimes on incandescent bulbs . Its functions include reducing glare and preventing retinal damage by direct sight of the lamp filament. This hides unsightly details of the lamp and fixture without blocking its light, yielding
4128-416: The incident rays came. This is called retroreflection . Mirrors with curved surfaces can be modelled by ray tracing and using the law of reflection at each point on the surface. For mirrors with parabolic surfaces , parallel rays incident on the mirror produce reflected rays that converge at a common focus . Other curved surfaces may also focus light, but with aberrations due to the diverging shape causing
4214-418: The indexes of refraction and the geometry of the media are known. For example, the propagation of light through a prism results in the light ray being deflected depending on the shape and orientation of the prism. In most materials, the index of refraction varies with the frequency of the light, known as dispersion . Taking this into account, Snell's Law can be used to predict how a prism will disperse light into
4300-436: The interaction between light and matter that followed from these developments not only formed the basis of quantum optics but also was crucial for the development of quantum mechanics as a whole. The ultimate culmination, the theory of quantum electrodynamics , explains all optics and electromagnetic processes in general as the result of the exchange of real and virtual photons. Quantum optics gained practical importance with
4386-426: The interaction of light with the material. For instance, the behaviour of a light wave interacting with a metal surface is quite different from what happens when it interacts with a dielectric material. A vector model must also be used to model polarised light. Numerical modeling techniques such as the finite element method , the boundary element method and the transmission-line matrix method can be used to model
SECTION 50
#17330863395454472-477: The invention of the compound optical microscope around 1595, and the refracting telescope in 1608, both of which appeared in the spectacle making centres in the Netherlands. In the early 17th century, Johannes Kepler expanded on geometric optics in his writings, covering lenses, reflection by flat and curved mirrors, the principles of pinhole cameras , inverse-square law governing the intensity of light, and
4558-491: The inventions of the maser in 1953 and of the laser in 1960. Following the work of Paul Dirac in quantum field theory , George Sudarshan , Roy J. Glauber , and Leonard Mandel applied quantum theory to the electromagnetic field in the 1950s and 1960s to gain a more detailed understanding of photodetection and the statistics of light. Classical optics is divided into two main branches: geometrical (or ray) optics and physical (or wave) optics. In geometrical optics, light
4644-553: The inverted camera image (the reflex mirror had already vertically reversed the image). SLR movie cameras used a beamsplitter partial mirror to split the camera image between the shutter and film, and the viewfinder. A major advantage of SLR viewfinders is that any change of camera lens did not affect the viewing accuracy, and accurate camera focus did not depend on correct linking or calibration. Some sophisticated 20th century cameras with direct viewfinders had coincidence (split-image) rangefinders , initially with separate windows from
4730-504: The laws of reflection and refraction at interfaces between different media. These laws were discovered empirically as far back as 984 AD and have been used in the design of optical components and instruments from then until the present day. They can be summarised as follows: When a ray of light hits the boundary between two transparent materials, it is divided into a reflected and a refracted ray. The laws of reflection and refraction can be derived from Fermat's principle which states that
4816-449: The light is modelled as a collection of particles called " photons ". Quantum optics deals with the application of quantum mechanics to optical systems. Optical science is relevant to and studied in many related disciplines including astronomy , various engineering fields, photography , and medicine (particularly ophthalmology and optometry , in which it is called physiological optics). Practical applications of optics are found in
4902-422: The light is reflected. This phenomenon is called total internal reflection and allows for fibre optics technology. As light travels down an optical fibre, it undergoes total internal reflection allowing for essentially no light to be lost over the length of the cable. A device that produces converging or diverging light rays due to refraction is known as a lens . Lenses are characterized by their focal length :
4988-443: The mathematical rules of perspective and described the effects of refraction qualitatively, although he questioned that a beam of light from the eye could instantaneously light up the stars every time someone blinked. Euclid stated the principle of shortest trajectory of light, and considered multiple reflections on flat and spherical mirrors. Ptolemy , in his treatise Optics , held an extramission-intromission theory of vision:
5074-489: The merits of Aristotelian and Euclidean ideas of optics, favouring the emission theory since it could better quantify optical phenomena. In 984, the Persian mathematician Ibn Sahl wrote the treatise "On burning mirrors and lenses", correctly describing a law of refraction equivalent to Snell's law. He used this law to compute optimum shapes for lenses and curved mirrors . In the early 11th century, Alhazen (Ibn al-Haytham) wrote
5160-405: The object and image distances are positive if the object and image are on opposite sides of the lens. Incoming parallel rays are focused by a converging lens onto a spot one focal length from the lens, on the far side of the lens. This is called the rear focal point of the lens. Rays from an object at a finite distance are focused further from the lens than the focal distance; the closer the object
5246-401: The optical explanations of astronomical phenomena such as lunar and solar eclipses and astronomical parallax . He was also able to correctly deduce the role of the retina as the actual organ that recorded images, finally being able to scientifically quantify the effects of different types of lenses that spectacle makers had been observing over the previous 300 years. After the invention of
SECTION 60
#17330863395455332-676: The path taken between two points by a ray of light is the path that can be traversed in the least time. Geometric optics is often simplified by making the paraxial approximation , or "small angle approximation". The mathematical behaviour then becomes linear, allowing optical components and systems to be described by simple matrices. This leads to the techniques of Gaussian optics and paraxial ray tracing , which are used to find basic properties of optical systems, such as approximate image and object positions and magnifications . Reflections can be divided into two types: specular reflection and diffuse reflection . Specular reflection describes
5418-511: The propagation of light in systems which cannot be solved analytically. Such models are computationally demanding and are normally only used to solve small-scale problems that require accuracy beyond that which can be achieved with analytical solutions. All of the results from geometrical optics can be recovered using the techniques of Fourier optics which apply many of the same mathematical and analytical techniques used in acoustic engineering and signal processing . Gaussian beam propagation
5504-416: The ray-based model of light was developed first, followed by the wave model of light. Progress in electromagnetic theory in the 19th century led to the discovery that light waves were in fact electromagnetic radiation. Some phenomena depend on light having both wave-like and particle-like properties . Explanation of these effects requires quantum mechanics . When considering light's particle-like properties,
5590-416: The rays (or flux) from the eye formed a cone, the vertex being within the eye, and the base defining the visual field. The rays were sensitive, and conveyed information back to the observer's intellect about the distance and orientation of surfaces. He summarized much of Euclid and went on to describe a way to measure the angle of refraction , though he failed to notice the empirical relationship between it and
5676-423: The reflected light depending on the microscopic structure of the material. Many diffuse reflectors are described or can be approximated by Lambert's cosine law , which describes surfaces that have equal luminance when viewed from any angle. Glossy surfaces can give both specular and diffuse reflection. In specular reflection, the direction of the reflected ray is determined by the angle the incident ray makes with
5762-405: The resolution of the photographer's eye ). Modern electronic viewfinders (EVF) are LCD or OLED based display devices. In addition to its primary purpose, an electronic viewfinder can be used to replay previously captured material, and as an on-screen display to browse through menus. A still camera's optical viewfinder typically has one or more small supplementary LED displays surrounding
5848-415: The same distance behind the mirror as the objects are in front of the mirror. The image size is the same as the object size. The law also implies that mirror images are parity inverted, which we perceive as a left-right inversion. Images formed from reflection in two (or any even number of) mirrors are not parity inverted. Corner reflectors produce reflected rays that travel back in the direction from which
5934-407: The same side of the lens as the object. The closer the object is to the lens, the closer the virtual image is to the lens. As with mirrors, upright images produced by a single lens are virtual, while inverted images are real. Lenses suffer from aberrations that distort images. Monochromatic aberrations occur because the geometry of the lens does not perfectly direct rays from each object point to
6020-459: The side of folding cameras . These viewfinders were fitted to inexpensive cameras. Twin-lens reflex (TLR) cameras use a viewfinding lens with the same focal length as the camera lens, so it has the same field of view and focus properties. With a mirror, of similar size to the film, held at 45°, it projects an upright image onto a focusing ground glass screen viewable from above. The camera can be then be held steady at waist level. Although
6106-399: The side. (Pencil writing on ground glass is largely inert, rub-proof and waterproof, but can be easily erased.) An optical microscope may include a ground- or frosted-glass diffuser to evenly illuminate the field behind the specimen. Microscope slides are often ground on the sides and beveled on the corners to soften the edges for safer handling. Popular belief for many centuries
6192-405: The simple equation 1 S 1 + 1 S 2 = 1 f , {\displaystyle {\frac {1}{S_{1}}}+{\frac {1}{S_{2}}}={\frac {1}{f}},} where S 1 is the distance from the object to the lens, θ 2 is the distance from the lens to the image, and f is the focal length of the lens. In the sign convention used here,
6278-475: The smaller one was centered in the larger, and the larger rectangle would give an indication of what would be included. Cameras with sportsfinders usually had optical viewfinders also. A single divergent (plano-concave) lens, in front of a frame, when close to the eye, acts as a viewfinder. Adding a convergent (plano-convex) lens makes a very short reversed Galilean (upright image) telescope . For movie camera or others with changeable lenses, outline marks on one of
6364-464: The spectacle making centres in both the Netherlands and Germany. Spectacle makers created improved types of lenses for the correction of vision based more on empirical knowledge gained from observing the effects of the lenses rather than using the rudimentary optical theory of the day (theory which for the most part could not even adequately explain how spectacles worked). This practical development, mastery, and experimentation with lenses led directly to
6450-444: The superposition principle can be used to predict the shape of interacting waveforms through the simple addition of the disturbances. This interaction of waves to produce a resulting pattern is generally termed "interference" and can result in a variety of outcomes. If two waves of the same wavelength and frequency are in phase , both the wave crests and wave troughs align. This results in constructive interference and an increase in
6536-467: The telescope, Kepler set out the theoretical basis on how they worked and described an improved version, known as the Keplerian telescope , using two convex lenses to produce higher magnification. Optical theory progressed in the mid-17th century with treatises written by philosopher René Descartes , which explained a variety of optical phenomena including reflection and refraction by assuming that light
6622-440: The term "light" is also often applied to infrared (0.7–300 μm) and ultraviolet radiation (10–400 nm). The wave model can be used to make predictions about how an optical system will behave without requiring an explanation of what is "waving" in what medium. Until the middle of the 19th century, most physicists believed in an "ethereal" medium in which the light disturbance propagated. The existence of electromagnetic waves
6708-557: The view of the scene is often provided. It typically shows the location and state of the camera's provided auto-focus points. This overlay can also provide lines or a grid which assist in picture composition . It is not uncommon for a camera to have two viewfinders. For example, a digital still camera may have an optical viewfinder and an electronic one. The latter can be used to replay previously captured material, has an on-screen display , and can be switched off to save power. A camcorder may have two viewfinders, both electronic. The first
6794-406: The view of the scene. On a film camera, these displays show shooting information such as the shutter speed and aperture and, for autofocus cameras, provide an indication that the image is correctly focussed. Digital still cameras will typically also display information such as the current ISO setting and the number of remaining shots which can be taken in a burst. Another display which overlays
6880-614: The viewfinder lens was similar to the camera lens, the optical quality was less important and so the cost is reduced. TLR viewfinders do not have the interrupted viewing and shutter lag of the SLR type and so is preferred for dance photography. Reinhold Heidecke cited his experience with periscope focusing from the German trenches in 1916 as the inspiration for the Rolleiflex line in 1929. Some similar-looking cameras are actually simple box cameras with
6966-431: The viewfinder lenses could show the different fields of view for the different camera lenses. Simple reflecting viewfinders, known also as "brilliant finders", comprised a small forward-looking lens, a small mirror at 45° behind it, and a lens at the top; the user held the camera at waist level and looked down into the lens, where a small image could be seen. Such viewfinders were integrated into box cameras , and fitted to
7052-543: The viewfinder, later integrated with it; they were called rangefinder cameras . Cameras with interchangeable lenses had to indicate the field of view of each lens in the viewfinder; more usually, interchangeable viewfinders to match the lenses were used. Viewfinders can be optical or electronic . An optical viewfinder is simply a reversed telescope that displays what the camera sees. It has many drawbacks, but it also has advantages; it consumes no power, it does not wash out in sunlight, and it has "full resolution" (i.e.
7138-400: Was a famous instrument which used interference effects to accurately measure the speed of light. The appearance of thin films and coatings is directly affected by interference effects. Antireflective coatings use destructive interference to reduce the reflectivity of the surfaces they coat, and can be used to minimise glare and unwanted reflections. The simplest case is a single layer with
7224-540: Was emitted by objects which produced it. This differed substantively from the ancient Greek emission theory. In the late 1660s and early 1670s, Isaac Newton expanded Descartes's ideas into a corpuscle theory of light , famously determining that white light was a mix of colours that can be separated into its component parts with a prism . In 1690, Christiaan Huygens proposed a wave theory for light based on suggestions that had been made by Robert Hooke in 1664. Hooke himself publicly criticised Newton's theories of light and
7310-467: Was predicted in 1865 by Maxwell's equations . These waves propagate at the speed of light and have varying electric and magnetic fields which are orthogonal to one another, and also to the direction of propagation of the waves. Light waves are now generally treated as electromagnetic waves except when quantum mechanical effects have to be considered. Many simplified approximations are available for analysing and designing optical systems. Most of these use
7396-409: Was used with larger models. Later referred to as "sports finders", for many sports and newspaper applications optical viewfinders gave too small an image and were inconvenient to use for scenes that were changing rapidly. For these purposes a simple arrangement of two wire rectangles, a smaller one nearer the eye and a larger one further away, was used, without optics; the two rectangles were aligned so
#544455