Misplaced Pages

Vienna Gasometers

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Vienna Gasometers are four gasholder houses , built as part of the municipal gas works in Vienna , Austria . The original gasholder houses were constructed from 1896 to 1899. They are located in the 11th district, Simmering . They were used from 1899 to 1984 to house gas holders , also known as gasometers, each with a storage capacity of 90,000 cubic meters (3 million cu. ft.).

#895104

123-631: After the transition from town gas to natural gas between 1969 and 1978 the three gasholder houses were no longer used and were shut down. Only the brick exterior walls were preserved. The structures have found new residential and commercial use in modern times. The Gasometers were built from 1896 to 1899 in the Simmering district of Vienna near the Gaswerk Simmering gas works of the district. The containers were used to help supply Vienna with town gas , facilities which had previously been provided by

246-510: A dinitrogen complex to be discovered was [Ru(NH 3 ) 5 (N 2 )] (see figure at right), and soon many other such complexes were discovered. These complexes , in which a nitrogen molecule donates at least one lone pair of electrons to a central metal cation, illustrate how N 2 might bind to the metal(s) in nitrogenase and the catalyst for the Haber process : these processes involving dinitrogen activation are vitally important in biology and in

369-473: A bridging ligand, donating all three electron pairs from the triple bond ( μ 3 -N 2 ). A few complexes feature multiple N 2 ligands and some feature N 2 bonded in multiple ways. Since N 2 is isoelectronic with carbon monoxide (CO) and acetylene (C 2 H 2 ), the bonding in dinitrogen complexes is closely allied to that in carbonyl compounds, although N 2 is a weaker σ -donor and π -acceptor than CO. Theoretical studies show that σ donation

492-633: A consignment of LNG from Lake Charles, Louisiana , US, to a new LNG terminal on Canvey Island , in the Thames estuary in Essex, England. A 212-mile (341 km) long high-pressure trunk pipeline was built from Canvey Island to Bradford. The pipeline and its branches provided Area Gas Boards with natural gas for use in reforming processes to make town gas. A large-scale LNG reception plant was commissioned on Canvey in 1964, which received LNG from Algeria in two dedicated tankers, each of 12,000 tonnes. The slow decline of

615-426: A dilute gas it is less dangerous and is thus used industrially to bleach and sterilise flour. Nitrogen tribromide (NBr 3 ), first prepared in 1975, is a deep red, temperature-sensitive, volatile solid that is explosive even at −100 °C. Nitrogen triiodide (NI 3 ) is still more unstable and was only prepared in 1990. Its adduct with ammonia, which was known earlier, is very shock-sensitive: it can be set off by

738-406: A feedstock to chemical reactions that produce gas. The first process used was the carbonization and partial pyrolysis of coal . The off gases liberated in the high-temperature carbonization ( coking ) of coal in coke ovens were collected, scrubbed and used as fuel. Depending on the goal of the plant, the desired product was either a high quality coke for metallurgical use, with the gas being

861-496: A feedstock to manufacture town gas. These facilities utilised the chemical reaction processes described above. The rise of oil as a feedstock to manufacture town gas is shown on the graph below. The peak usage in 1968/9 and subsequent decline coincides with the availability of North Sea gas which, over the next few years, displaced town gas as a primary fuel and led to the decline of oil as a feedstock for gas making, as shown. Oil-based town gas production, millions of therms By

984-495: A liquid, it is a very good solvent with a high heat of vaporisation (enabling it to be used in vacuum flasks), that also has a low viscosity and electrical conductivity and high dielectric constant , and is less dense than water. However, the hydrogen bonding in NH 3 is weaker than that in H 2 O due to the lower electronegativity of nitrogen compared to oxygen and the presence of only one lone pair in NH 3 rather than two in H 2 O. It

1107-483: A long time, sources of nitrogen compounds were limited. Natural sources originated either from biology or deposits of nitrates produced by atmospheric reactions. Nitrogen fixation by industrial processes like the Frank–Caro process (1895–1899) and Haber–Bosch process (1908–1913) eased this shortage of nitrogen compounds, to the extent that half of global food production now relies on synthetic nitrogen fertilisers. At

1230-411: A municipal archive. There are about 800 apartments, two thirds within the historic brick walls, with 1600 regular tenants, as well as about 70 student apartments. 48°11′06″N 16°25′12″E  /  48.185°N 16.420°E  / 48.185; 16.420 Town gas Coal gas is a flammable gaseous fuel made from coal and supplied to the user via a piped distribution system. It

1353-494: A preference for forming multiple bonds, typically with carbon, oxygen, or other nitrogen atoms, through p π –p π interactions. Thus, for example, nitrogen occurs as diatomic molecules and therefore has very much lower melting (−210 °C) and boiling points (−196 °C) than the rest of its group, as the N 2 molecules are only held together by weak van der Waals interactions and there are very few electrons available to create significant instantaneous dipoles. This

SECTION 10

#1732869139896

1476-591: A problem which is only exacerbated by its low gyromagnetic ratio , (only 10.14% that of H). As a result, the signal-to-noise ratio for H is about 300 times as much as that for N at the same magnetic field strength. This may be somewhat alleviated by isotopic enrichment of N by chemical exchange or fractional distillation. N-enriched compounds have the advantage that under standard conditions, they do not undergo chemical exchange of their nitrogen atoms with atmospheric nitrogen, unlike compounds with labelled hydrogen , carbon, and oxygen isotopes that must be kept away from

1599-406: A producer (generator), carburettor and a super heater connected in series with gas pipes and valves. During a make run, steam would be passed through the generator to make blue water gas. From the generator the hot water gas would pass into the top of the carburettor where light petroleum oils would be injected into the gas stream. The light oils would be thermocracked as they came in contact with

1722-470: A promising ceramic if not for the difficulty of working with and sintering it. In particular, the group 13 nitrides, most of which are promising semiconductors , are isoelectronic with graphite, diamond, and silicon carbide and have similar structures: their bonding changes from covalent to partially ionic to metallic as the group is descended. In particular, since the B–N unit is isoelectronic to C–C, and carbon

1845-400: A side product, or the production of a high quality gas, with coke being the side product. Coke plants are typically associated with metallurgical facilities such as smelters or blast furnaces , while gas works typically served urban areas. A facility used to manufacture coal gas, carburetted water gas (CWG), and oil gas is today generally referred to as a manufactured gas plant (MGP). In

1968-457: A significant dynamic surface coverage on Pluto and outer moons of the Solar System such as Triton . Even at the low temperatures of solid nitrogen it is fairly volatile and can sublime to form an atmosphere, or condense back into nitrogen frost. It is very weak and flows in the form of glaciers, and on Triton geysers of nitrogen gas come from the polar ice cap region. The first example of

2091-606: A very high energy density, that could be used as powerful propellants or explosives. Under extremely high pressures (1.1 million  atm ) and high temperatures (2000 K), as produced in a diamond anvil cell , nitrogen polymerises into the single-bonded cubic gauche crystal structure. This structure is similar to that of diamond , and both have extremely strong covalent bonds , resulting in its nickname "nitrogen diamond". At atmospheric pressure , molecular nitrogen condenses ( liquefies ) at 77  K (−195.79 ° C ) and freezes at 63 K (−210.01 °C) into

2214-400: A wide variety of feedstocks in some mixture of air, oxygen, or steam, to reduce the latter to hydrogen and carbon monoxide although some destructive distillation may also occur. Manufactured gas can be made by two processes: carbonization or gasification . Carbonization refers to the devolatilization of an organic feedstock to yield gas and char . Gasification is the process of subjecting

2337-465: Is oxatetrazole (N 4 O), an aromatic ring. Nitrous oxide (N 2 O), better known as laughing gas, is made by thermal decomposition of molten ammonium nitrate at 250 °C. This is a redox reaction and thus nitric oxide and nitrogen are also produced as byproducts. It is mostly used as a propellant and aerating agent for sprayed canned whipped cream , and was formerly commonly used as an anaesthetic. Despite appearances, it cannot be considered to be

2460-439: Is ONF 3 , which has aroused interest due to the short N–O distance implying partial double bonding and the highly polar and long N–F bond. Tetrafluorohydrazine, unlike hydrazine itself, can dissociate at room temperature and above to give the radical NF 2 •. Fluorine azide (FN 3 ) is very explosive and thermally unstable. Dinitrogen difluoride (N 2 F 2 ) exists as thermally interconvertible cis and trans isomers, and

2583-520: Is a common element in the universe , estimated at seventh in total abundance in the Milky Way and the Solar System . At standard temperature and pressure , two atoms of the element bond to form N 2 , a colourless and odourless diatomic gas . N 2 forms about 78% of Earth's atmosphere , making it the most abundant chemical species in air. Because of the volatility of nitrogen compounds, nitrogen

SECTION 20

#1732869139896

2706-419: Is a fuming, colourless liquid that smells similar to ammonia. Its physical properties are very similar to those of water (melting point 2.0 °C, boiling point 113.5 °C, density 1.00 g/cm ). Despite it being an endothermic compound, it is kinetically stable. It burns quickly and completely in air very exothermically to give nitrogen and water vapour. It is a very useful and versatile reducing agent and

2829-491: Is a more important factor allowing the formation of the M–N bond than π back-donation, which mostly only weakens the N–N bond, and end-on ( η ) donation is more readily accomplished than side-on ( η ) donation. Today, dinitrogen complexes are known for almost all the transition metals , accounting for several hundred compounds. They are normally prepared by three methods: Occasionally

2952-467: Is a weak base in aqueous solution ( p K b 4.74); its conjugate acid is ammonium , NH 4 . It can also act as an extremely weak acid, losing a proton to produce the amide anion, NH 2 . It thus undergoes self-dissociation, similar to water, to produce ammonium and amide. Ammonia burns in air or oxygen, though not readily, to produce nitrogen gas; it burns in fluorine with a greenish-yellow flame to give nitrogen trifluoride . Reactions with

3075-401: Is a weak diprotic acid with the structure HON=NOH (p K a1 6.9, p K a2 11.6). Acidic solutions are quite stable but above pH 4 base-catalysed decomposition occurs via [HONNO] to nitrous oxide and the hydroxide anion. Hyponitrites (involving the N 2 O 2 anion) are stable to reducing agents and more commonly act as reducing agents themselves. They are an intermediate step in

3198-399: Is a weaker base than ammonia. It is also commonly used as a rocket fuel. Hydrazine is generally made by reaction of ammonia with alkaline sodium hypochlorite in the presence of gelatin or glue: (The attacks by hydroxide and ammonia may be reversed, thus passing through the intermediate NHCl instead.) The reason for adding gelatin is that it removes metal ions such as Cu that catalyses

3321-612: Is also evidence for the asymmetric red dimer O=N–O=N when nitric oxide is condensed with polar molecules. It reacts with oxygen to give brown nitrogen dioxide and with halogens to give nitrosyl halides. It also reacts with transition metal compounds to give nitrosyl complexes, most of which are deeply coloured. Blue dinitrogen trioxide (N 2 O 3 ) is only available as a solid because it rapidly dissociates above its melting point to give nitric oxide, nitrogen dioxide (NO 2 ), and dinitrogen tetroxide (N 2 O 4 ). The latter two compounds are somewhat difficult to study individually because of

3444-481: Is demonstrated in this graph. Coal-based town gas production, millions of therms New technologies for manufacturing coal gas using oil, refinery tail gases, and light distillates were developed. Processes included the Lurgi Process , catalytic reforming , the catalytic rich gas process, steam reforming of rich gas, and the gas recycle hydrogenator process. The catalytic rich gas process used natural gas as

3567-404: Is essentially intermediate in size between boron and nitrogen, much of organic chemistry finds an echo in boron–nitrogen chemistry, such as in borazine ("inorganic benzene "). Nevertheless, the analogy is not exact due to the ease of nucleophilic attack at boron due to its deficiency in electrons, which is not possible in a wholly carbon-containing ring. The largest category of nitrides are

3690-530: Is highly toxic . Other compositions contain additional calorific gases such as methane , produced by the Fischer–Tropsch process , and volatile hydrocarbons together with small quantities of non-calorific gases such as carbon dioxide and nitrogen . Prior to the development of natural gas supply and transmission—during the 1940s and 1950s in the United States and during the late 1960s and 1970s in

3813-515: Is known. Industrially, ammonia (NH 3 ) is the most important compound of nitrogen and is prepared in larger amounts than any other compound because it contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilisers. It is a colourless alkaline gas with a characteristic pungent smell. The presence of hydrogen bonding has very significant effects on ammonia, conferring on it its high melting (−78 °C) and boiling (−33 °C) points. As

Vienna Gasometers - Misplaced Pages Continue

3936-434: Is mildly toxic in concentrations above 100 mg/kg, but small amounts are often used to cure meat and as a preservative to avoid bacterial spoilage. It is also used to synthesise hydroxylamine and to diazotise primary aromatic amines as follows: Nitrite is also a common ligand that can coordinate in five ways. The most common are nitro (bonded from the nitrogen) and nitrito (bonded from an oxygen). Nitro-nitrito isomerism

4059-629: Is mostly unreactive at room temperature, but it will nevertheless react with lithium metal and some transition metal complexes. This is due to its bonding, which is unique among the diatomic elements at standard conditions in that it has an N≡N triple bond . Triple bonds have short bond lengths (in this case, 109.76 pm) and high dissociation energies (in this case, 945.41 kJ/mol), and are thus very strong, explaining dinitrogen's low level of chemical reactivity. Other nitrogen oligomers and polymers may be possible. If they could be synthesised, they may have potential applications as materials with

4182-486: Is much more common, making up 99.634% of natural nitrogen, and the second (which is slightly heavier) makes up the remaining 0.366%. This leads to an atomic weight of around 14.007 u. Both of these stable isotopes are produced in the CNO cycle in stars , but N is more common as its proton capture is the rate-limiting step. N is one of the five stable odd–odd nuclides (a nuclide having an odd number of protons and neutrons);

4305-682: Is not possible for its vertical neighbours; thus, the nitrogen oxides , nitrites , nitrates , nitro- , nitroso -, azo -, and diazo -compounds, azides , cyanates , thiocyanates , and imino -derivatives find no echo with phosphorus, arsenic, antimony, or bismuth. By the same token, however, the complexity of the phosphorus oxoacids finds no echo with nitrogen. Setting aside their differences, nitrogen and phosphorus form an extensive series of compounds with one another; these have chain, ring, and cage structures. Table of thermal and physical properties of nitrogen (N 2 ) at atmospheric pressure: Nitrogen has two stable isotopes : N and N. The first

4428-449: Is now a restored gasworks museum). The Portadown site has been cleared and is now the subject of a long-term experiment into the use of bacteria for the purpose of cleaning up contaminated industrial land. As well as requiring little processing before use, natural gas is non-toxic; the carbon monoxide (CO) in town gas made it extremely poisonous, accidental poisoning and suicide by gas being commonplace. Poisoning from natural gas appliances

4551-660: Is of interest for the preparation of explosives. It is a deliquescent , colourless crystalline solid that is sensitive to light. In the solid state it is ionic with structure [NO 2 ] [NO 3 ] ; as a gas and in solution it is molecular O 2 N–O–NO 2 . Hydration to nitric acid comes readily, as does analogous reaction with hydrogen peroxide giving peroxonitric acid (HOONO 2 ). It is a violent oxidising agent. Gaseous dinitrogen pentoxide decomposes as follows: Many nitrogen oxoacids are known, though most of them are unstable as pure compounds and are known only as aqueous solutions or as salts. Hyponitrous acid (H 2 N 2 O 2 )

4674-505: Is only due to incomplete combustion, which creates CO, and flue leaks to living accommodation. As with town gas, a small amount of foul-smelling substance ( mercaptan ) is added to the gas to indicate to the user that there is a leak or an unlit burner, the gas having no odour of its own. The organisation of the British gas industry adapted to these changes, first, by the Gas Act 1965 by empowering

4797-521: Is prepared by passing an electric discharge through nitrogen gas at 0.1–2 mmHg, which produces atomic nitrogen along with a peach-yellow emission that fades slowly as an afterglow for several minutes even after the discharge terminates. Given the great reactivity of atomic nitrogen, elemental nitrogen usually occurs as molecular N 2 , dinitrogen. This molecule is a colourless, odourless, and tasteless diamagnetic gas at standard conditions: it melts at −210 °C and boils at −196 °C. Dinitrogen

4920-443: Is produced from O (in water) via an (n,p) reaction , in which the O atom captures a neutron and expels a proton. It has a short half-life of about 7.1 s, but its decay back to O produces high-energy gamma radiation (5 to 7 MeV). Because of this, access to the primary coolant piping in a pressurised water reactor must be restricted during reactor power operation. It is a sensitive and immediate indicator of leaks from

5043-402: Is produced when coal is heated strongly in the absence of air. Town gas is a more general term referring to manufactured gaseous fuels produced for sale to consumers and municipalities. The original coal gas was produced by the coal gasification reaction, and the burnable component consisted of a mixture of carbon monoxide and hydrogen in roughly equal quantities by volume. Thus, coal gas

Vienna Gasometers - Misplaced Pages Continue

5166-487: Is relatively rare in the solid parts of the Earth. It was first discovered and isolated by Scottish physician Daniel Rutherford in 1772 and independently by Carl Wilhelm Scheele and Henry Cavendish at about the same time. The name nitrogène was suggested by French chemist Jean-Antoine-Claude Chaptal in 1790 when it was found that nitrogen was present in nitric acid and nitrates . Antoine Lavoisier suggested instead

5289-502: Is shown in the graph below. Until 1968 this was from supplies of LNG from Algeria, until North Sea gas was available from 1968. Natural gas available, millions of therms The exploitation of the North Sea gas reserves , entailing landing gas at Easington , Bacton and St Fergus made viable the building of a national distribution grid, of over 3,000 miles (4,800 km), consisting of two parallel and interconnected pipelines running

5412-474: Is significant. It is a weak acid with p K a 3.35 at 18 °C. They may be titrimetrically analysed by their oxidation to nitrate by permanganate . They are readily reduced to nitrous oxide and nitric oxide by sulfur dioxide , to hyponitrous acid with tin (II), and to ammonia with hydrogen sulfide . Salts of hydrazinium N 2 H 5 react with nitrous acid to produce azides which further react to give nitrous oxide and nitrogen. Sodium nitrite

5535-479: Is similar to that in nitrogen, but one extra electron is added to a π * antibonding orbital and thus the bond order has been reduced to approximately 2.5; hence dimerisation to O=N–N=O is unfavourable except below the boiling point (where the cis isomer is more stable) because it does not actually increase the total bond order and because the unpaired electron is delocalised across the NO molecule, granting it stability. There

5658-404: Is smaller than those of boron (84 pm) and carbon (76 pm), while it is larger than those of oxygen (66 pm) and fluorine (57 pm). The nitride anion, N , is much larger at 146 pm, similar to that of the oxide (O : 140 pm) and fluoride (F : 133 pm) anions. The first three ionisation energies of nitrogen are 1.402, 2.856, and 4.577 MJ·mol , and the sum of

5781-520: Is the most important nitrogen radioisotope, being relatively long-lived enough to use in positron emission tomography (PET), although its half-life is still short and thus it must be produced at the venue of the PET, for example in a cyclotron via proton bombardment of O producing N and an alpha particle . The radioisotope N is the dominant radionuclide in the coolant of pressurised water reactors or boiling water reactors during normal operation. It

5904-400: Is the simplest stable molecule with an odd number of electrons. In mammals, including humans, it is an important cellular signalling molecule involved in many physiological and pathological processes. It is formed by catalytic oxidation of ammonia. It is a colourless paramagnetic gas that, being thermodynamically unstable, decomposes to nitrogen and oxygen gas at 1100–1200 °C. Its bonding

6027-476: Is the strongest π donor known among ligands (the second-strongest is O ). Nitrido complexes are generally made by the thermal decomposition of azides or by deprotonating ammonia, and they usually involve a terminal {≡N} group. The linear azide anion ( N 3 ), being isoelectronic with nitrous oxide , carbon dioxide , and cyanate , forms many coordination complexes. Further catenation is rare, although N 4 (isoelectronic with carbonate and nitrate )

6150-640: Is thermodynamically stable, and most readily produced by the electrolysis of molten ammonium fluoride dissolved in anhydrous hydrogen fluoride . Like carbon tetrafluoride , it is not at all reactive and is stable in water or dilute aqueous acids or alkalis. Only when heated does it act as a fluorinating agent, and it reacts with copper , arsenic, antimony, and bismuth on contact at high temperatures to give tetrafluorohydrazine (N 2 F 4 ). The cations NF 4 and N 2 F 3 are also known (the latter from reacting tetrafluorohydrazine with strong fluoride-acceptors such as arsenic pentafluoride ), as

6273-503: The Greek word άζωτικός (azotikos), "no life", due to it being asphyxiant . In an atmosphere of pure nitrogen, animals died and flames were extinguished. Though Lavoisier's name was not accepted in English since it was pointed out that all gases but oxygen are either asphyxiant or outright toxic, it is used in many languages (French, Italian, Portuguese, Polish, Russian, Albanian, Turkish, etc.;

SECTION 50

#1732869139896

6396-435: The anhydride of hyponitrous acid (H 2 N 2 O 2 ) because that acid is not produced by the dissolution of nitrous oxide in water. It is rather unreactive (not reacting with the halogens, the alkali metals, or ozone at room temperature, although reactivity increases upon heating) and has the unsymmetrical structure N–N–O (N≡N O ↔ N=N =O): above 600 °C it dissociates by breaking the weaker N–O bond. Nitric oxide (NO)

6519-575: The nucleic acids ( DNA and RNA ) and in the energy transfer molecule adenosine triphosphate . The human body contains about 3% nitrogen by mass, the fourth most abundant element in the body after oxygen, carbon, and hydrogen. The nitrogen cycle describes the movement of the element from the air, into the biosphere and organic compounds, then back into the atmosphere. Nitrogen is a constituent of every major pharmacological drug class, including antibiotics . Many drugs are mimics or prodrugs of natural nitrogen-containing signal molecules : for example,

6642-399: The 1850s by Sir William Siemens . The incandescent fuel bed would be alternately blasted with air followed by steam. The air reactions during the blow cycle are exothermic, heating up the bed, while the steam reactions during the make cycle, are endothermic and cool down the bed. The products from the air cycle contain non-calorific nitrogen and are exhausted out the stack while the products of

6765-432: The 1860s. Gas oil (an early form of gasoline) was the flammable waste product from kerosene refining, made from the lightest and most volatile fractions (tops) of crude oil. In 1875 Thaddeus S. C. Lowe invented the carburetted water gas process. This process revolutionized the manufactured gas industry and was the standard technology until the end of manufactured gas era. A CWG generating set consisted of three elements;

6888-428: The 1960s, manufactured gas, compared with its main rival in the energy market, electricity, was considered "nasty, smelly, dirty and dangerous" (to quote market research of the time) and seemed doomed to lose market share still further, except for cooking where its controllability gave it marked advantages over both electricity and solid fuel. The development of more efficient gas fires assisted gas to resist competition in

7011-557: The 2s and 2p orbitals, three of which (the p-electrons) are unpaired. It has one of the highest electronegativities among the elements (3.04 on the Pauling scale), exceeded only by chlorine (3.16), oxygen (3.44), and fluorine (3.98). (The light noble gases , helium , neon , and argon , would presumably also be more electronegative, and in fact are on the Allen scale.) Following periodic trends, its single-bond covalent radius of 71 pm

7134-478: The English firm Inter Continental Gas Association (ICGA). Once the contracts with the ICGA expired, the city decided to construct facilities to handle its own gas needs. The Gasometers were retired in 1985 because Vienna transitioned from town gas and coal gas to natural gas . The Vienna Gasometer was featured in the 1987 James Bond film The Living Daylights . Vienna undertook a remodelling and revitalization of

7257-623: The French nitrogène , coined in 1790 by French chemist Jean-Antoine Chaptal (1756–1832), from the French nitre ( potassium nitrate , also called saltpetre ) and the French suffix -gène , "producing", from the Greek -γενής (-genes, "begotten"). Chaptal's meaning was that nitrogen is the essential part of nitric acid , which in turn was produced from nitre . In earlier times, nitre had been confused with Egyptian "natron" ( sodium carbonate ) – called νίτρον (nitron) in Greek ;– which, despite

7380-619: The Gas Council to acquire and supply gas to the twelve area gas boards . Then, the Gas Act 1972 formed the British Gas Corporation as a single commercial entity, embracing all the twelve area gas boards, allowing them to acquire, distribute and market gas and gas appliances to industrial commercial and domestic customers throughout the UK. In 1986, British Gas was privatised and the government no longer has any direct control over it. During

7503-473: The Gasometers, although people had begun moving in as early as May 2001. The four Gasometers structures each held a cylindrical telescopic gas holder , each with a volume of about 90,000 m³ (3 million cu. ft.) seated in a water basin, each enclosed by a red-brick facade. They are each 70 metres (230 ft) tall and 60 metres (200 ft) in diameter. The Gasometers were gutted during the remodelling and only

SECTION 60

#1732869139896

7626-523: The German Stickstoff similarly refers to the same characteristic, viz. ersticken "to choke or suffocate") and still remains in English in the common names of many nitrogen compounds, such as hydrazine and compounds of the azide ion. Finally, it led to the name " pnictogens " for the group headed by nitrogen, from the Greek πνίγειν "to choke". The English word nitrogen (1794) entered the language from

7749-484: The LNG plant on Canvey. The Fuel Policy White Paper of 1967 (Cmd. 3438) pointed the industry in the direction of building up the use of natural gas speedily to 'enable the country to benefit as soon as possible from the advantages of this new indigenous energy source'. As a result, there was a 'rush to gas' for use in peak load electricity generation and in low grade uses in industry. The growth in availability of natural gas

7872-733: The Middle Ages. Alchemists knew nitric acid as aqua fortis (strong water), as well as other nitrogen compounds such as ammonium salts and nitrate salts. The mixture of nitric and hydrochloric acids was known as aqua regia (royal water), celebrated for its ability to dissolve gold , the king of metals. The discovery of nitrogen is attributed to the Scottish physician Daniel Rutherford in 1772, who called it noxious air . Though he did not recognise it as an entirely different chemical substance, he clearly distinguished it from Joseph Black's "fixed air" , or carbon dioxide. The fact that there

7995-854: The N anion, although charge separation is not actually complete even for these highly electropositive elements. However, the alkali metal azides NaN 3 and KN 3 , featuring the linear N 3 anion, are well-known, as are Sr(N 3 ) 2 and Ba(N 3 ) 2 . Azides of the B-subgroup metals (those in groups 11 through 16 ) are much less ionic, have more complicated structures, and detonate readily when shocked. Many covalent binary nitrides are known. Examples include cyanogen ((CN) 2 ), triphosphorus pentanitride (P 3 N 5 ), disulfur dinitride (S 2 N 2 ), and tetrasulfur tetranitride (S 4 N 4 ). The essentially covalent silicon nitride (Si 3 N 4 ) and germanium nitride (Ge 3 N 4 ) are also known: silicon nitride, in particular, would make

8118-450: The N≡N bond may be formed directly within a metal complex, for example by directly reacting coordinated ammonia (NH 3 ) with nitrous acid (HNO 2 ), but this is not generally applicable. Most dinitrogen complexes have colours within the range white-yellow-orange-red-brown; a few exceptions are known, such as the blue [{Ti( η -C 5 H 5 ) 2 } 2 -(N 2 )]. Nitrogen bonds to almost all

8241-476: The Second World War as petroleum shortages forced Nazi Germany to develop the Fischer–Tropsch synthesis to produce synthetic fuel for aircraft and tanks. The by-products of coal gas manufacture included coke , coal tar , sulfur and ammonia and these were all useful products. Dyes, medicines such as sulfa drugs , saccharine , and dozens of organic compounds are made from coal tar. The coal used, and

8364-470: The United Kingdom and Australia—almost all gas for fuel and lighting was manufactured from coal. Town gas was supplied to households via municipally owned piped distribution systems. Sometimes, this was called syn gas , in contrast to natural gas. At the time, a frequent method of committing suicide was the inhalation of gas from an unlit oven. With the head and upper body placed inside the appliance,

8487-418: The ability to form coordination complexes by donating its lone pairs of electrons. There are some parallels between the chemistry of ammonia NH 3 and water H 2 O. For example, the capacity of both compounds to be protonated to give NH 4 and H 3 O or deprotonated to give NH 2 and OH , with all of these able to be isolated in solid compounds. Nitrogen shares with both its horizontal neighbours

8610-417: The atmosphere. The N: N ratio is commonly used in stable isotope analysis in the fields of geochemistry , hydrology , paleoclimatology and paleoceanography , where it is called δ N . Of the thirteen other isotopes produced synthetically, ranging from N to N, N has a half-life of ten minutes and the remaining isotopes have half-lives less than eight seconds. Given the half-life difference, N

8733-435: The beta hexagonal close-packed crystal allotropic form. Below 35.4 K (−237.6 °C) nitrogen assumes the cubic crystal allotropic form (called the alpha phase). Liquid nitrogen , a colourless fluid resembling water in appearance, but with 80.8% of the density (the density of liquid nitrogen at its boiling point is 0.808 g/mL), is a common cryogen . Solid nitrogen has many crystalline modifications. It forms

8856-414: The brick exterior and parts of the roof were left standing. Coal gas was dry-distilled from coal and was stored in these containers before it was distributed into the city gas network. The " town gas " was originally used only by the street lamps, but in 1910, its use for cooking and heating in private homes was introduced. Indoor facilities include a music hall, a movie theatre, a student dormitory, and

8979-616: The coal gas, but would leave behind a crumbly, low-quality coke not suitable for metallurgical processes. Coal or coke oven gas typically had a calorific value between 10 and 20 megajoules per cubic metre (270 and 540 Btu/cu ft); with values around 20 MJ/m (540 Btu/cu ft) being typical. The advent of electric lighting forced utilities to search for other markets for manufactured gas. MGPs that once almost exclusively produced lighting gas shifted their efforts towards supplying gas for heating and cooking, and even refrigeration and cooling. Fuel gas for industrial use

9102-498: The concentrated carbon monoxide would kill quickly. Sylvia Plath famously ended her life with this method. Originally created as a by-product of the coking process, its use developed during the 19th and early 20th centuries tracking the Industrial Revolution and urbanization . By-products from the production process included coal tars and ammonia , which were important raw materials (or "chemical feedstock ") for

9225-416: The conjugate acid of the azide anion, and is similarly analogous to the hydrohalic acids . All four simple nitrogen trihalides are known. A few mixed halides and hydrohalides are known, but are mostly unstable; examples include NClF 2 , NCl 2 F, NBrF 2 , NF 2 H, NFH 2 , NCl 2 H , and NClH 2 . Nitrogen trifluoride (NF 3 , first prepared in 1928) is a colourless and odourless gas that

9348-555: The continuity of bonding types instead of the discrete and separate types that it implies. They are normally prepared by directly reacting a metal with nitrogen or ammonia (sometimes after heating), or by thermal decomposition of metal amides: Many variants on these processes are possible. The most ionic of these nitrides are those of the alkali metals and alkaline earth metals , Li 3 N (Na, K, Rb, and Cs do not form stable nitrides for steric reasons) and M 3 N 2 (M = Be, Mg, Ca, Sr, Ba). These can formally be thought of as salts of

9471-417: The destruction of hydrazine by reaction with monochloramine (NH 2 Cl) to produce ammonium chloride and nitrogen. Hydrogen azide (HN 3 ) was first produced in 1890 by the oxidation of aqueous hydrazine by nitrous acid. It is very explosive and even dilute solutions can be dangerous. It has a disagreeable and irritating smell and is a potentially lethal (but not cumulative) poison. It may be considered

9594-470: The dye and chemical industry with a wide range of artificial dyes being made from coal gas and coal tar. Facilities where the gas was produced were often known as a manufactured gas plant (MGP) or a gasworks . In the United Kingdom the discovery of large reserves of natural gas, or sea gas as it was known colloquially, in the Southern North Sea off the coasts of Norfolk and Yorkshire in 1965 led to

9717-459: The early years of MGP operations, the goal of a utility gas works was to produce the greatest amount of illuminating gas. The illuminating power of a gas was related to amount of soot -forming hydrocarbons ("illuminants") dissolved in it. These hydrocarbons gave the gas flame its characteristic bright yellow color. Gas works would typically use oily bituminous coals as feedstock. These coals would give off large amounts of volatile hydrocarbons into

9840-734: The elements in the periodic table except the first two noble gases , helium and neon , and some of the very short-lived elements after bismuth , creating an immense variety of binary compounds with varying properties and applications. Many binary compounds are known: with the exception of the nitrogen hydrides, oxides, and fluorides, these are typically called nitrides . Many stoichiometric phases are usually present for most elements (e.g. MnN, Mn 6 N 5 , Mn 3 N 2 , Mn 2 N, Mn 4 N, and Mn x N for 9.2 < x < 25.3). They may be classified as "salt-like" (mostly ionic), covalent, "diamond-like", and metallic (or interstitial ), although this classification has limitations generally stemming from

9963-467: The equilibrium between them, although sometimes dinitrogen tetroxide can react by heterolytic fission to nitrosonium and nitrate in a medium with high dielectric constant. Nitrogen dioxide is an acrid, corrosive brown gas. Both compounds may be easily prepared by decomposing a dry metal nitrate. Both react with water to form nitric acid . Dinitrogen tetroxide is very useful for the preparation of anhydrous metal nitrates and nitrato complexes, and it became

10086-474: The era of North Sea gas , many of the original cast iron gas pipes installed in towns and cities for town gas were replaced by plastic . As reported in the DTI Energy Review 'Our Energy Challenge' January 2006 North Sea gas resources have been depleted at a faster rate than had been anticipated and gas supplies for the UK are being sought from remote sources, a strategy made possible by developments in

10209-659: The expensive conversion or replacement of most of Britain's gas cookers and gas heaters, from the late 1960s onwards, the process being completed by the late 1970s. Any residual gas lighting found in homes being converted was either capped off at the meter or, more usually, removed altogether. As of 2023, some gas street lighting still remains, mainly in central London and the Royal Parks. The production process differs from other methods used to generate gaseous fuels known variously as manufactured gas , syngas , Dowson gas, and producer gas . These gases are made by partial combustion of

10332-421: The first gases to be identified: N 2 O ( nitrous oxide ), NO ( nitric oxide ), N 2 O 3 ( dinitrogen trioxide ), NO 2 ( nitrogen dioxide ), N 2 O 4 ( dinitrogen tetroxide ), N 2 O 5 ( dinitrogen pentoxide ), N 4 O ( nitrosylazide ), and N(NO 2 ) 3 ( trinitramide ). All are thermally unstable towards decomposition to their elements. One other possible oxide that has not yet been synthesised

10455-496: The fourth and fifth is 16.920 MJ·mol . Due to these very high figures, nitrogen has no simple cationic chemistry. The lack of radial nodes in the 2p subshell is directly responsible for many of the anomalous properties of the first row of the p-block , especially in nitrogen, oxygen, and fluorine. The 2p subshell is very small and has a very similar radius to the 2s shell, facilitating orbital hybridisation . It also results in very large electrostatic forces of attraction between

10578-430: The fuel gas by enriching it with CO and hydrogen (H 2 ) produced by water gas reactions. Producer gas has a very low calorific value of 3.7 to 5.6 MJ/m (99 to 150 Btu/cu ft); because the calorific gases CO/H 2 are diluted with much inert nitrogen (from air) and carbon dioxide (CO 2 ) (from combustion) The problem of nitrogen dilution was overcome by the blue water gas (BWG) process, developed in

10701-489: The gas-using equipment of almost thirteen million domestic, four hundred thousand commercial, and sixty thousand industrial customers were converted. Many dangerous appliances were discovered in this exercise and were taken out of service. The UK town gas industry ended in 1987 when operations ceased at the last town gas manufacturing plants in Northern Ireland (Belfast, Portadown and Carrickfergus; Carrickfergus gas works

10824-461: The ground floors). The shopping mall levels in each gasometer are connected to the others by skybridges. The historic exterior wall was conserved. One of the ideas rejected for the project was the plan by architect Manfred Wehdorn to use the Gasometers for hotels and facilities for the planned World Expo in Vienna and Budapest. On 30 October 2001 the mayor of Vienna attended the official grand opening of

10947-437: The head of group 15 in the periodic table, its chemistry shows huge differences from that of its heavier congeners phosphorus , arsenic , antimony , and bismuth . Nitrogen may be usefully compared to its horizontal neighbours' carbon and oxygen as well as its vertical neighbours in the pnictogen column, phosphorus, arsenic, antimony, and bismuth. Although each period 2 element from lithium to oxygen shows some similarities to

11070-609: The industry produced) to marketing management (meeting the needs and desires of customers) and the lifting of an early moratorium preventing nationalised industries from using television advertising , saved the gas industry for long enough to provide a viable market for what was to come. In 1959 the Gas Council in Great Britain demonstrated that liquid natural gas (LNG) could be transported safely, efficiently and economically over long distances by sea. The Methane Pioneer shipped

11193-505: The interstitial nitrides of formulae MN, M 2 N, and M 4 N (although variable composition is perfectly possible), where the small nitrogen atoms are positioned in the gaps in a metallic cubic or hexagonal close-packed lattice. They are opaque, very hard, and chemically inert, melting only at very high temperatures (generally over 2500 °C). They have a metallic lustre and conduct electricity as do metals. They hydrolyse only very slowly to give ammonia or nitrogen. The nitride anion (N )

11316-486: The length of the country. This became the National Transmission System . All gas equipment in Great Britain (but not Northern Ireland) was converted (by the fitting of different-sized burner jets to give the correct gas/air mixture) from town gas to natural gas (mainly methane ) over the period from 1967 to 1977 at a cost of about £100 million, including writing off redundant town gas manufacturing plants. All

11439-410: The market for room heating. Concurrently a new market for whole house central heating by hot water was being developed by the oil industry and the gas industry followed suit. Gas warm air heating found a market niche in new local authority housing where low installation costs gave it an advantage. These developments, the realignment of managerial thinking away from commercial management (selling what

11562-546: The name azote , from the Ancient Greek : ἀζωτικός "no life", as it is an asphyxiant gas ; this name is used in a number of languages, and appears in the English names of some nitrogen compounds such as hydrazine , azides and azo compounds . Elemental nitrogen is usually produced from air by pressure swing adsorption technology. About 2/3 of commercially produced elemental nitrogen is used as an inert (oxygen-free) gas for commercial uses such as food packaging, and much of

11685-525: The name, contained no nitrate. The earliest military, industrial, and agricultural applications of nitrogen compounds used saltpetre ( sodium nitrate or potassium nitrate), most notably in gunpowder , and later as fertiliser . In 1910, Lord Rayleigh discovered that an electrical discharge in nitrogen gas produced "active nitrogen", a monatomic allotrope of nitrogen. The "whirling cloud of brilliant yellow light" produced by his apparatus reacted with mercury to produce explosive mercury nitride . For

11808-574: The nitryl halides (XNO 2 ). The first is very reactive gases that can be made by directly halogenating nitrous oxide. Nitrosyl fluoride (NOF) is colourless and a vigorous fluorinating agent. Nitrosyl chloride (NOCl) behaves in much the same way and has often been used as an ionising solvent. Nitrosyl bromide (NOBr) is red. The reactions of the nitryl halides are mostly similar: nitryl fluoride (FNO 2 ) and nitryl chloride (ClNO 2 ) are likewise reactive gases and vigorous halogenating agents. Nitrogen forms nine molecular oxides, some of which were

11931-436: The nucleus and the valence electrons in the 2s and 2p shells, resulting in very high electronegativities. Hypervalency is almost unknown in the 2p elements for the same reason, because the high electronegativity makes it difficult for a small nitrogen atom to be a central atom in an electron-rich three-center four-electron bond since it would tend to attract the electrons strongly to itself. Thus, despite nitrogen's position at

12054-410: The organic nitrates nitroglycerin and nitroprusside control blood pressure by metabolising into nitric oxide . Many notable nitrogen-containing drugs, such as the natural caffeine and morphine or the synthetic amphetamines , act on receptors of animal neurotransmitters . Nitrogen compounds have a very long history, ammonium chloride having been known to Herodotus . They were well-known by

12177-412: The other four are H , Li, B, and Ta. The relative abundance of N and N is practically constant in the atmosphere but can vary elsewhere, due to natural isotopic fractionation from biological redox reactions and the evaporation of natural ammonia or nitric acid . Biologically mediated reactions (e.g., assimilation , nitrification , and denitrification ) strongly control nitrogen dynamics in

12300-421: The other nonmetals are very complex and tend to lead to a mixture of products. Ammonia reacts on heating with metals to give nitrides. Many other binary nitrogen hydrides are known, but the most important are hydrazine (N 2 H 4 ) and hydrogen azide (HN 3 ). Although it is not a nitrogen hydride, hydroxylamine (NH 2 OH) is similar in properties and structure to ammonia and hydrazine as well. Hydrazine

12423-478: The oxidation of ammonia to nitrite, which occurs in the nitrogen cycle . Hyponitrite can act as a bridging or chelating bidentate ligand. Nitrous acid (HNO 2 ) is not known as a pure compound, but is a common component in gaseous equilibria and is an important aqueous reagent: its aqueous solutions may be made from acidifying cool aqueous nitrite ( NO 2 , bent) solutions, although already at room temperature disproportionation to nitrate and nitric oxide

12546-704: The period 3 element in the next group (from magnesium to chlorine; these are known as diagonal relationships ), their degree drops off abruptly past the boron–silicon pair. The similarities of nitrogen to sulfur are mostly limited to sulfur nitride ring compounds when both elements are the only ones present. Nitrogen does not share the proclivity of carbon for catenation . Like carbon, nitrogen tends to form ionic or metallic compounds with metals. Nitrogen forms an extensive series of nitrides with carbon, including those with chain-, graphitic- , and fullerenic -like structures. It resembles oxygen with its high electronegativity and concomitant capability for hydrogen bonding and

12669-583: The primary coolant system to the secondary steam cycle and is the primary means of detection for such leaks. Atomic nitrogen, also known as active nitrogen, is highly reactive, being a triradical with three unpaired electrons. Free nitrogen atoms easily react with most elements to form nitrides, and even when two free nitrogen atoms collide to produce an excited N 2 molecule, they may release so much energy on collision with even such stable molecules as carbon dioxide and water to cause homolytic fission into radicals such as CO and O or OH and H. Atomic nitrogen

12792-522: The production of fertilisers. Dinitrogen is able to coordinate to metals in five different ways. The more well-characterised ways are the end-on M←N≡N ( η ) and M←N≡N→M ( μ , bis- η ), in which the lone pairs on the nitrogen atoms are donated to the metal cation. The less well-characterised ways involve dinitrogen donating electron pairs from the triple bond, either as a bridging ligand to two metal cations ( μ , bis- η ) or to just one ( η ). The fifth and unique method involves triple-coordination as

12915-465: The protected monuments and in 1995 called for ideas for the new use of the structures. The chosen designs by the architects Jean Nouvel (Gasometer A), Coop Himmelblau (Gasometer B), Manfred Wehdorn (Gasometer C) and Wilhelm Holzbauer (Gasometer D) were completed between 1999 and 2001. Each gasometer was divided into several zones for living (apartments in the top), working (offices in the middle floors) and entertainment and shopping (shopping malls in

13038-508: The rest is used as liquid nitrogen in cryogenic applications. Many industrially important compounds, such as ammonia , nitric acid, organic nitrates ( propellants and explosives ), and cyanides , contain nitrogen. The extremely strong triple bond in elemental nitrogen (N≡N), the second strongest bond in any diatomic molecule after carbon monoxide (CO), dominates nitrogen chemistry. This causes difficulty for both organisms and industry in converting N 2 into useful compounds , but at

13161-599: The same time it means that burning, exploding, or decomposing nitrogen compounds to form nitrogen gas releases large amounts of often useful energy. Synthetically produced ammonia and nitrates are key industrial fertilisers , and fertiliser nitrates are key pollutants in the eutrophication of water systems. Apart from its use in fertilisers and energy stores, nitrogen is a constituent of organic compounds as diverse as aramids used in high-strength fabric and cyanoacrylate used in superglue . Nitrogen occurs in all organisms, primarily in amino acids (and thus proteins ), in

13284-572: The same time, use of the Ostwald process (1902) to produce nitrates from industrial nitrogen fixation allowed the large-scale industrial production of nitrates as feedstock in the manufacture of explosives in the World Wars of the 20th century. A nitrogen atom has seven electrons. In the ground state, they are arranged in the electron configuration 1s 2s 2p x 2p y 2p z . It, therefore, has five valence electrons in

13407-451: The soil. These reactions typically result in N enrichment of the substrate and depletion of the product . The heavy isotope N was first discovered by S. M. Naudé in 1929, and soon after heavy isotopes of the neighbouring elements oxygen and carbon were discovered. It presents one of the lowest thermal neutron capture cross-sections of all isotopes. It is frequently used in nuclear magnetic resonance (NMR) spectroscopy to determine

13530-473: The steam cycle are kept as blue water gas. This gas is composed almost entirely of CO and H 2 , and burns with a pale blue flame similar to natural gas. BWG has a calorific value of 11 MJ/m (300 BTU/cu ft). Blue water gas lacked illuminants; it would not burn with a luminous flame in a simple fishtail gas jet as existed prior to the invention of the gas mantle in the 1890s. Various attempts were made to enrich BWG with illuminants from gas oil in

13653-404: The steel industry's coke ovens' by-products plants, coal gas is no longer made in the UK. It was replaced first by gas made from oil and later by natural gas from the North Sea . Nitrogen Nitrogen is a chemical element ; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table , often called the pnictogens . It

13776-457: The storable oxidiser of choice for many rockets in both the United States and USSR by the late 1950s. This is because it is a hypergolic propellant in combination with a hydrazine -based rocket fuel and can be easily stored since it is liquid at room temperature. The thermally unstable and very reactive dinitrogen pentoxide (N 2 O 5 ) is the anhydride of nitric acid , and can be made from it by dehydration with phosphorus pentoxide . It

13899-489: The structures of nitrogen-containing molecules, due to its fractional nuclear spin of one-half, which offers advantages for NMR such as narrower line width. N, though also theoretically usable, has an integer nuclear spin of one and thus has a quadrupole moment that leads to wider and less useful spectra. N NMR nevertheless has complications not encountered in the more common H and C NMR spectroscopy. The low natural abundance of N (0.36%) significantly reduces sensitivity,

14022-449: The technologies of pipelaying that enable the transmission of gas over land and under sea across and between continents . Natural gas is now a world commodity . Such sources of supply are exposed to all the risks of any import. Monty Python parodied the conversion from coal to North Sea gas, and the jumping through hoops some encountered, in their "New Cooker Sketch," as part of the episode that began its second series in 1970. Coal gas

14145-420: The touch of a feather, shifting air currents, or even alpha particles . For this reason, small amounts of nitrogen triiodide are sometimes synthesised as a demonstration to high school chemistry students or as an act of "chemical magic". Chlorine azide (ClN 3 ) and bromine azide (BrN 3 ) are extremely sensitive and explosive. Two series of nitrogen oxohalides are known: the nitrosyl halides (XNO) and

14268-403: The town gas and by-products produced, by the major three gas companies of London are summarised in the table. Coke is used as a smokeless fuel and for the manufacture of water gas and producer gas . Coal tar was subjected to fractional distillation to recover various products, including Used in the manufacture of sulfuric acid Used in the manufacture of fertilisers Coal gas

14391-535: The town gas industry in the UK was driven by the discovery of natural gas by the drilling rig Sea Gem , on 17 September 1965, some forty miles off Grimsby , over 8,000 feet (2,400 m) below the seabed. Subsequently, the North Sea was found to have many substantial gas fields on both sides of the median line defining which nations should have rights over the reserves. In a pilot scheme customers on Canvey Island were converted from town gas to natural gas supplied from

14514-399: The white hot checkerwork fire bricks inside the carburettor. The hot enriched gas would then flow into the superheater, where the gas would be further cracked by more hot fire bricks. Following the Second World War the slow recovery of the British coal mining industry led to shortages of coal and high prices. The decline of coal as a feedstock for town gas production using carbonisation

14637-412: Was a component of air that does not support combustion was clear to Rutherford, although he was not aware that it was an element. Nitrogen was also studied at about the same time by Carl Wilhelm Scheele , Henry Cavendish , and Joseph Priestley , who referred to it as burnt air or phlogisticated air . French chemist Antoine Lavoisier referred to nitrogen gas as " mephitic air " or azote , from

14760-442: Was first found as a product of the thermal decomposition of FN 3 . Nitrogen trichloride (NCl 3 ) is a dense, volatile, and explosive liquid whose physical properties are similar to those of carbon tetrachloride , although one difference is that NCl 3 is easily hydrolysed by water while CCl 4 is not. It was first synthesised in 1811 by Pierre Louis Dulong , who lost three fingers and an eye to its explosive tendencies. As

14883-455: Was initially manufactured by independent companies but in the United Kingdom many of these later became municipal services . In 1948 there was a total of 1,062 gas undertakings. Both the private companies, about two-thirds of the total, and the municipal gas undertakings, about one-third, were nationalised under the Gas Act 1948 . Further restructuring took place under the Gas Act 1972 . For further details see British Gas plc . Apart from in

15006-414: Was made using producer gas technology. Producer gas is made by blowing air through an incandescent fuel bed (commonly coke or coal ) in a gas producer. The reaction of fuel with insufficient air for total combustion produces carbon monoxide (CO); this reaction is exothermic and self-sustaining. It was discovered that adding steam to the input air of a gas producer would increase the calorific value of

15129-469: Was used to power several historic balloon ascents in the 19th century (see The Aeronauts ). In many ways, Germany took the lead in coal gas research and carbon chemistry. With the labours of August Wilhelm von Hofmann , the whole German chemical industry emerged. Using the coal gas waste as feedstock, researchers developed new processes and synthesized natural organic compounds such as Vitamin C and aspirin . The German economy relied on coal gas during

#895104