Misplaced Pages

V (operating system)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The V operating system (sometimes written V-System ) is a discontinued microkernel distributed operating system that was developed by faculty and students in the Distributed Systems Group at Stanford University from 1981 to 1988, led by Professors David Cheriton and Keith A. Lantz. V was the successor to the Thoth operating system and Verex kernel that Cheriton had developed in the 1970s. Despite similar names and close development dates, it is unrelated to UNIX System V .

#390609

88-419: The key concepts in V are multithreading and synchronous message passing . The original V terminology uses process for what is now commonly called a thread , and team for what is now commonly called a process consisting of multiple threads sharing an address space. Communication between threads in V uses synchronous message passing, with short, fixed-length messages that can include access rights for

176-428: A system call to perform a block I/O write operation, then the system call might execute the following instructions: While the writing takes place, the operating system will context switch to other processes as normal. When the device finishes writing, the device will interrupt the currently running process by asserting an interrupt request . The device will also place an integer onto the data bus. Upon accepting

264-483: A 1:1 model. FreeBSD 5 implemented M:N model. FreeBSD 6 supported both 1:1 and M:N, users could choose which one should be used with a given program using /etc/libmap.conf. Starting with FreeBSD 7, the 1:1 became the default. FreeBSD 8 no longer supports the M:N model. In computer programming , single-threading is the processing of one command at a time. In the formal analysis of the variables' semantics and process state,

352-645: A computer even if they are not compatible with the base operating system. A library operating system (libOS) is one in which the services that a typical operating system provides, such as networking, are provided in the form of libraries and composed with a single application and configuration code to construct a unikernel : a specialized (only the absolute necessary pieces of code are extracted from libraries and bound together ), single address space , machine image that can be deployed to cloud or embedded environments. The operating system code and application code are not executed in separated protection domains (there

440-452: A context switch. On multi-processor systems, the thread may instead poll the mutex in a spinlock . Both of these may sap performance and force processors in symmetric multiprocessing (SMP) systems to contend for the memory bus, especially if the granularity of the locking is too fine. Other synchronization APIs include condition variables , critical sections , semaphores , and monitors . A popular programming pattern involving threads

528-508: A cooperatively multitasked thread blocks by waiting on a resource or if it starves other threads by not yielding control of execution during intensive computation. Until the early 2000s, most desktop computers had only one single-core CPU, with no support for hardware threads , although threads were still used on such computers because switching between threads was generally still quicker than full-process context switches . In 2002, Intel added support for simultaneous multithreading to

616-571: A development of MULTICS for a single user. Because UNIX's source code was available, it became the basis of other, incompatible operating systems, of which the most successful were AT&T 's System V and the University of California 's Berkeley Software Distribution (BSD). To increase compatibility, the IEEE released the POSIX standard for operating system application programming interfaces (APIs), which

704-484: A given process may be executed concurrently (via multithreading capabilities), sharing resources such as memory , while different processes do not share these resources. In particular, the threads of a process share its executable code and the values of its dynamically allocated variables and non- thread-local global variables at any given time. The implementation of threads and processes differs between operating systems. Threads made an early appearance under

792-484: A large legal settlement was paid. In the twenty-first century, Windows continues to be popular on personal computers but has less market share of servers. UNIX operating systems, especially Linux, are the most popular on enterprise systems and servers but are also used on mobile devices and many other computer systems. On mobile devices, Symbian OS was dominant at first, being usurped by BlackBerry OS (introduced 2002) and iOS for iPhones (from 2007). Later on,

880-442: A library with no protection between applications, such as eCos . A hypervisor is an operating system that runs a virtual machine . The virtual machine is unaware that it is an application and operates as if it had its own hardware. Virtual machines can be paused, saved, and resumed, making them useful for operating systems research, development, and debugging. They also enhance portability by enabling applications to be run on

968-447: A malformed machine instruction . However, the most common error conditions are division by zero and accessing an invalid memory address . Users can send messages to the kernel to modify the behavior of a currently running process. For example, in the command-line environment , pressing the interrupt character (usually Control-C ) might terminate the currently running process. To generate software interrupts for x86 CPUs,

SECTION 10

#1733086090391

1056-410: A modular windowing system for both local and remote applications. The little-known W Window System got its name because it was first hosted on the V operating system, and the better-known X Window System in turn got its name because its first version was based partly on W. V also spawned another pure microkernel effort at Apple Computer known as Vanguard , which added a number of improvements to

1144-455: A particular application's memory is stored, or even whether or not it has been allocated yet. In modern operating systems, memory which is accessed less frequently can be temporarily stored on a disk or other media to make that space available for use by other programs. This is called swapping , as an area of memory can be used by multiple programs, and what that memory area contains can be swapped or exchanged on demand. Virtual memory provides

1232-503: A program does not interfere with memory already in use by another program. Since programs time share, each program must have independent access to memory. Cooperative memory management, used by many early operating systems, assumes that all programs make voluntary use of the kernel 's memory manager, and do not exceed their allocated memory. This system of memory management is almost never seen any more, since programs often contain bugs which can cause them to exceed their allocated memory. If

1320-408: A program fails, it may cause memory used by one or more other programs to be affected or overwritten. Malicious programs or viruses may purposefully alter another program's memory, or may affect the operation of the operating system itself. With cooperative memory management, it takes only one misbehaved program to crash the system. Memory protection enables the kernel to limit a process' access to

1408-440: A program tries to access memory that is not accessible memory, but nonetheless has been allocated to it, the kernel is interrupted (see § Memory management ) . This kind of interrupt is typically a page fault . When the kernel detects a page fault it generally adjusts the virtual memory range of the program which triggered it, granting it access to the memory requested. This gives the kernel discretionary power over where

1496-431: A running fiber must explicitly " yield " to allow another fiber to run, which makes their implementation much easier than kernel or user threads . A fiber can be scheduled to run in any thread in the same process. This permits applications to gain performance improvements by managing scheduling themselves, instead of relying on the kernel scheduler (which may not be tuned for the application). Some research implementations of

1584-467: A significant amount of CPU time. Direct memory access (DMA) is an architecture feature to allow devices to bypass the CPU and access main memory directly. (Separate from the architecture, a device may perform direct memory access to and from main memory either directly or via a bus.) When a computer user types a key on the keyboard, typically the character appears immediately on the screen. Likewise, when

1672-402: A specific moment in time. Hard real-time systems require exact timing and are common in manufacturing , avionics , military, and other similar uses. With soft real-time systems, the occasional missed event is acceptable; this category often includes audio or multimedia systems, as well as smartphones. In order for hard real-time systems be sufficiently exact in their timing, often they are just

1760-472: A useful abstraction of concurrent execution. Multithreading can also be applied to one process to enable parallel execution on a multiprocessing system. Multithreading libraries tend to provide a function call to create a new thread, which takes a function as a parameter. A concurrent thread is then created which starts running the passed function and ends when the function returns. The thread libraries also offer data synchronization functions. Threads in

1848-417: A user moves a mouse , the cursor immediately moves across the screen. Each keystroke and mouse movement generates an interrupt called Interrupt-driven I/O . An interrupt-driven I/O occurs when a process causes an interrupt for every character or word transmitted. Devices such as hard disk drives , solid-state drives , and magnetic tape drives can transfer data at a rate high enough that interrupting

SECTION 20

#1733086090391

1936-453: A variation of the classic reader/writer problem . The writer receives a pipe from the shell for its output to be sent to the reader's input stream. The command-line syntax is alpha | bravo . alpha will write to the pipe when its computation is ready and then sleep in the wait queue. bravo will then be moved to the ready queue and soon will read from its input stream. The kernel will generate software interrupts to coordinate

2024-418: Is interrupted by it. Operating systems are found on many devices that contain a computer – from cellular phones and video game consoles to web servers and supercomputers . In the personal computer market, as of September 2024 , Microsoft Windows holds a dominant market share of around 73%. macOS by Apple Inc. is in second place (15%), Linux is in third place (5%), and ChromeOS

2112-562: Is remote direct memory access , which enables each CPU to access memory belonging to other CPUs. Multicomputer operating systems often support remote procedure calls where a CPU can call a procedure on another CPU, or distributed shared memory , in which the operating system uses virtualization to generate shared memory that does not physically exist. A distributed system is a group of distinct, networked computers—each of which might have their own operating system and file system. Unlike multicomputers, they may be dispersed anywhere in

2200-513: Is a "heavyweight" unit of kernel scheduling, as creating, destroying, and switching processes is relatively expensive. Processes own resources allocated by the operating system. Resources include memory (for both code and data), file handles , sockets, device handles, windows, and a process control block . Processes are isolated by process isolation , and do not share address spaces or file resources except through explicit methods such as inheriting file handles or shared memory segments, or mapping

2288-402: Is a "lightweight" unit of kernel scheduling. At least one kernel thread exists within each process. If multiple kernel threads exist within a process, then they share the same memory and file resources. Kernel threads are preemptively multitasked if the operating system's process scheduler is preemptive. Kernel threads do not own resources except for a stack , a copy of the registers including

2376-484: Is a change away from the currently running process. Similarly, both hardware and software interrupts execute an interrupt service routine . Software interrupts may be normally occurring events. It is expected that a time slice will occur, so the kernel will have to perform a context switch . A computer program may set a timer to go off after a few seconds in case too much data causes an algorithm to take too long. Software interrupts may be error conditions, such as

2464-438: Is a list of workstation commands that are supported by the V operating system version 6.0 command-line interface . Thread (computing) In computer science , a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler , which is typically a part of the operating system . In many cases, a thread is a component of a process . The multiple threads of

2552-422: Is difficult to define, but has been called "the layer of software that manages a computer's resources for its users and their applications ". Operating systems include the software that is always running, called a kernel —but can include other software as well. The two other types of programs that can run on a computer are system programs —which are associated with the operating system, but may not be part of

2640-896: Is in fourth place (2%). In the mobile sector (including smartphones and tablets ), as of September 2023 , Android's share is 68.92%, followed by Apple's iOS and iPadOS with 30.42%, and other operating systems with .66%. Linux distributions are dominant in the server and supercomputing sectors. Other specialized classes of operating systems (special-purpose operating systems), such as embedded and real-time systems, exist for many applications. Security-focused operating systems also exist. Some operating systems have low system requirements (e.g. light-weight Linux distribution ). Others may have higher system requirements. Some operating systems require installation or may come pre-installed with purchased computers ( OEM -installation), whereas others may run directly from media (i.e. live CD ) or flash memory (i.e. USB stick). An operating system

2728-477: Is initiated, a system call is made, and does not return until the I/O operation has been completed. In the intervening period, the entire process is "blocked" by the kernel and cannot run, which starves other user threads and fibers in the same process from executing. A common solution to this problem (used, in particular, by many green threads implementations) is providing an I/O API that implements an interface that blocks

V (operating system) - Misplaced Pages Continue

2816-815: Is not so great a difference except in the cost of an address-space switch, which on some architectures (notably x86 ) results in a translation lookaside buffer (TLB) flush. Advantages and disadvantages of threads vs processes include: Operating systems schedule threads either preemptively or cooperatively . Multi-user operating systems generally favor preemptive multithreading for its finer-grained control over execution time via context switching . However, preemptive scheduling may context-switch threads at moments unanticipated by programmers, thus causing lock convoy , priority inversion , or other side-effects. In contrast, cooperative multithreading relies on threads to relinquish control of execution, thus ensuring that threads run to completion . This can cause problems if

2904-443: Is only a single application running, at least conceptually, so there is no need to prevent interference between applications) and OS services are accessed via simple library calls (potentially inlining them based on compiler thresholds), without the usual overhead of context switches , in a way similarly to embedded and real-time OSes. Note that this overhead is not negligible: to the direct cost of mode switching it's necessary to add

2992-499: Is supported by most UNIX systems. MINIX was a stripped-down version of UNIX, developed in 1987 for educational uses, that inspired the commercially available, free software Linux . Since 2008, MINIX is used in controllers of most Intel microchips , while Linux is widespread in data centers and Android smartphones. The invention of large scale integration enabled the production of personal computers (initially called microcomputers ) from around 1980. For around five years,

3080-405: Is that of thread pools where a set number of threads are created at startup that then wait for a task to be assigned. When a new task arrives, it wakes up, completes the task and goes back to waiting. This avoids the relatively expensive thread creation and destruction functions for every task performed and takes thread management out of the application developer's hand and leaves it to a library or

3168-473: Is that they do not load user-installed software. Consequently, they do not need protection between different applications, enabling simpler designs. Very small operating systems might run in less than 10 kilobytes , and the smallest are for smart cards . Examples include Embedded Linux , QNX , VxWorks , and the extra-small systems RIOT and TinyOS . A real-time operating system is an operating system that guarantees to process events or data by or at

3256-435: Is the part of the operating system that provides protection between different applications and users. This protection is key to improving reliability by keeping errors isolated to one program, as well as security by limiting the power of malicious software and protecting private data, and ensuring that one program cannot monopolize the computer's resources. Most operating systems have two modes of operation: in user mode ,

3344-804: Is typically uniformly done preemptively or, less commonly, cooperatively. At the user level a process such as a runtime system can itself schedule multiple threads of execution. If these do not share data, as in Erlang, they are usually analogously called processes, while if they share data they are usually called (user) threads , particularly if preemptively scheduled. Cooperatively scheduled user threads are known as fibers ; different processes may schedule user threads differently. User threads may be executed by kernel threads in various ways (one-to-one, many-to-one, many-to-many). The term " light-weight process " variously refers to user threads or to kernel mechanisms for scheduling user threads onto kernel threads. A process

3432-403: Is unaware of them, so they are managed and scheduled in userspace. Some implementations base their user threads on top of several kernel threads, to benefit from multi-processor machines ( M:N model ). User threads as implemented by virtual machines are also called green threads . As user thread implementations are typically entirely in userspace, context switching between user threads within

3520-535: The CP/M (Control Program for Microcomputers) was the most popular operating system for microcomputers. Later, IBM bought the DOS (Disk Operating System) from Microsoft . After modifications requested by IBM, the resulting system was called MS-DOS (MicroSoft Disk Operating System) and was widely used on IBM microcomputers. Later versions increased their sophistication, in part by borrowing features from UNIX. Apple 's Macintosh

3608-496: The INT assembly language instruction is available. The syntax is INT X , where X is the offset number (in hexadecimal format) to the interrupt vector table . To generate software interrupts in Unix-like operating systems, the kill(pid,signum) system call will send a signal to another process. pid is the process identifier of the receiving process. signum is

V (operating system) - Misplaced Pages Continue

3696-519: The OpenMP parallel programming model implement their tasks through fibers. Closely related to fibers are coroutines , with the distinction being that coroutines are a language-level construct, while fibers are a system-level construct. Threads differ from traditional multitasking operating-system processes in several ways: Systems such as Windows NT and OS/2 are said to have cheap threads and expensive processes; in other operating systems there

3784-507: The Pentium ;4 processor, under the name hyper-threading ; in 2005, they introduced the dual-core Pentium D processor and AMD introduced the dual-core Athlon 64 X2 processor. Systems with a single processor generally implement multithreading by time slicing : the central processing unit (CPU) switches between different software threads . This context switching usually occurs frequently enough that users perceive

3872-715: The program counter , and thread-local storage (if any), and are thus relatively cheap to create and destroy. Thread switching is also relatively cheap: it requires a context switch (saving and restoring registers and stack pointer), but does not change virtual memory and is thus cache-friendly (leaving TLB valid). The kernel can assign one or more software threads to each core in a CPU (it being able to assign itself multiple software threads depending on its support for multithreading), and can swap out threads that get blocked. However, kernel threads take much longer than user threads to be swapped. Threads are sometimes implemented in userspace libraries, thus called user threads . The kernel

3960-420: The transistor in the mid-1950s, mainframes began to be built. These still needed professional operators who manually do what a modern operating system would do, such as scheduling programs to run, but mainframes still had rudimentary operating systems such as Fortran Monitor System (FMS) and IBSYS . In the 1960s, IBM introduced the first series of intercompatible computers ( System/360 ). All of them ran

4048-410: The CPU for every byte or word transferred, and having the CPU transfer the byte or word between the device and memory, would require too much CPU time. Data is, instead, transferred between the device and memory independently of the CPU by hardware such as a channel or a direct memory access controller; an interrupt is delivered only when all the data is transferred. If a computer program executes

4136-474: The CPU to re-enter supervisor mode , placing the kernel in charge. This is called a segmentation violation or Seg-V for short, and since it is both difficult to assign a meaningful result to such an operation, and because it is usually a sign of a misbehaving program, the kernel generally resorts to terminating the offending program, and reports the error. Windows versions 3.1 through ME had some level of memory protection, but programs could easily circumvent

4224-399: The M:N implementation, the threading library is responsible for scheduling user threads on the available schedulable entities; this makes context switching of threads very fast, as it avoids system calls. However, this increases complexity and the likelihood of priority inversion , as well as suboptimal scheduling without extensive (and expensive) coordination between the userland scheduler and

4312-592: The Versatile Message Transaction Protocol (VMTP) was developed to extend the send-receive-reply system call semantics over a local area network . The protocol included multicast support developed by Steve Deering as a graduate student in the group. The Internet Protocol layer to support this evolved into the IP multicast standard. The V-System was used for graphical user interface (GUI) research. The Virtual Graphics Terminal Service (VGTS) provided

4400-534: The application program, which then interacts with the user and with hardware devices. However, in some systems an application can request that the operating system execute another application within the same process, either as a subroutine or in a separate thread, e.g., the LINK and ATTACH facilities of OS/360 and successors . An interrupt (also known as an abort , exception , fault , signal , or trap ) provides an efficient way for most operating systems to react to

4488-421: The basic system. Vanguard later disappeared in a reorganization. The Tektronix VM700 television measurement instrument was developed in a networked V environment in the late 1980s and ran a lightly modified version of the V operating system; this device was manufactured and sold for many years. Ridge Computers ' Ridge Operating System (ROS) was a commercial system based on Stanford's V-System. The following

SECTION 50

#1733086090391

4576-542: The calling thread, rather than the entire process, by using non-blocking I/O internally, and scheduling another user thread or fiber while the I/O operation is in progress. Similar solutions can be provided for other blocking system calls. Alternatively, the program can be written to avoid the use of synchronous I/O or other blocking system calls (in particular, using non-blocking I/O, including lambda continuations and/or async/ await primitives ). Fibers are an even lighter unit of scheduling which are cooperatively scheduled :

4664-453: The computer's memory. Various methods of memory protection exist, including memory segmentation and paging . All methods require some level of hardware support (such as the 80286 MMU), which does not exist in all computers. In both segmentation and paging, certain protected mode registers specify to the CPU what memory address it should allow a running program to access. Attempts to access other addresses trigger an interrupt, which causes

4752-471: The details of how interrupt service routines behave vary from operating system to operating system. However, several interrupt functions are common. The architecture and operating system must: A software interrupt is a message to a process that an event has occurred. This contrasts with a hardware interrupt — which is a message to the central processing unit (CPU) that an event has occurred. Software interrupts are similar to hardware interrupts — there

4840-422: The environment. Interrupts cause the central processing unit (CPU) to have a control flow change away from the currently running program to an interrupt handler , also known as an interrupt service routine (ISR). An interrupt service routine may cause the central processing unit (CPU) to have a context switch . The details of how a computer processes an interrupt vary from architecture to architecture, and

4928-410: The hardware checks that the software is only executing legal instructions, whereas the kernel has unrestricted powers and is not subject to these checks. The kernel also manages memory for other processes and controls access to input/output devices. The operating system provides an interface between an application program and the computer hardware, so that an application program can interact with

5016-493: The hardware only by obeying rules and procedures programmed into the operating system. The operating system is also a set of services which simplify development and execution of application programs. Executing an application program typically involves the creation of a process by the operating system kernel , which assigns memory space and other resources, establishes a priority for the process in multi-tasking systems, loads program binary code into memory, and initiates execution of

5104-418: The indirect pollution of important processor structures (like CPU caches , the instruction pipeline , and so on) which affects both user-mode and kernel-mode performance. The first computers in the late 1940s and 1950s were directly programmed either with plugboards or with machine code inputted on media such as punch cards , without programming languages or operating systems. After the introduction of

5192-404: The interrupt request, the operating system will: When the writing process has its time slice expired, the operating system will: With the program counter now reset, the interrupted process will resume its time slice. Among other things, a multiprogramming operating system kernel must be responsible for managing all system memory which is currently in use by the programs. This ensures that

5280-424: The kernel has no knowledge of the application threads. With this approach, context switching can be done very quickly and, in addition, it can be implemented even on simple kernels which do not support threading. One of the major drawbacks, however, is that it cannot benefit from the hardware acceleration on multithreaded processors or multi-processor computers: there is never more than one thread being scheduled at

5368-421: The kernel scheduler. SunOS 4.x implemented light-weight processes or LWPs. NetBSD 2.x+, and DragonFly BSD implement LWPs as kernel threads (1:1 model). SunOS 5.2 through SunOS 5.8 as well as NetBSD 2 to NetBSD 4 implemented a two level model, multiplexing one or more user level threads on each kernel thread (M:N model). SunOS 5.9 and later, as well as NetBSD 5 eliminated user threads support, returning to

SECTION 60

#1733086090391

5456-431: The kernel—and applications—all other software. There are three main purposes that an operating system fulfills: With multiprocessors multiple CPUs share memory. A multicomputer or cluster computer has multiple CPUs, each of which has its own memory . Multicomputers were developed because large multiprocessors are difficult to engineer and prohibitively expensive; they are universal in cloud computing because of

5544-400: The memory allocated to a different one. Around the same time, teleprinters began to be used as terminals so multiple users could access the computer simultaneously. The operating system MULTICS was intended to allow hundreds of users to access a large computer. Despite its limited adoption, it can be considered the precursor to cloud computing . The UNIX operating system originated as

5632-424: The model from Ada rendezvous. One common pattern for using the messaging facility is for clients to send messages to a server requesting some form of service. From the client side, this looks much like a remote procedure call (RPC). The convenience of an automatic stub generator was lacking, but in contrast, the client can pass one parameter by reference, which is not possible with other RPC implementations. From

5720-438: The multiple cores. Scheduling can be done at the kernel level or user level, and multitasking can be done preemptively or cooperatively . This yields a variety of related concepts. At the kernel level, a process contains one or more kernel threads , which share the process's resources, such as memory and file handles – a process is a unit of resources, while a thread is a unit of scheduling and execution. Kernel scheduling

5808-662: The name of "tasks" in IBM's batch processing operating system, OS/360, in 1967. It provided users with three available configurations of the OS/360 control system, of which Multiprogramming with a Variable Number of Tasks (MVT) was one. Saltzer (1966) credits Victor A. Vyssotsky with the term "thread". The use of threads in software applications became more common in the early 2000s as CPUs began to utilize multiple cores. Applications wishing to take advantage of multiple cores for performance advantages were required to employ concurrency to utilize

5896-408: The need to use it. A general protection fault would be produced, indicating a segmentation violation had occurred; however, the system would often crash anyway. The use of virtual memory addressing (such as paging or segmentation) means that the kernel can choose what memory each program may use at any given time, allowing the operating system to use the same memory locations for multiple tasks. If

5984-408: The open-source Android operating system (introduced 2008), with a Linux kernel and a C library ( Bionic ) partially based on BSD code, became most popular. The components of an operating system are designed to ensure that various parts of a computer function cohesively. With the de facto obsoletion of DOS , all user software must interact with the operating system to access hardware. The kernel

6072-550: The operating system that is better suited to optimize thread management. Multithreaded applications have the following advantages vs single-threaded ones: Multithreaded applications have the following drawbacks: Many programming languages support threading in some capacity. Operating system An operating system ( OS ) is system software that manages computer hardware and software resources, and provides common services for computer programs . Time-sharing operating systems schedule tasks for efficient use of

6160-421: The piping. Signals may be classified into 7 categories. The categories are: Input/output (I/O) devices are slower than the CPU. Therefore, it would slow down the computer if the CPU had to wait for each I/O to finish. Instead, a computer may implement interrupts for I/O completion, avoiding the need for polling or busy waiting. Some computers require an interrupt for each character or word, costing

6248-411: The receiver to read or write part of the sender's address space before replying. The same message-passing interface is used both between threads within one process, between threads of different processes within one machine, and between threads on different machines connected by a local Ethernet . A thread receiving a message is not required to reply to it before receiving other messages; this distinguished

6336-452: The requirements of the program's workload. However, the use of blocking system calls in user threads (as opposed to kernel threads) can be problematic. If a user thread or a fiber performs a system call that blocks, the other user threads and fibers in the process are unable to run until the system call returns. A typical example of this problem is when performing I/O: most programs are written to perform I/O synchronously. When an I/O operation

6424-540: The same file in a shared way – see interprocess communication . Creating or destroying a process is relatively expensive, as resources must be acquired or released. Processes are typically preemptively multitasked, and process switching is relatively expensive, beyond basic cost of context switching , due to issues such as cache flushing (in particular, process switching changes virtual memory addressing, causing invalidation and thus flushing of an untagged translation lookaside buffer (TLB), notably on x86). A kernel thread

6512-418: The same operating system— OS/360 —which consisted of millions of lines of assembly language that had thousands of bugs . The OS/360 also was the first popular operating system to support multiprogramming , such that the CPU could be put to use on one job while another was waiting on input/output (I/O). Holding multiple jobs in memory necessitated memory partitioning and safeguards against one job accessing

6600-405: The same process is extremely efficient because it does not require any interaction with the kernel at all: a context switch can be performed by locally saving the CPU registers used by the currently executing user thread or fiber and then loading the registers required by the user thread or fiber to be executed. Since scheduling occurs in userspace, the scheduling policy can be more easily tailored to

6688-406: The same process share the same address space. This allows concurrently running code to couple tightly and conveniently exchange data without the overhead or complexity of an IPC . When shared between threads, however, even simple data structures become prone to race conditions if they require more than one CPU instruction to update: two threads may end up attempting to update the data structure at

6776-407: The same time and find it unexpectedly changing underfoot. Bugs caused by race conditions can be very difficult to reproduce and isolate. To prevent this, threading application programming interfaces (APIs) offer synchronization primitives such as mutexes to lock data structures against concurrent access. On uniprocessor systems, a thread running into a locked mutex must sleep and hence trigger

6864-621: The same time. For example: If one of the threads needs to execute an I/O request, the whole process is blocked and the threading advantage cannot be used. The GNU Portable Threads uses User-level threading, as does State Threads . M : N maps some M number of application threads onto some N number of kernel entities, or "virtual processors." This is a compromise between kernel-level ("1:1") and user-level (" N :1") threading. In general, " M : N " threading systems are more complex to implement than either kernel or user threads, because changes to both kernel and user-space code are required . In

6952-579: The server side the model differs more from RPC, since by default all client requests are multiplexed onto one server thread. The server is free to explicitly fork threads to handle client requests in parallel, however; if this is done, the server-side model is much like RPC too. V was never an end in itself for the Stanford group; rather, it was used as a vehicle for many different research projects in distributed operating systems and networking. Much like other operating system efforts of its day (such as Sprite ), V

7040-400: The signal number (in mnemonic format) to be sent. (The abrasive name of kill was chosen because early implementations only terminated the process.) In Unix-like operating systems, signals inform processes of the occurrence of asynchronous events. To communicate asynchronously, interrupts are required. One reason a process needs to asynchronously communicate to another process solves

7128-400: The size of the machine needed. The different CPUs often need to send and receive messages to each other; to ensure good performance, the operating systems for these machines need to minimize this copying of packets . Newer systems are often multiqueue —separating groups of users into separate queues —to reduce the need for packet copying and support more concurrent users. Another technique

7216-442: The system and may also include accounting software for cost allocation of processor time , mass storage , peripherals, and other resources. For hardware functions such as input and output and memory allocation , the operating system acts as an intermediary between programs and the computer hardware, although the application code is usually executed directly by the hardware and frequently makes system calls to an OS function or

7304-502: The term single threading can be used differently to mean "backtracking within a single thread", which is common in the functional programming community. Multithreading is mainly found in multitasking operating systems. Multithreading is a widespread programming and execution model that allows multiple threads to exist within the context of one process. These threads share the process's resources, but are able to execute independently. The threaded programming model provides developers with

7392-510: The threads or tasks as running in parallel (for popular server/desktop operating systems, maximum time slice of a thread, when other threads are waiting, is often limited to 100–200ms). On a multiprocessor or multi-core system, multiple threads can execute in parallel , with every processor or core executing a separate thread simultaneously; on a processor or core with hardware threads , separate software threads can also be executed concurrently by separate hardware threads. Threads created by

7480-558: The user in a 1:1 correspondence with schedulable entities in the kernel are the simplest possible threading implementation. OS/2 and Win32 used this approach from the start, while on Linux the GNU C Library implements this approach (via the NPTL or older LinuxThreads ). This approach is also used by Solaris , NetBSD , FreeBSD , macOS , and iOS . An M :1 model implies that all application-level threads map to one kernel-level scheduled entity;

7568-473: The world. Middleware , an additional software layer between the operating system and applications, is often used to improve consistency. Although it functions similarly to an operating system, it is not a true operating system. Embedded operating systems are designed to be used in embedded computer systems , whether they are internet of things objects or not connected to a network. Embedded systems include many household appliances. The distinguishing factor

7656-410: Was a complete system that was mostly self hosting. Many students ran V as the only operating system on their diskless SUN workstations or MicroVAX workstations. Compiles could be done either on V, or on VAX Unix machines that provided file service in a more stable environment than the ever-changing research system. V did have some notable impacts. After the initial implementation on one computer,

7744-406: Was the first popular computer to use a graphical user interface (GUI). The GUI proved much more user friendly than the text-only command-line interface earlier operating systems had used. Following the success of Macintosh, MS-DOS was updated with a GUI overlay called Windows . Windows later was rewritten as a stand-alone operating system, borrowing so many features from another ( VAX VMS ) that

#390609