A power MOSFET is a specific type of metal–oxide–semiconductor field-effect transistor (MOSFET) designed to handle significant power levels. Compared to the other power semiconductor devices , such as an insulated-gate bipolar transistor (IGBT) or a thyristor , its main advantages are high switching speed and good efficiency at low voltages. It shares with the IGBT an isolated gate that makes it easy to drive. They can be subject to low gain, sometimes to a degree that the gate voltage needs to be higher than the voltage under control.
126-420: The design of power MOSFETs was made possible by the evolution of MOSFET and CMOS technology, used for manufacturing integrated circuits since the 1960s. The power MOSFET shares its operating principle with its low-power counterpart, the lateral MOSFET. The power MOSFET, which is commonly used in power electronics , was adapted from the standard MOSFET and commercially introduced in the 1970s. The power MOSFET
252-526: A 10 μm process over the next several years. CMOS technology was initially overlooked by the American semiconductor industry in favour of NMOS, which was more powerful at the time. However, CMOS was quickly adopted and further advanced by Japanese semiconductor manufacturers due to its low power consumption, leading to the rise of the Japanese semiconductor industry. Toshiba developed C MOS (Clocked CMOS),
378-754: A SCR , a GTO, a MCT , etc.) is still often used. This device can be turned on by a pulse provided by a driving circuit, but cannot be turned off by removing the pulse. A thyristor turns off as soon as no more current flows through it; this happens automatically in an alternating current system on each cycle, or requires a circuit with the means to divert current around the device. Both MCTs and GTOs have been developed to overcome this limitation, and are widely used in power distribution applications. A few applications of power semiconductors in switch mode include lamp dimmers , switch mode power supplies , induction cookers , automotive ignition systems , and AC and DC electric motor drives of all sizes. Amplifiers operate in
504-700: A gigawatt in a high voltage direct current transmission line. The first electronic device used in power circuits was the electrolytic rectifier - an early version was described by a French experimenter, A. Nodon, in 1904. These were briefly popular with early radio experimenters as they could be improvised from aluminum sheets, and household chemicals. They had low withstand voltages and limited efficiency. The first solid-state power semiconductor devices were copper oxide rectifiers, used in early battery chargers and power supplies for radio equipment, announced in 1927 by L.O. Grundahl and P. H. Geiger. The first germanium power semiconductor device appeared in 1952 with
630-440: A 'depleted region' that supports the high voltage during the off-state. On the other hand, during the on-state, the higher doping of the drift region allows for the easy flow of carriers, thereby reducing on-resistance. Commercial devices, based on this super junction principle, have been developed by companies like Infineon (CoolMOS products) and International Rectifier (IR). The major breakthrough in power semiconductor devices
756-460: A CMOS circuit. This example shows a NAND logic device drawn as a physical representation as it would be manufactured. The physical layout perspective is a "bird's eye view" of a stack of layers. The circuit is constructed on a P-type substrate. The polysilicon , diffusion, and n-well are referred to as "base layers" and are actually inserted into trenches of the P-type substrate. (See steps 1 to 6 in
882-482: A CMOS device: P = 0.5 C V 2 f {\displaystyle P=0.5CV^{2}f} . Since most gates do not operate/switch at every clock cycle , they are often accompanied by a factor α {\displaystyle \alpha } , called the activity factor. Now, the dynamic power dissipation may be re-written as P = α C V 2 f {\displaystyle P=\alpha CV^{2}f} . A clock in
1008-443: A PMOS transistor creates low resistance between its source and drain contacts when a low gate voltage is applied and high resistance when a high gate voltage is applied. On the other hand, the composition of an NMOS transistor creates high resistance between source and drain when a low gate voltage is applied and low resistance when a high gate voltage is applied. CMOS accomplishes current reduction by complementing every nMOSFET with
1134-453: A VDMOS (see figure 1) shows the "verticality" of the device: it can be seen that the source electrode is placed over the drain, resulting in a current mainly vertical when the transistor is in the on-state. The " diffusion " in VDMOS refers to the manufacturing process: the P wells (see figure 1) are obtained by a diffusion process (actually a double diffusion process to get the P and N regions, hence
1260-544: A VMOS in 1975. The VMOS and DMOS developed into what has become known as VDMOS (vertical DMOS). John Moll 's research team at HP Labs fabricated DMOS prototypes in 1977, and demonstrated advantages over the VMOS, including lower on-resistance and higher breakdown voltage. The same year, Hitachi introduced the LDMOS (lateral DMOS), a planar type of DMOS. Hitachi was the only LDMOS manufacturer between 1977 and 1983, during which time LDMOS
1386-536: A bipolar transistor, but is limited to low voltage applications. The Insulated-gate bipolar transistor (IGBT) was developed in the 1980s, and became widely available in the 1990s. This component has the power handling capability of the bipolar transistor and the advantages of the isolated gate drive of the power MOSFET. Some common power devices are the power MOSFET , power diode , thyristor , and IGBT . The power diode and power MOSFET operate on similar principles to their low-power counterparts, but are able to carry
SECTION 10
#17330861364061512-401: A brief spike in power consumption and becomes a serious issue at high frequencies. The adjacent image shows what happens when an input is connected to both a PMOS transistor (top of diagram) and an NMOS transistor (bottom of diagram). Vdd is some positive voltage connected to a power supply and Vss is ground. A is the input and Q is the output. When the voltage of A is low (i.e. close to Vss),
1638-420: A circuit technology with lower power consumption and faster operating speed than ordinary CMOS, in 1969. Toshiba used its C MOS technology to develop a large-scale integration (LSI) chip for Sharp 's Elsi Mini LED pocket calculator , developed in 1971 and released in 1972. Suwa Seikosha (now Seiko Epson ) began developing a CMOS IC chip for a Seiko quartz watch in 1969, and began mass-production with
1764-456: A close relative of CMOS. He invented complementary flip-flop and inverter circuits, but did no work in a more complex complementary logic. He was the first person able to put p-channel and n-channel TFTs in a circuit on the same substrate. Three years earlier, John T. Wallmark and Sanford M. Marcus published a variety of complex logic functions implemented as integrated circuits using JFETs , including complementary memory circuits. Frank Wanlass
1890-500: A few hundred microseconds. Nominal voltages for MOSFET switching devices range from a few volts to a little over 1000 V, with currents up to about 100 A or so, though MOSFETs can be paralleled to increase switching current. MOSFET devices are not bi-directional, nor are they reverse voltage blocking. An example of this new device from ABB shows how this device improves on GTO technology for switching high voltage and high current in power electronics applications. According to ABB,
2016-458: A high density of logic functions on a chip. It was primarily for this reason that CMOS became the most widely used technology to be implemented in VLSI chips. The phrase "metal–oxide–semiconductor" is a reference to the physical structure of MOS field-effect transistors , having a metal gate electrode placed on top of an oxide insulator, which in turn is on top of a semiconductor material . Aluminium
2142-673: A high-performance 250 nanometer CMOS process. Fujitsu commercialized a 700 nm CMOS process in 1987, and then Hitachi, Mitsubishi Electric , NEC and Toshiba commercialized 500 nm CMOS in 1989. In 1993, Sony commercialized a 350 nm CMOS process, while Hitachi and NEC commercialized 250 nm CMOS. Hitachi introduced a 160 nm CMOS process in 1995, then Mitsubishi introduced 150 nm CMOS in 1996, and then Samsung Electronics introduced 140 nm in 1999. In 2000, Gurtej Singh Sandhu and Trung T. Doan at Micron Technology invented atomic layer deposition High-κ dielectric films , leading to
2268-434: A larger amount of current and are typically able to withstand a larger reverse-bias voltage in the off-state . Structural changes are often made in a power device in order to accommodate the higher current density, higher power dissipation, and/or higher reverse breakdown voltage. The vast majority of the discrete (i.e., non-integrated) power devices are built using a vertical structure, whereas small-signal devices employ
2394-461: A lateral structure. With the vertical structure, the current rating of the device is proportional to its area, and the voltage blocking capability is achieved in the height of the die. With this structure, one of the connections of the device is located on the bottom of the semiconductor die . The power MOSFET is the most common power device in the world, due to its low gate drive power, fast switching speed, and advanced paralleling capability. It has
2520-510: A maximum gate to source voltage, around 20 V, and exceeding this limit can result in destruction of the component. Furthermore, a high gate to source voltage reduces significantly the lifetime of the MOSFET, with little to no advantage on R DSon reduction. To deal with this issue, a gate driver circuit is often used. Power MOSFETs have a maximum specified drain to source voltage (when turned off), beyond which breakdown may occur. Exceeding
2646-431: A pMOSFET and connecting both gates and both drains together. A high voltage on the gates will cause the nMOSFET to conduct and the pMOSFET not to conduct, while a low voltage on the gates causes the reverse. This arrangement greatly reduces power consumption and heat generation. However, during the switching time, both pMOS and nMOS MOSFETs conduct briefly as the gate voltage transitions from one state to another. This induces
SECTION 20
#17330861364062772-472: A power device are either related to excessive temperature or fatigue due to thermal cycling. Research is currently carried out on the following topics: Research is also ongoing on electrical issues such as reducing the parasitic inductance of packaging; this inductance limits the operating frequency, because it generates losses during commutation. A low-voltage MOSFET is also limited by the parasitic resistance of its package, as its intrinsic on-state resistance
2898-512: A rectangular piece of silicon of often between 10 and 400 mm . CMOS always uses all enhancement-mode MOSFETs (in other words, a zero gate-to-source voltage turns the transistor off). CMOS circuits are constructed in such a way that all P-type metal–oxide–semiconductor (PMOS) transistors must have either an input from the voltage source or from another PMOS transistor. Similarly, all NMOS transistors must have either an input from ground or from another NMOS transistor. The composition of
3024-413: A small period of time in which current will find a path directly from V DD to ground, hence creating a short-circuit current , sometimes called a crowbar current. Short-circuit power dissipation increases with the rise and fall time of the transistors. This form of power consumption became significant in the 1990s as wires on chip became narrower and the long wires became more resistive. CMOS gates at
3150-425: A system has an activity factor α=1, since it rises and falls every cycle. Most data has an activity factor of 0.1. If correct load capacitance is estimated on a node together with its activity factor, the dynamic power dissipation at that node can be calculated effectively. Since there is a finite rise/fall time for both pMOS and nMOS, during transition, for example, from off to on, both the transistors will be on for
3276-443: A trade-off for devices to become slower. To speed up designs, manufacturers have switched to constructions that have lower voltage thresholds but because of this a modern NMOS transistor with a V th of 200 mV has a significant subthreshold leakage current. Designs (e.g. desktop processors) which include vast numbers of circuits which are not actively switching still consume power because of this leakage current. Leakage power
3402-491: A wide range of consumer electronics . RF DMOS, also known as RF power MOSFET, is a type of DMOS power transistor designed for radio-frequency (RF) applications. It is used in various radio and RF applications. Power MOSFETs are widely used in transportation technology, which include a wide range of vehicles . In the automotive industry , power MOSFETs are widely used in automotive electronics . Power MOSFETs (including DMOS, LDMOS and VMOS ) are commonly used for
3528-618: A wide range of power electronic applications, such as portable information appliances , power integrated circuits, cell phones , notebook computers , and the communications infrastructure that enables the Internet . As of 2010, the power MOSFET accounts for the majority (53%) of the power transistor market, followed by the IGBT (27%), then the RF amplifier (11%), and then the bipolar junction transistor (9%). Switching times range from tens of nanoseconds to
3654-463: A wide range of other applications. Several structures had been explored in the 1970s, when the first commercial power MOSFETs were introduced. However, most of them have been abandoned (at least until recently) in favour of the Vertical Diffused MOS ( VDMOS ) structure (also called Double-Diffused MOS or simply DMOS ) and the LDMOS (laterally diffused MOS) structure. The cross section of
3780-569: Is a better behaviour in the saturated region (corresponding to the linear region of a bipolar junction transistor) than the vertical MOSFETs. Vertical MOSFETs are designed for switching applications, so they are only used in On or Off states. When the power MOSFET is in the on-state (see MOSFET for a discussion on operation modes), it exhibits a resistive behaviour between the drain and source terminals. It can be seen in figure 2 that this resistance (called R DSon for "drain to source resistance in on-state")
3906-459: Is a capacitance whose value is dependent upon the gate to drain voltage. As this voltage increases, the capacitance decreases. When the MOSFET is in on-state, C GDj is shunted, so the gate to drain capacitance remains equal to C oxD , a constant value. As the source metallization overlaps the P-wells (see figure 1), the drain and source terminals are separated by a P-N junction . Therefore, C DS
Power MOSFET - Misplaced Pages Continue
4032-412: Is a physical limit, no improvement is expected in the design of a silicon MOSFET concerning its maximum voltage ratings. However, its excellent performance in low voltage applications make it the device of choice (actually the only choice, currently) for applications with voltages below 200 V. By placing several devices in parallel, it is possible to increase the current rating of a switch. The MOSFET
4158-471: Is a significant portion of the total power consumed by such designs. Multi-threshold CMOS (MTCMOS), now available from foundries, is one approach to managing leakage power. With MTCMOS, high V th transistors are used when switching speed is not critical, while low V th transistors are used in speed sensitive paths. Further technology advances that use even thinner gate dielectrics have an additional leakage component because of current tunnelling through
4284-508: Is able to withstand very high reverse breakdown voltage and is also capable of carrying high current. However, one disadvantage of the thyristor in switching circuits is that once it becomes 'latched-on' in the conducting state; it cannot be turned off by external control, as the thyristor turn-off is passive, i.e., the power must be disconnected from the device. Thyristors which could be turned off, called gate turn-off thyristors (GTO), were introduced in 1960. These overcome some limitations of
4410-419: Is also widely used for RF circuits all the way to microwave frequencies, in mixed-signal (analog+digital) applications. RF CMOS refers to RF circuits ( radio frequency circuits) which are based on mixed-signal CMOS integrated circuit technology. They are widely used in wireless telecommunication technology. RF CMOS was developed by Asad Abidi while working at UCLA in the late 1980s. This changed
4536-536: Is as low as one or two milliohms. Some of the most common type of power semiconductor packages include the TO-220, TO-247, TO-262, TO-3, D Pak, etc. The IGBT design is still under development and can be expected to provide increases in operating voltages. At the high-power end of the range, the MOS-controlled thyristor is a promising device. Achieving a major improvement over the conventional MOSFET structure by employing
4662-405: Is connected to V SS and an N-type n-well tap is connected to V DD to prevent latchup . CMOS logic dissipates less power than NMOS logic circuits because CMOS dissipates power only when switching ("dynamic power"). On a typical ASIC in a modern 90 nanometer process, switching the output might take 120 picoseconds, and happens once every ten nanoseconds. NMOS logic dissipates power whenever
4788-457: Is connected together in metal (illustrated in cyan coloring). Connections between metal and polysilicon or diffusion are made through contacts (illustrated as black squares). The physical layout example matches the NAND logic circuit given in the previous example. The N device is manufactured on a P-type substrate while the P device is manufactured in an N-type well (n-well). A P-type substrate "tap"
4914-517: Is demonstrated by the plot in figure 3. It can be seen in figure 1 that the source metallization connects both the N and P implantations, although the operating principle of the MOSFET only requires the source to be connected to the N zone. However, if it were, this would result in a floating P zone between the N-doped source and drain, which is equivalent to a NPN transistor with a non-connected base. Under certain conditions (under high drain current, when
5040-471: Is expected from the replacement of silicon by a wide band-gap semiconductor. At the moment, silicon carbide (SiC) is considered to be the most promising. A SiC Schottky diode with a breakdown voltage of 1200 V is commercially available, as is a 1200 V JFET . As both are majority carrier devices, they can operate at high speed. A bipolar device is being developed for higher voltages (up to 20 kV). Among its advantages, silicon carbide can operate at
5166-403: Is in linear regulated power supplies, when an amplifier device is used as a voltage regulator to maintain load voltage at a desired setting. While such a power supply may be less energy efficient than a switched mode power supply , the simplicity of application makes them popular, especially in current ranges up to about one amp. The role of packaging is to: Many of the reliability issues of
Power MOSFET - Misplaced Pages Continue
5292-415: Is limited by heating due to resistive losses in internal components such as bond wires , and other phenomena such as electromigration in the metal layer. The junction temperature (T J ) of the MOSFET must stay under a specified maximum value for the device to function reliably, determined by MOSFET die layout and packaging materials. The packaging often limits the maximum junction temperature, due to
5418-448: Is necessarily associated with a lower performance in the on-state. The trade-offs between voltage, current, and frequency ratings also exist for a switch. In fact, any power semiconductor relies on a PIN diode structure in order to sustain voltage; this can be seen in figure 2. The power MOSFET has the advantages of a majority carrier device, so it can achieve a very high operating frequency, but it cannot be used with high voltages; as it
5544-415: Is often used to minimize the amount of time that the body diode conducts current. Because of their unipolar nature, the power MOSFET can switch at very high speed. Indeed, there is no need to remove minority carriers as with bipolar devices. The only intrinsic limitation in commutation speed is due to the internal capacitances of the MOSFET (see figure 4). These capacitances must be charged or discharged when
5670-523: Is particularly suited to this configuration, because its positive thermal coefficient of resistance tends to result in a balance of current between the individual devices. The IGBT is a recent component, so its performance improves regularly as technology evolves. It has already completely replaced the bipolar transistor in power applications; a power module is available in which several IGBT devices are connected in parallel, making it attractive for power levels up to several megawatts, which pushes further
5796-465: Is that both low-to-high and high-to-low output transitions are fast since the (PMOS) pull-up transistors have low resistance when switched on, unlike the load resistors in NMOS logic. In addition, the output signal swings the full voltage between the low and high rails. This strong, more nearly symmetric response also makes CMOS more resistant to noise. See Logical effort for a method of calculating delay in
5922-757: Is the doping level. The value of C GDj can be approximated using the expression of the plane capacitor : C G D j = A G D ϵ S i w G D j {\displaystyle C_{GDj}=A_{GD}{\frac {\epsilon _{Si}}{w_{GDj}}}} Where A GD is the surface area of the gate-drain overlap. Therefore, it comes: C G D j ( V G D ) = A G D q ϵ S i N 2 V G D {\displaystyle C_{GDj}\left(V_{GD}\right)=A_{GD}{\sqrt {\frac {q\epsilon _{Si}N}{2V_{GD}}}}} It can be seen that C GDj (and thus C GD )
6048-447: Is the duality that exists between its PMOS transistors and NMOS transistors. A CMOS circuit is created to allow a path always to exist from the output to either the power source or ground. To accomplish this, the set of all paths to the voltage source must be the complement of the set of all paths to ground. This can be easily accomplished by defining one in terms of the NOT of the other. Due to
6174-415: Is the high voltage drop it exhibits in the on-state (2-to-4 V). Compared to the MOSFET, the operating frequency of the IGBT is relatively low (usually not higher than 50 kHz), mainly because of a problem during turn-off known as current-tail : The slow decay of the conduction current during turn-off results from a slow recombination of a large number of carriers that flood the thick 'drift' region of
6300-434: Is the junction capacitance. This is a non-linear capacitance, and its value can be calculated using the same equation as for C GDj . To operate, the MOSFET must be connected to the external circuit, most of the time using wire bonding (although alternative techniques are investigated). These connections exhibit a parasitic inductance, which is in no way specific to the MOSFET technology, but has important effects because of
6426-516: Is the most common power semiconductor device in the world, due to its low gate drive power, fast switching speed, easy advanced paralleling capability, wide bandwidth, ruggedness, easy drive, simple biasing, ease of application, and ease of repair. In particular, it is the most widely used low-voltage (less than 200 V) switch. It can be found in a wide range of applications, such as most power supplies , DC-to-DC converters , low-voltage motor controllers , and many other applications . The MOSFET
SECTION 50
#17330861364066552-768: Is the oxide capacitance (C oxD ), constituted by the gate electrode, the silicon dioxide and the top of the N epitaxial layer. It has a constant value. The second capacitance (C GDj ) is caused by the extension of the space-charge zone when the MOSFET is in off-state. Therefore, it is dependent upon the drain to gate voltage. From this, the value of C GD is: C G D = C o x D × C G D j ( V G D ) C o x D + C G D j ( V G D ) {\displaystyle C_{GD}={\frac {C_{oxD}\times C_{GDj}\left(V_{GD}\right)}{C_{oxD}+C_{GDj}\left(V_{GD}\right)}}} The width of
6678-453: Is the sum of many elementary contributions: When in the OFF-state, the power MOSFET is equivalent to a PIN diode (constituted by the P diffusion, the N epitaxial layer and the N substrate). When this highly non-symmetrical structure is reverse-biased, the space-charge region extends principally on the light-doped side, i.e. , over the N layer. This means that this layer has to withstand most of
6804-410: Is used for constructing integrated circuit (IC) chips, including microprocessors , microcontrollers , memory chips (including CMOS BIOS ), and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors ( CMOS sensors ), data converters , RF circuits ( RF CMOS ), and highly integrated transceivers for many types of communication. The CMOS process
6930-416: Is usually used in "commutation mode" (i.e., it is either on or off), and therefore has a design optimized for such usage; it should usually not be used in linear operation. Linear power circuits are widespread as voltage regulators, audio amplifiers, and radio frequency amplifiers. Power semiconductors are found in systems delivering as little as a few tens of milliwatts for a headphone amplifier, up to around
7056-456: Is very small compared to sub threshold and tunnelling currents, so these may be neglected during power calculations. If the ratios do not match, then there might be different currents of PMOS and NMOS; this may lead to imbalance and thus improper current causes the CMOS to heat up and dissipate power unnecessarily. Furthermore, recent studies have shown that leakage power reduces due to aging effects as
7182-498: The RCA 1802 CMOS microprocessor due to low power consumption. Intel introduced a 1.5 μm process for CMOS semiconductor device fabrication in 1983. In the mid-1980s, Bijan Davari of IBM developed high-performance, low-voltage, deep sub-micron CMOS technology, which enabled the development of faster computers as well as portable computers and battery-powered handheld electronics . In 1988, Davari led an IBM team that demonstrated
7308-424: The insulated-gate bipolar transistor (27%), RF power amplifier (11%) and bipolar junction transistor (9%). As of 2018, over 50 billion power MOSFETs are shipped annually. These include the trench power MOSFET, which sold over 100 billion units up until February 2017, and STMicroelectronics ' MDmesh (superjunction MOSFET) which has sold 5 billion units as of 2019. Power MOSFETs are commonly used for
7434-415: The wireless revolution , leading to the rapid growth of the wireless industry. Power semiconductor device A power semiconductor device is a semiconductor device used as a switch or rectifier in power electronics (for example in a switch-mode power supply ). Such a device is also called a power device or, when used in an integrated circuit , a power IC . A power semiconductor device
7560-455: The 1970s. In 1969, Hitachi introduced the first vertical power MOSFET, which would later be known as the VMOS (V-groove MOSFET). From 1974, Yamaha , JVC , Pioneer Corporation , Sony and Toshiba began manufacturing audio amplifiers with power MOSFETs. International Rectifier introduced a 25 A, 400 V power MOSFET in 1978. This device allows operation at higher frequencies than
7686-462: The A or B inputs is low, one of the NMOS transistors will not conduct, one of the PMOS transistors will, and a conductive path will be established between the output and V dd (voltage source), bringing the output high. As the only configuration of the two inputs that results in a low output is when both are high, this circuit implements a NAND (NOT AND) logic gate. An advantage of CMOS over NMOS logic
SECTION 60
#17330861364067812-456: The CMOS device. Clamp diodes are included in CMOS circuits to deal with these signals. Manufacturers' data sheets specify the maximum permitted current that may flow through the diodes. Besides digital applications, CMOS technology is also used in analog applications. For example, there are CMOS operational amplifier ICs available in the market. Transmission gates may be used as analog multiplexers instead of signal relays . CMOS technology
7938-432: The IGBT during conduction. The net result is that the turn-off switching loss [ de ] of an IGBT is considerably higher than its turn-on loss. Generally, in datasheets, turn-off energy is mentioned as a measured parameter; that number has to be multiplied with the switching frequency of the intended application in order to estimate the turn-off loss. At very high power levels, a thyristor -based device (e.g.,
8064-563: The IGCT devices are capable of switching in excess of 5000 VAC and 5000 A at very high frequencies, something not possible to do efficiently with GTO devices. A power device may be classified as one of the following main categories (see figure 1): Another classification is less obvious, but has a strong influence on device performance: A majority carrier device is faster, but the charge injection of minority carrier devices allows for better on-state performance. An ideal diode should have
8190-563: The Intel 2147 HMOS chip, while the HM6147 also consumed significantly less power (15 mA ) than the 2147 (110 mA). With comparable performance and much less power consumption, the twin-well CMOS process eventually overtook NMOS as the most common semiconductor manufacturing process for computers in the 1980s. In the 1980s, CMOS microprocessors overtook NMOS microprocessors. NASA 's Galileo spacecraft, sent to orbit Jupiter in 1989, used
8316-402: The MOSFET pair is always off, the series combination draws significant power only momentarily during switching between on and off states. Consequently, CMOS devices do not produce as much waste heat as other forms of logic, like NMOS logic or transistor–transistor logic (TTL), which normally have some standing current even when not changing state. These characteristics allow CMOS to integrate
8442-460: The MOSFET's OFF-state drain-to-source voltage. However, when the MOSFET is in the ON-state, this N layer has no function. Furthermore, as it is a lightly doped region, its intrinsic resistivity is non-negligible and adds to the MOSFET's ON-state Drain-to-Source Resistance (R DSon ) (this is the R n resistance in figure 2). Two main parameters govern both the breakdown voltage and the R DSon of
8568-461: The N and P regions are highly doped, the two former capacitances can be considered as constant. C oxm is the capacitance between the (polysilicon) gate and the (metal) source electrode, so it is also constant. Therefore, it is common practice to consider C GS as a constant capacitance, i.e. its value does not depend on the transistor state. The C GD capacitance can be seen as the connection in series of two elementary capacitances. The first one
8694-450: The NMOS transistor's channel is in a high resistance state, disconnecting Vss from Q. The PMOS transistor's channel is in a low resistance state, connecting Vdd to Q. Q, therefore, registers Vdd. On the other hand, when the voltage of A is high (i.e. close to Vdd), the PMOS transistor is in a high resistance state, disconnecting Vdd from Q. The NMOS transistor is in a low resistance state, connecting Vss to Q. Now, Q registers Vss. In short,
8820-416: The PMOS transistors (top half) will conduct, and a conductive path will be established between the output and V ss (ground), bringing the output low. If both of the A and B inputs are low, then neither of the NMOS transistors will conduct, while both of the PMOS transistors will conduct, establishing a conductive path between the output and V dd (voltage source), bringing the output high. If either of
8946-406: The active region, where both device current and voltage are non-zero. Consequently power is continually dissipated and its design is dominated by the need to remove excess heat from the semiconductor device. Power amplifier devices can often be recognized by the heat sink used to mount the devices. Multiple types of power semiconductor amplifier device exist, such as the bipolar junction transistor,
9072-414: The best performance per watt each year have been CMOS static logic since 1976. As of 2019, planar CMOS technology is still the most common form of semiconductor device fabrication, but is gradually being replaced by non-planar FinFET technology, which is capable of manufacturing semiconductor nodes smaller than 20 nm . "CMOS" refers to both a particular style of digital circuitry design and
9198-405: The breakdown voltage causes the device to conduct, potentially damaging it and other circuit elements due to excessive power dissipation. The drain current must generally stay below a certain specified value (maximum continuous drain current). It can reach higher values for very short durations of time (maximum pulsed drain current, sometimes specified for various pulse durations). The drain current
9324-403: The combined ranges of drain current and drain to source voltage the power MOSFET is able to handle without damage. It is represented graphically as an area in the plane defined by these two parameters. Both drain current and drain-to-source voltage must stay below their respective maximum values, but their product must also stay below the maximum power dissipation the device is able to handle. Thus,
9450-430: The corresponding supply voltage, modelling an AND. When a path consists of two transistors in parallel, either one or both of the transistors must have low resistance to connect the supply voltage to the output, modelling an OR. Shown on the right is a circuit diagram of a NAND gate in CMOS logic. If both of the A and B inputs are high, then both the NMOS transistors (bottom half of the diagram) will conduct, neither of
9576-433: The development of a cost-effective 90 nm CMOS process. Toshiba and Sony developed a 65 nm CMOS process in 2002, and then TSMC initiated the development of 45 nm CMOS logic in 2004. The development of pitch double patterning by Gurtej Singh Sandhu at Micron Technology led to the development of 30 nm class CMOS in the 2000s. CMOS is used in most modern LSI and VLSI devices. As of 2010, CPUs with
9702-454: The device cannot be operated at its maximum current and maximum voltage simultaneously. The equivalent circuit for a power MOSFET consists of one MOSFET in parallel with a parasitic BJT. If the BJT turns ON, it cannot be turned off, since the gate has no control over it. This phenomenon is known as " latch-up ", which can lead to device destruction. The BJT can be turned on due to a voltage drop across
9828-406: The device; M. O. Thurston, L. A. D'Asaro, and J. R. Ligenza who developed the diffusion processes, and H. K. Gummel and R. Lindner who characterized the device. There were originally two types of MOSFET logic, PMOS ( p-type MOS) and NMOS ( n-type MOS). Both types were demonstrated by Atalla and Kahng in 1960 at Bell Labs. A new type of MOSFET logic combining both the PMOS and NMOS processes
9954-541: The early microprocessor industry. By the late 1970s, NMOS microprocessors had overtaken PMOS processors. CMOS microprocessors were introduced in 1975, with the Intersil 6100 , and RCA CDP 1801 . However, CMOS processors did not become dominant until the 1980s. CMOS was initially slower than NMOS logic , thus NMOS was more widely used for computers in the 1970s. The Intel 5101 (1 kb SRAM ) CMOS memory chip (1974) had an access time of 800 ns , whereas
10080-444: The end of those resistive wires see slow input transitions. Careful design which avoids weakly driven long skinny wires reduces this effect, but crowbar power can be a substantial part of dynamic CMOS power. Parasitic transistors that are inherent in the CMOS structure may be turned on by input signals outside the normal operating range, e.g. electrostatic discharges or line reflections . The resulting latch-up may damage or destroy
10206-585: The extremely thin gate dielectric. Using high-κ dielectrics instead of silicon dioxide that is the conventional gate dielectric allows similar device performance, but with a thicker gate insulator, thus avoiding this current. Leakage power reduction using new material and system designs is critical to sustaining scaling of CMOS. CMOS circuits dissipate power by charging the various load capacitances (mostly gate and wire capacitance, but also drain and some source capacitances) whenever they are switched. In one complete cycle of CMOS logic, current flows from V DD to
10332-411: The family of processes used to implement that circuitry on integrated circuits (chips). CMOS circuitry dissipates less power than logic families with resistive loads. Since this advantage has increased and grown more important, CMOS processes and variants have come to dominate, thus the vast majority of modern integrated circuit manufacturing is on CMOS processes. CMOS logic consumes around one seventh
10458-411: The fastest NMOS chip at the time, the Intel 2147 (4 kb SRAM) HMOS memory chip (1976), had an access time of 55/70 ns. In 1978, a Hitachi research team led by Toshiaki Masuhara introduced the twin-well Hi-CMOS process, with its HM6147 (4 kb SRAM) memory chip, manufactured with a 3 μm process . The Hitachi HM6147 chip was able to match the performance (55/70 ns access) of
10584-437: The following characteristics: In reality, the design of a diode is a trade-off between performance in on-state, off-state, and commutation. Indeed, the same area of the device must sustain the blocking voltage in the off-state and allow current flow in the on-state; as the requirements for the two states are completely opposite, a diode has to be either optimised for one of them, or time must be allowed to switch from one state to
10710-450: The gate-to-source, gate-to-drain and drain-to-source capacitances (see below). Manufacturers prefer to quote C iss , C oss and C rss because they can be directly measured on the transistor. However, as C GS , C GD and C DS are closer to the physical meaning, they will be used in the remaining of this article. The C GS capacitance is constituted by the parallel connection of C oxN+ , C oxP and C oxm (see figure 4). As
10836-437: The high commutation speeds. Parasitic inductances tend to maintain their current constant and generate overvoltage during the transistor turn off, resulting in increasing commutation losses. A parasitic inductance can be associated with each terminal of the MOSFET. They have different effects: The gate oxide is very thin (100 nm or less), so it can only sustain a limited voltage. In the datasheets, manufacturers often state
10962-522: The input. The transistors' resistances are never exactly equal to zero or infinity, so Q will never exactly equal Vss or Vdd, but Q will always be closer to Vss than A was to Vdd (or vice versa if A were close to Vss). Without this amplification, there would be a very low limit to the number of logic gates that could be chained together in series, and CMOS logic with billions of transistors would be impossible. The power supply pins for CMOS are called V DD and V SS , or V CC and Ground(GND) depending on
11088-845: The introduction of the power diode by R.N. Hall . It had a reverse voltage blocking capability of 200 V and a current rating of 35 A . Germanium bipolar transistors with substantial power handling capabilities (100 mA collector current) were introduced around 1952; with essentially the same construction as signal devices, but better heat sinking. Power handling capability evolved rapidly, and by 1954 germanium alloy junction transistors with 100 watt dissipation were available. These were all relatively low-frequency devices, used up to around 100 kHz, and up to 85 degrees Celsius junction temperature. Silicon power transistors were not made until 1957, but when available had better frequency response than germanium devices, and could operate up to 150 C junction temperature. The thyristor appeared in 1957. It
11214-525: The launch of the Seiko Analog Quartz 38SQW watch in 1971. The first mass-produced CMOS consumer electronic product was the Hamilton Pulsar "Wrist Computer" digital watch, released in 1970. Due to low power consumption, CMOS logic has been widely used for calculators and watches since the 1970s. The earliest microprocessors in the early 1970s were PMOS processors, which initially dominated
11340-425: The limit at which thyristors and GTOs become the only option. Basically, an IGBT is a bipolar transistor driven by a power MOSFET; it has the advantages of being a minority carrier device (good performance in the on-state, even for high voltage devices), with the high input impedance of a MOSFET (it can be driven on or off with a very low amount of power). The major limitation of the IGBT for low voltage applications
11466-425: The load capacitance to charge it and then flows from the charged load capacitance (C L ) to ground during discharge. Therefore, in one complete charge/discharge cycle, a total of Q=C L V DD is thus transferred from V DD to ground. Multiply by the switching frequency on the load capacitances to get the current used, and multiply by the average voltage again to get the characteristic switching power dissipated by
11592-444: The logic based on De Morgan's laws , the PMOS transistors in parallel have corresponding NMOS transistors in series while the PMOS transistors in series have corresponding NMOS transistors in parallel. More complex logic functions such as those involving AND and OR gates require manipulating the paths between gates to represent the logic. When a path consists of two transistors in series, both transistors must have low resistance to
11718-408: The manufacturer. V DD and V SS are carryovers from conventional MOS circuits and stand for the drain and source supplies. These do not apply directly to CMOS, since both supplies are really source supplies. V CC and Ground are carryovers from TTL logic and that nomenclature has been retained with the introduction of the 54C/74C line of CMOS. An important characteristic of a CMOS circuit
11844-404: The maximum operating temperature , due to thermal mass characteristics; in general, the lower the frequency of pulses for a given power dissipation, the higher maximum operating ambient temperature, due to allowing a longer interval for the device to cool down. Models, such as a Foster network , can be used to analyze temperature dynamics from power transients. The safe operating area defines
11970-447: The molding compound and (where used) epoxy characteristics. The maximum operating ambient temperature is determined by the power dissipation and thermal resistance . The junction-to-case thermal resistance is intrinsic to the device and package; the case-to-ambient thermal resistance is largely dependent on the board/mounting layout, heatsinking area and air/fluid flow. The type of power dissipation, whether continuous or pulsed, affects
12096-412: The name double diffused). Power MOSFETs have a different structure from the lateral MOSFET: as with most power devices, their structure is vertical and not planar. In a planar structure, the current and breakdown voltage ratings are both functions of the channel dimensions (respectively width and length of the channel), resulting in inefficient use of the "silicon real estate". With a vertical structure,
12222-463: The on-state drain to source voltage is in the order of some volts), this parasitic NPN transistor would be triggered, making the MOSFET uncontrollable. The connection of the P implantation to the source metallization shorts the base of the parasitic transistor to its emitter (the source of the MOSFET) and thus prevents spurious latching. This solution, however, creates a diode between the drain (cathode) and
12348-422: The ordinary thyristor, because they can be turned on or off with an applied signal. The MOSFET was invented at Bell Labs between 1955 and 1960 Generations of MOSFET transistors enabled power designers to achieve performance and density levels not possible with bipolar transistors. Due to improvements in MOSFET technology (initially used to produce integrated circuits ), the power MOSFET became available in
12474-424: The other (i.e., the commutation speed must be reduced). These trade-offs are the same for all power devices; for instance, a Schottky diode has excellent switching speed and on-state performance, but a high level of leakage current in the off-state. On the other hand, a PIN diode is commercially available in different commutation speeds (what are called "fast" and "ultrafast" rectifiers), but any increase in speed
12600-401: The outputs of the PMOS and NMOS transistors are complementary such that when the input is low, the output is high, and when the input is high, the output is low. No matter what the input is, the output is never left floating (charge is never stored due to wire capacitance and lack of electrical drain/ground). Because of this behavior of input and output, the CMOS circuit's output is the inverse of
12726-472: The p-type body region. To avoid latch-up, the body and the source are typically short-circuited within the device package. CMOS Complementary metal–oxide–semiconductor ( CMOS , pronounced "sea-moss ", / s iː m ɑː s / , /- ɒ s / ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology
12852-583: The power consumption per unit area of the chip has risen tremendously. Broadly classifying, power dissipation in CMOS circuits occurs because of two components, static and dynamic: Both NMOS and PMOS transistors have a gate–source threshold voltage (V th ), below which the current (called sub threshold current) through the device will drop exponentially. Historically, CMOS circuits operated at supply voltages much larger than their threshold voltages (V dd might have been 5 V, and V th for both NMOS and PMOS might have been 700 mV). A special type of
12978-479: The power of NMOS logic , and about 10 million times less power than bipolar transistor-transistor logic (TTL). CMOS circuits use a combination of p-type and n-type metal–oxide–semiconductor field-effect transistor (MOSFETs) to implement logic gates and other digital circuits. Although CMOS logic can be implemented with discrete devices for demonstrations, commercial CMOS products are integrated circuits composed of up to billions of transistors of both types, on
13104-512: The process diagram below right) The contacts penetrate an insulating layer between the base layers and the first layer of metal (metal1) making a connection. The inputs to the NAND (illustrated in green color) are in polysilicon. The transistors (devices) are formed by the intersection of the polysilicon and diffusion; N diffusion for the N device & P diffusion for the P device (illustrated in salmon and yellow coloring respectively). The output ("out")
13230-465: The source (anode) of the MOSFET, making it able to block current in only one direction. Body diodes may be utilized as freewheeling diodes for inductive loads in configurations such as H bridge or half bridge. While these diodes usually have rather high forward voltage drop, they can handle large currents and are sufficient in many applications, reducing part count, and thus, device cost and board space. To increase efficiency, synchronous rectification
13356-422: The source contact. CMOS was commercialised by RCA in the late 1960s. RCA adopted CMOS for the design of integrated circuits (ICs), developing CMOS circuits for an Air Force computer in 1965 and then a 288- bit CMOS SRAM memory chip in 1968. RCA also used CMOS for its 4000-series integrated circuits in 1968, starting with a 20 μm semiconductor manufacturing process before gradually scaling to
13482-465: The space-charge region is given by w G D j = 2 ϵ S i V G D q N {\displaystyle w_{GDj}={\sqrt {\frac {2\epsilon _{Si}V_{GD}}{qN}}}} where ϵ S i {\displaystyle \epsilon _{Si}} is the permittivity of the Silicon, q is the electron charge, and N
13608-632: The standard name for the technology by the early 1970s. CMOS overtook NMOS logic as the dominant MOSFET fabrication process for very large-scale integration (VLSI) chips in the 1980s, also replacing earlier transistor–transistor logic (TTL) technology. CMOS has since remained the standard fabrication process for MOSFET semiconductor devices in VLSI chips. As of 2011 , 99% of IC chips, including most digital , analog and mixed-signal ICs, were fabricated using CMOS technology. Two important characteristics of CMOS devices are high noise immunity and low static power consumption . Since one transistor of
13734-439: The super junction charge-balance principle: essentially, it allows the thick drift region of a power MOSFET to be heavily doped, thereby reducing the electrical resistance to electron flow without compromising the breakdown voltage. This is juxtaposed with a region that is similarly doped with the opposite carrier polarity ( holes ); these two similar, but oppositely doped regions effectively cancel out their mobile charge and develop
13860-434: The transistor is on, because there is a current path from V dd to V ss through the load resistor and the n-type network. Static CMOS gates are very power efficient because they dissipate nearly zero power when idle. Earlier, the power consumption of CMOS devices was not the major concern while designing chips. Factors like speed and area dominated the design parameters. As the CMOS technology moved below sub-micron levels
13986-1128: The transistor switches. This can be a relatively slow process because the current that flows through the gate capacitances is limited by the external driver circuit. This circuit will actually dictate the commutation speed of the transistor (assuming the power circuit has sufficiently low inductance). In the MOSFET datasheets , the capacitances are often named C iss (input capacitance, drain and source terminal shorted), C oss (output capacitance, gate and source shorted), and C rss (reverse transfer capacitance, source connected to ground). The relationship between these capacitances and those described below is: C i s s = C G S + C G D C o s s = C G D + C D S C r s s = C G D {\displaystyle {\begin{matrix}C_{iss}&=&C_{GS}+C_{GD}\\C_{oss}&=&C_{GD}+C_{DS}\\C_{rss}&=&C_{GD}\end{matrix}}} Where C GS , C GD and C DS are respectively
14112-659: The transistor used in some CMOS circuits is the native transistor , with near zero threshold voltage . SiO 2 is a good insulator, but at very small thickness levels electrons can tunnel across the very thin insulation; the probability drops off exponentially with oxide thickness. Tunnelling current becomes very important for transistors below 130 nm technology with gate oxides of 20 Å or thinner. Small reverse leakage currents are formed due to formation of reverse bias between diffusion regions and wells (for e.g., p-type diffusion vs. n-well), wells and substrate (for e.g., n-well vs. p-substrate). In modern process diode leakage
14238-463: The transistor: the doping level and the thickness of the N epitaxial layer. The thicker the layer and the lower its doping level, the higher the breakdown voltage. On the contrary, the thinner the layer and the higher the doping level, the lower the R DSon (and therefore the lower the conduction losses of the MOSFET). Therefore, it can be seen that there is a trade-off in the design of a MOSFET, between its voltage rating and its ON-state resistance. This
14364-464: The vertical MOS field effect transistor, and others. Power levels for individual amplifier devices range up to hundreds of watts, and frequency limits range up to the lower microwave bands. A complete audio power amplifier, with two channels and a power rating on the order of tens of watts, can be put into a small integrated circuit package, needing only a few external passive components to function. Another important application for active-mode amplifiers
14490-535: The voltage rating of the transistor is a function of the doping and thickness of the N epitaxial layer (see cross section), while the current rating is a function of the channel width. This makes it possible for the transistor to sustain both high blocking voltage and high current within a compact piece of silicon. LDMOS are power MOSFETs with a lateral structure. They are mainly used in high-end audio power amplifiers , and RF power amplifiers in wireless cellular networks , such as 2G , 3G , and 4G . Their advantage
14616-413: The wafer. J.R. Ligenza and W.G. Spitzer studied the mechanism of thermally grown oxides and fabricated a high quality Si/ SiO 2 stack in 1960. Following this research, Mohamed Atalla and Dawon Kahng proposed a silicon MOS transistor in 1959 and successfully demonstrated a working MOS device with their Bell Labs team in 1960. Their team included E. E. LaBate and E. I. Povilonis who fabricated
14742-417: The way in which RF circuits were designed, leading to the replacement of discrete bipolar transistors with CMOS integrated circuits in radio transceivers . It enabled sophisticated, low-cost and portable end-user terminals, and gave rise to small, low-cost, low-power and portable units for a wide range of wireless communication systems. This enabled "anytime, anywhere" communication and helped bring about
14868-471: Was commercialized by International Rectifier in 1978. The insulated-gate bipolar transistor (IGBT), which combines elements of both the power MOSFET and the bipolar junction transistor (BJT), was developed by Jayant Baliga at General Electric between 1977 and 1979. The superjunction MOSFET is a type of power MOSFET that uses P+ columns that penetrate the N− epitaxial layer. The idea of stacking P and N layers
14994-487: Was demonstrated by Fairchild Semiconductor 's Chih-Tang Sah and Frank Wanlass at the International Solid-State Circuits Conference in 1963. Wanlass later filed US patent 3,356,858 for CMOS circuitry and it was granted in 1967. RCA commercialized the technology with the trademark "COS-MOS" in the late 1960s, forcing other manufacturers to find another name, leading to "CMOS" becoming
15120-415: Was developed, called complementary MOS (CMOS), by Chih-Tang Sah and Frank Wanlass at Fairchild. In February 1963, they published the invention in a research paper . In both the research paper and the patent filed by Wanlass, the fabrication of CMOS devices was outlined, on the basis of thermal oxidation of a silicon substrate to yield a layer of silicon dioxide located between the drain contact and
15246-577: Was familiar with work done by Weimer at RCA. In 1948, Bardeen and Brattain patented an insulated-gate FET (IGFET) with an inversion layer, which forms the basis of CMOS technology. In 1955, Carl Frosch and Lincoln Derick accidentally grew a layer of silicon dioxide over the silicon wafer, for which they observed surface passivation effects. By 1957 Frosch and Derrick, using masking and predeposition, were able to manufacture silicon dioxide transistors and showed that silicon dioxide insulated, protected silicon wafers and prevented dopants from diffusing into
15372-414: Was first proposed by Shozo Shirota and Shigeo Kaneda at Osaka University in 1978. David J. Coe at Philips invented the superjunction MOSFET with alternating p-type and n-type layers by filing a US patent in 1984 which was awarded in 1988. The power MOSFET is the most widely used power semiconductor device in the world. As of 2010, the power MOSFET accounts for 53% of the power transistor market, ahead of
15498-517: Was first reported by Y. Tarui, Y. Hayashi and Toshihiro Sekigawa of the Electrotechnical Laboratory (ETL). In 1974, Jun-ichi Nishizawa at Tohoku University invented a power MOSFET for audio, which was soon manufactured by Yamaha Corporation for their high fidelity audio amplifiers . JVC , Pioneer Corporation , Sony and Toshiba also began manufacturing amplifiers with power MOSFETs in 1974. Siliconix commercially introduced
15624-468: Was invented at Bell Labs between 1955 and 1960. It was a breakthrough in power electronics . Generations of MOSFETs enabled power designers to achieve performance and density levels not possible with bipolar transistors. In 1969, Hitachi introduced the first vertical power MOSFET, which would later be known as the VMOS (V-groove MOSFET). The same year, the DMOS (double-diffused MOSFET) with self-aligned gate
15750-489: Was once used but now the material is polysilicon . Other metal gates have made a comeback with the advent of high-κ dielectric materials in the CMOS process, as announced by IBM and Intel for the 45 nanometer node and smaller sizes. The principle of complementary symmetry was first introduced by George Sziklai in 1953 who then discussed several complementary bipolar circuits. Paul Weimer , also at RCA , invented in 1962 thin-film transistor (TFT) complementary circuits,
15876-576: Was used in audio power amplifiers from manufacturers such as HH Electronics (V-series) and Ashly Audio , and were used for music and public address systems . With the introduction of the 2G digital mobile network in 1995, the LDMOS became the most widely used RF power amplifier in mobile networks such as 2G, 3G , and 4G . Alex Lidow co-invented the HexFET, a hexagonal type of Power MOSFET, at Stanford University in 1977, along with Tom Herman. The HexFET
#405594