The Gravis UltraSound or GUS is a sound card for the IBM PC compatible system platform , made by Canada-based Advanced Gravis Computer Technology Ltd. It was very popular in the demoscene during the 1990s.
99-505: The Gravis UltraSound was notable at the time of its 1992 launch for providing the IBM PC platform with sample-based music synthesis technology (marketed as " wavetable "), that is the ability to use real-world sound recordings rather than artificial computer-generated waveforms as the basis of a musical instrument. Samples of pianos or trumpets, for example, sound more like their real respective instruments. With up to 32 hardware audio channels,
198-430: A DOS Box window. The process of patching middleware sound 'drivers' was greatly simplified with PREPGAME utility, which could fix most known DOS games automatically either by correctly installing and configuring native InterWave drivers or replacing the binaries for some rare devices like Covox . It could also update DOS/4GW extender to work around its 16-bit DMA bug. The GFA1 featured a GUS/MAX compatibility mode, but
297-581: A 9-voice (11 voices in drum mode) FM synthesizer using the Yamaha YM3812 chip, also known as OPL2 . It provided compatibility with the market leader AdLib sound card, which had gained support in PC games in the preceding year. Creative used the "DSP" acronym to designate the digital audio part of the Sound Blaster. This stood for Digital Sound Processor, rather than the more common digital signal processor , and
396-456: A General MIDI-compatible mapping scheme. Windows 95 and 98 drivers use UltraSound.INI to load the patch files on demand. In DOS , the loading of the patches can be handled by UltraMID , a middleware TSR system provided by Gravis that removes the need to handle the hardware directly. Programmers are free to include the static version of the UltraMID library in their applications, eliminating
495-536: A PCI busmaster interface to access sample-data stored in the host-PC's system memory. A/D- and D/A- converters as well as analogue mixing is done by an AC'97 chip running at 48 kHz sampling rate. All members of the SB Live! family have at least four-channel analog audio outputs and a 15-pin MIDI/Joystick multiport. For game titles, EAX 1.0 (and later 2.0) ( environmental audio extensions , which briefly competed with
594-482: A PCI busmaster interface. Analogue interfacing is done by a codec chip, which runs at a fixed sampling frequency of 44 (Ensoniq Audio PCI) or 48 kHz (Creative's versions). (ISA soundcards had not resampled but switched between different time bases.) ES137x do not support SoundFonts but a filter-less MIDI engine with wavetable ( sample table) sets of 2, 4, and 8 MB size. When the Sound Blaster Live!
693-445: A breath noise, a growl, and a looping soundwave used for continuous play). This reduces the polyphony again, as sample-based synthesizers rate their polyphony based on the number of multi-samples that can be played back simultaneously. A sample-based synthesizer's ability to reproduce the nuances of natural instruments is determined primarily by its library of sampled sounds. In the earlier days of sample-based synthesis, computer memory
792-485: A fully decoded MIDI interface with separate Input and Output (along with on mini-DIN converter.) The Gold highlighted many features aimed at music composition; ease-of-use ( plug-and-play for musicians), real-time loopback-recording of the MIDI-synthesizer (with full freedom of Soundfonts, and environmental effects such as reverb, etc.), and bundled MIDI-software. The mainstream model was the Sound Blaster Live! Like
891-452: A fully-compatible Sound Blaster card that came with a game port, saved a slot, and included the "DSP" for not much more in price, many consumers opted for the Sound Blaster. In-game support for the digital portion of the card did not happen until after the Sound Blaster had gained dominance. When Microsoft announced Multimedia PC (MPC) in November 1990, it suggested to developers that they use
990-441: A proprietary memory format which could be (expensively) purchased from Creative. The main improvements were better compatibility with older SB models, and an improved signal-to-noise ratio . The AWE64 came in two versions: A standard version (later rebranded as Value ) with 512 KB of RAM and a Gold version with 4 MB of RAM and a separate S/PDIF output. In 1998, Creative acquired Ensoniq Corporation , manufacturer of
1089-756: A sampled bird chirp as the lead sound in the song. More affordable sample-based synthesizers available for the masses with the introduction of the Ensoniq Mirage (1984), Roland D-50 (1987) and the Korg M1 (1988), which surfaced in the late eighties. The M1 also introduced the music workstation concept. The concept has made it into sound cards for the multimedia PC , under the names such as wavetable card or wavetable daughterboard . (See Wavetable synthesis#Background ) The principal advantage of sample-based synthesis over other methods of digital synthesis such as physical modelling synthesis or additive synthesis
SECTION 10
#17328813905361188-513: A set of patch substitutions for every possible amount of sample RAM (256/512/768/1024 kB), so that similar instruments are used when there is not enough RAM to hold all of the patches needed (even after resampling to smaller sizes). Unused instruments are never loaded. This concept is similar to the handling of sample banks in digital samplers . Some games — including Doom , Doom II and Duke Nukem 3D — come with their own optimized UltraMID.INI. The UltraSound cards gained great popularity in
1287-502: A single floppy with the basic utilities and game patches to allow Sierra Online 's games using the Sierra Creative Interpreter engine to play music with the card and it also included a later revision of the game Silpheed that added C/MS support. In 2017 hobbyists developed a clone CT1300 PCB. The Sound Blaster 1.0 (code named " Killer Kard "), CT1320A, was released in 1989. In addition to Game Blaster features, it has
1386-521: Is a family of sound cards and audio peripherals designed by Creative Technology/Creative Labs of Singapore . The first Sound Blaster card was introduced in 1989. Sound Blaster sound cards were the de facto standard for consumer audio on the IBM PC compatible platform until the widespread transition to Microsoft Windows 95 and the integration of commoditized audio electronics in PCs. Windows 95 standardized
1485-512: Is a simple microcontroller from the Intel MCS-51 family (supplied by Intel and Matra MHS , among others). It can play back 8-bit monaural sampled sound at up to 23 kHz sampling frequency and record 8-bit at up to 12 kHz. The sole DSP-like features of the circuit are ADPCM decompression and a primitive non-MPU-401-compatible MIDI interface. The ADPCM decompression schemes supported are 2 to 1, 3 to 1 and 4 to 1. The CT1320B variety of
1584-545: Is essentially an Audigy 2 with updated DAC and op-amps . Audigy 2 ZS uses the Cirrus Logic CS4382 DAC together with the op-amps and can produce an output SNR of 108 dB. There were a few slight printed circuit board modifications and 7.1 audio support was added. Sound Blaster Audigy 4 Pro (November 2004) was an Audigy 2 ZS with updated DACs and ADCs , the new DAC being the Cirrus Logic CS4398, boosting
1683-551: Is misleading—see the pictures for size comparison). It offered similar features to the AWE32, but also had a few notable improvements, including support for greater polyphony , although this was a product of 32 extra software-emulated channels (the additional channels could also be obtained on AWE32 hardware by using the AWE64's driver software). The 30-pin SIMM slots from AWE32/SB32 were replaced with
1782-517: Is more in line with the Audigy 2 Value series. The Audigy 4 had a shorter life span than its predecessors, due to the short window between it and the next-generation Sound Blaster X-Fi. Sound Blaster Audigy Rx (September 2013) is similar to the Audigy 4 but with a dedicated 600-ohm headphone amplifier and a PCIe 1x interface. Sound Blaster Audigy Fx (September 2013) also features a 600-ohm amplifier and
1881-534: Is that processing power requirements are much lower. This is because most of the nuances of the sound models are contained in the prerecorded samples rather than calculated in realtime. In a contrast to analog synthesizers, the circuitry does not have to be duplicated to allow more voices to be played at once. Therefore the polyphony of sample-based machines is generally a lot higher. A downside is, however, that in order to include more detail, multiple samples might need to be played back at once (a trumpet might include
1980-554: Is that the seed waveforms are sampled sounds or instruments instead of fundamental waveforms such as sine and saw waves used in other types of synthesis. Before digital recording became practical, instruments such as the Welte Lichttonorgel [ de ] (1930s), phonogene (1950s) and the Mellotron (1960s) used analog optical disks or analog tape decks to play back sampled sounds. When sample-based synthesis
2079-612: The Fairlight CMI and the NED Synclavier . These instruments were way ahead of their time and were correspondingly expensive. The first recording using a sampling synthesizer was " Stevie Wonder's Journey Through "The Secret Life of Plants" " (1979) which used the Computer Music Melodian to create complex melodies and rhythms from sampled sounds from nature. The first tune Wonder recorded was "The First Garden" where he used
SECTION 20
#17328813905362178-623: The Gravis PC GamePad . The Ultrasound was one of the first PC soundcards to feature 16-bit, 44.1 kHz stereo. The final revision (v3.74) of the GUS Classic features 256 kB of onboard RAM (upgradeable to 1024 kB through DIP sockets), hardware analog mixer , and support for 16-bit recording through a separate daughterboard based on the Crystal Semiconductor CS4231 audio codec . Computer Gaming World in 1993 criticized
2277-628: The Sound Blaster 16 for the OEM market. Creative Labs also used this chip for the Sound Blaster 32, Phone Blaster and Phone Blaster 28.8 (VIBRA plus modem, CT3120 and CT3220.) and many other value-edition cards. External Yamaha OPL3 FM music synthesis was retained in earlier boards built around the ViBRA16 or ViBRA16s controllers, whilst the later (and more common) ViBRA16 boards used CQM (Creative Quadratic Modulation) developed by E-mu Systems . This series included
2376-706: The VFX1 Headgear virtual reality helmet) and produced by Integrated Circuit Systems under the ICS11614 moniker. The chip was derived from the Ensoniq OTTO (ES5506) chip, a next-generation version of the music-synthesizer chip found in the Ensoniq VFX and its successors. The GF1 is purely a sample-based synthesis chip with the polyphony of 32 oscillators , so it can mix up to 32 mono PCM samples or 16 stereo samples entirely in hardware. The chip has no built-in codec, so
2475-615: The Vibra chip to reduce component count, which meant bass/treble/gain control was limited compared to the AWE32. The loss of onboard RAM is offset by the inclusion of 30-pin SIMM RAM sockets, which allow up to 28 MB RAM to be installed and used by the EMU engine. The AWE32's successor, the Sound Blaster AWE64 (November 1996), was significantly smaller, being a "half-length ISA card" (that term
2574-502: The 'Pro' version without any modifications to the card. Released in 1995, this budget version of UltraSound Classic has 512 kB of RAM (upgradable to 1024 kB, just as is the MAX), and has no game port or recording ability. Marketed as a competitor to Wave Blaster -compatible cards, it is supposed to be installed alongside a SoundBlaster Pro / 16 card as a sample-based synthesis (marketed as 'wavetable synthesis') upgrade. A prototype of this card
2673-466: The 3.5 mm jack ports as an SPDIF out, which allowed the connection of an external decoder. Creative also released a Sound Blaster Live! Player 1024 edition, which is identical to the regular Sound Blaster Live! , but with the addition of some extra software. The Sound Blaster PCI 512 (CT4790) is an EMU10K1-based sound card designed to fill a lower cost segment than the Live! Value. It is capable of most of
2772-613: The AWE32 design, the Sound Blaster 32 (SB32) was a value-oriented offering from Creative. Announced on June 6, 1995, the SB32 became the new entry-level card in the AWE32 product-line (previously held by the AWE32 Value .) The SB32 retained the AWE32's EMU8000/EMU8011 MIDI-synthesis engine and built-in instrument ROM, but dropped the onboard RAM , the Wave Blaster header, and the CSP port. The SB32 used
2871-547: The AudioPCI, a card popular with OEMs at the time. It was a full-featured solution with wavetable MIDI ( sample-based synthesizer ), 4-speaker DirectSound3D surround sound, A3D emulation, and DOS legacy support via a terminate-and-stay-resident program . It was cheap due to lack of hardware acceleration. It is full-duplex but at least in MS Windows cannot play back several sources at once. Creative released many cards using
2970-594: The C/MS board in particular, the Philips chips had white pieces of paper with a fictitious "CMS-301" inscription on them. Real Creative parts usually had consistent CT number references. Surprisingly, the board also contained a large 40-pin DIP integrated circuit bearing a "CT 1302A CTPL 8708" (Creative Technology Programmable Logic) serigraphed inscription and looking exactly like the DSP of
3069-566: The Creative digital audio section (audio codec , optional CSP/ASP chip socket, Yamaha OPL3), and the E-mu MIDI synthesizer section. The synthesizer section consisted of the EMU8000 sampler and effects processor, an EMU8011 1 MB sample ROM, and 512 KB of sample RAM (expandable to 28 MB). To fit the new hardware, the AWE32 was a full-length ISA card , measuring 14 in (360 mm). A derivative of
Gravis UltraSound - Misplaced Pages Continue
3168-738: The Creative/Tandy Multimedia Sound Adapter, 849–3030. This Sound Blaster Pro derived card was factory installed in Tandy Multimedia PCs. It combined the CT1330 with Tandy joystick and MIDI ports (not MPU-401 compatible). The revised version, the Sound Blaster Pro 2, CT1600, replaced the YM3812s with a more advanced Yamaha YMF262 ( OPL3 ). Otherwise it is functionally identical to the original Sound Blaster Pro. Shortly after
3267-456: The EMU10K1 in the original Live!), and all audio had to be resampled to 48 kHz in order to be accepted by the DSP (for recording or rendering to output.) Sound Blaster Audigy 2 (September 2002) featured an updated EMU10K2 processor, sometimes referred to as EMU10K2.5, with an improved DMA engine capable of 24-bit precision. Up to 192 kHz was supported for stereo playback/record, while 6.1
3366-415: The EMU10K1 processor that shipped with the Sound Blaster Live! . The Audigy could process up to four EAX environments simultaneously with its upgraded on-chip DSP and native EAX 3.0 ADVANCED HD support, and supported up to 5.1-channel output. The Audigy was controversially advertised as a 24-bit sound card. The EMU10K2's audio transport (DMA engine) was fixed at 16-bit sample precision at 48 kHz (like
3465-521: The GF1 chip ideally. The problem with other sound cards playing these formats was that they had to downmix voices into one or both of its output channels in software, further deteriorating the quality of 8-bit samples in the process. An UltraSound card was able to download the samples to its RAM and mix them using fast and high-quality hardware implementation, offloading the CPU from the task. Gravis realized early on that
3564-568: The GF1 chip, this new design was not able to hold up with the Sound Blaster AWE32 . More than that, AMD was facing financial troubles at the time so it was forced to close many projects, including the InterWave. Due to declining sales, Gravis was eventually forced out of the soundcard business, and the UltraSound's failure nearly took the entire company down with it. Advanced Gravis, once one of
3663-484: The GUS was notable for MIDI playback quality with a large set of instrument patches that could be stored in its own RAM . The cards were all manufactured on red PCBs , similar to fellow Canadian company ATI . They were only a little more expensive than Creative cards, undercutting many equivalent professional cards aimed at musicians by a huge margin. The first UltraSound was released in early October 1992 , along with
3762-459: The Gold, the Live featured multi-speaker analog output (up to four channels), and identical music/sound generation capabilities (without the bundled MIDI software and interfacing-equipment.) Later versions of the Live!, usually called Live! 5.1 , offered 5.1-channel support which adds a center channel speaker and LFE subwoofer output, most useful for movie watching. The Live! 5.1 could also use one of
3861-632: The IO port range doesn't match the WSS hardware, and can be used for SoundBlaster emulation. The software CD includes a demo that featured "3D holographic sound" through the use of software HRTF filters. Released in 1995, the Ultrasound Plug & Play was a new card based on AMD InterWave technology with a completely different sound set. Supposedly Synergy acted as the ODM-producer for it (as evidenced by their logo on
3960-472: The ISA bus. While at first glance it appears to be a 16-bit ISA card, it does not have 'fingers' for data transfer on the higher "AT" portion of the bus connector. It uses the 16-bit extension to the ISA bus to provide the user with an additional choice for an IRQ (10) and DMA (0)m channel only found on the 16-bit portion of the edge connector. A short lived joint developed project between Creative and Tandy resulted in
4059-423: The InterWave were written by eTek Labs, containing the same development team as the earlier Forte Technologies effort. eTek Labs was split off from Forte Technologies just prior to this effort. In August 1999, eTek Labs was acquired by Belkin and is currently their research and development team. Some game developers of the time noted problems with the software development kit and the product's hardware design. On
Gravis UltraSound - Misplaced Pages Continue
4158-401: The Live! Value's features aside from being limited to 512 MIDI voice polyphony (a software-based limitation), lacking digital I/O , removal of expansion headers , and only stereo or quadraphonic output support. The card's circuit layout is somewhat simpler than that of the Live! series. The Sound Blaster Audigy (August 2001) featured the Audigy processor (EMU10K2), an improved version of
4257-514: The Microsoft MPC standard. . The Sound Blaster Pro supported faster digital input and output sampling rates (up to 22.05 kHz stereo or 44.1 kHz mono), added a " mixer " to provide a crude master volume control (independent of the volume of sound sources feeding the mixer), and a crude high pass or low pass filter. The Sound Blaster Pro used a pair of YM3812 chips to provide stereo music-synthesis (one for each channel). The Sound Blaster Pro
4356-494: The PC tracker music community. The tracker format was originally developed on the Commodore Amiga personal computer in 1987, but due to the PC becoming more capable of producing high-quality graphics and sound, the demoscene spilled out onto the platform in droves and took the tracker format with it. Typical tracker formats of the era included MOD , S3M , and later XM . The format stores the notes and instruments digitally in
4455-532: The SB/Live family was the SB Live! Gold . Featuring gold tracings on all major analog traces and external sockets, an EMI -suppressing printed circuit board substrate and lacquer , the Gold came standard with a daughterboard that implemented a separate 4-channel alternative mini-DIN digital output to Creative-branded internal- DAC speaker sets, a S/P-DIF digital audio Input and Output with separate software mappings, and
4554-507: The Sound Blaster 1.0 typically has C/MS chips installed in sockets rather than soldered on the PCB, though units do exist with the C/MS chips soldered on. Some sources note that the original Sound Blaster 1.0 was produced under the CT1310 number. This however is a topic of ongoing debate. Creative refers to CT1310 for the Sound Blaster 1.0 on its website. In less than a year, the Sound Blaster became
4653-471: The Sound Blaster 1.5, CT1320C, dropped the C/MS chips, which were no longer popular with game developers. Instead, the board had two empty sockets, which could be user upgraded by purchasing the C/MS chips directly from Creative or Phillips SAA-1099s from another source. Otherwise the card functions identically to the Sound Blaster 1.0. The CT1320U variety has the same layout as the CT1320C. The final revision of
4752-505: The Sound Blaster Pro. The kit bundled the sound card, a Matsushita CD-ROM drive (model 531 for single-speed, or 562/3 for the later double-speed (2x) drives), and several CD-ROMs of multimedia software titles. As CD-ROM technology was new, the kit included CD-ROM software, representing a very good value to customers. One such kit, named "OmniCD", included the 2x Matsushita drive along with an ISA controller card and software, including Software Toolworks Encyclopedia and Aldus PhotoStyler SE. It
4851-448: The Sound Blaster as it was the only sound card that came close to complying with the MPC standard. The press speculated that Microsoft based the MPC standard on the Sound Blaster's specifications. By 1993 Computer Gaming World wondered "why would a gamer" buy a competing AdLib card that was not Sound Blaster-compatible. Creative advertised the Sound Blaster 16 ("the 16-bit sound standard") with
4950-542: The Sound Blaster through their sound hardware. The emulation software ran as a huge TSR that was difficult to manage in the pre-Windows days of complicated DOS extenders . Although there was native support for many popular games that used middleware sound libraries like HMI (Human Machine Interfaces) Sound Operating System, the Miles Audio Interface Libraries (AIL), the Miles Sound System or others,
5049-671: The UltraSound Extreme is a 3rd party OEM system combining the UltraSound Classic with an ESS AudioDrive ES1688 sound chip for Sound Blaster Pro and AdLib emulation. It was produced by Synergy as was the ViperMAX. It has 1 MB RAM by default, but cannot be upgraded any further. All clones use the original Gravis GF1 or the AMD InterWave soundchip. The GF1 was co-developed by Advanced Gravis and Forte Technologies (creator of
SECTION 50
#17328813905365148-462: The UltraSound's Sound Blaster emulation and lack of native support in games, stating that "it is hard to recommend this card to anyone other than a Windows MIDI musician". Released in 1994, UltraSound Max is a version of the GUS with a CS4231 codec on board, 512 kB of onboard RAM (upgradeable to 1024 kB with a single SOJ chip), and Panasonic / Sony / Mitsumi CD-ROM interface slots. CS4231 provides support for Windows Sound System specs, although
5247-476: The ViBRA16 (CT2501), ViBRA16s (CT2502, CT2504), ViBRA16c (CT2505) PnP and ViBRA16XV (CT2511) chips. The primary advantage of the ViBRA16 was the inclusion of a 14.4 kbit/s telephony Modem; it also functioned as a telephone. Released in March 1994, the Sound Blaster AWE32 (Advanced WavEffects) introduced an all new MIDI synthesizer section based on the EMU8000. The AWE32 consisted of two distinct audio sections;
5346-534: The auto-init DMA and new MIDI capabilities of the Sound Blaster 2.0 but not the expanded sampling rates. The upgrade was necessary for full compatibility with the Windows 3.0 Multimedia Extensions upgrade. Sound Blaster MCV, CT5320, was a version created for IBM PS/2 Model 50 and higher and their ISA-incompatible Micro Channel architecture . The MCV Sound Blaster has some issues outputting audio while running on PS/2s with CPUs running faster than 16 MHz. However,
5445-621: The base card was not compatible with the UltraSound Classic unless some memory was installed. The InterWave technology was used in the Gravis UltraSound PnP line of cards. It was also licensed to various OEMs such as STB Systems , Reveal, Compaq , Core Dynamics, Philips and ExpertColor. Some high-end OEM variants contained a full-blown 4 MB patch set in ROM and proprietary hardware DSPs to enable features like additional sound effect algorithms and graphic equalizer . Software drivers for
5544-439: The card itself, it failed for a number of DOS games that either were not fully compatible with this CPU mode or needed so much free conventional memory that they could not be loaded with the driver occupying part of this memory. In Microsoft Windows , there was no problem, as Creative's Windows driver software could handle both ISA and PCI cards correctly. The Sound Blaster ViBRA16 was an inexpensive single-chip implementation of
5643-560: The card, not unlike how instruments are stored in ROM on other sample-based cards (marketed as "wavetable" cards). The card comes with a 5.6 MB set of instrument patch (*.PAT) files; most patches are sampled at 16-bit resolution and looped to save space. The patch files can be continuously tweaked and updated in each software release. The card's various support programs use .INI files to describe what patches should be loaded for each program change event. This architecture allowed Gravis to incorporate
5742-518: The company lost credibility with consumers and commercial developers. Several publishers and developers threatened to sue the company over misrepresentation of their products — pointing to outright fabrication of Gravis's list. The shareware games industry embraced the Gravis more than the retail games industry. Companies which did this in an early stage were publisher Apogee and developers id software and Epic MegaGames . Gravis can also claim victory in
5841-409: The company retreated to its core market, the one which had made it a success — joysticks and gamepads. Emulators with GUS support: Software synthesizers which can use GUS patches: Sample-based synthesis Sample-based synthesis is a form of audio synthesis that can be contrasted to either subtractive synthesis or additive synthesis . The principal difference with sample-based synthesis
5940-511: The demo scene support could be a sales booster, and they gave away 6000 cards for free to the most famous scene groups and people in the scene. As the GF1 chip does not contain AdLib-compatible OPL2 circuitry or a codec chip, Sound Blaster compatibility was difficult to achieve at best. Consumers were expected to use the included emulation software to emulate other standards, an activity not necessary with many other cards that emulated
6039-417: The demoscene, which had taken the GUS to its heart, ensuring a dedicated cult following for a number of years. But without the marketing and developer presence of Creative Labs, Gravis could not generate either the sales or support required for the Gravis soundcard to compete in the mainstream market against the de facto standard Soundblaster. Although the InterWave chip was a substantially improved version of
SECTION 60
#17328813905366138-405: The dominant players in the PC peripherals marketplace, had bet much of the future of the company on the UltraSound and paid the price for its demise. Shareholders sued the company charging gross incompetence by its management, in regards to the entire UltraSound effort. After significant restructuring, including acquisition by competitor Kensington Technology Group (via its parent, ACCO World Corp),
6237-411: The file instead of relying on a sound card to reproduce the instruments. A tracker module , when saved to disk, typically incorporates all the sequencing data and samples, and typically the composer would incorporate their assumed name into the list of samples. This primitive precursor to the modern sampler opened the way for Gravis to enter the market, because the requirements matched the capabilities of
6336-421: The instrument, leading to a faster attack for loud passages. As memory became cheaper, it became possible to use multisampling; instead of a single recording of an instrument being played back faster or slower to reproduce other pitches, the original instrument could be sampled at regular intervals to cover regions of several adjacent notes ( splits ) or for every note. This provides a more natural progression from
6435-579: The joystick interface is still inoperable on PS/2s it was designed for due to the slow-speed Schottky chips that have been installed. None of these timing issues affect the Yamaha YM3812. Some of the MCV Sound Blasters were released with faster Schottkys which eradicated some of the problems. Model CT1330, announced in May 1991, was the first significant redesign of the card's core features, and complied with
6534-514: The late-1980s, however, samplers have featured specifications at least as good as CDs . By the late 1990s, the huge increases in computer processor speed permitted the widespread development of software synthesizers and software samplers . The vast storage capacity of modern computers was ideally suited to sample-based synthesis, and many samplers have thus migrated to software implementations or been superseded by new software samplers. Sound Blaster#Sound Blaster Pro, CT1330 Sound Blaster
6633-434: The later Sound Blaster. Software, including Creative's own, use this chip to automatically detect the card (by trying certain register reads and writes). A year later, in 1988, Creative marketed the C/MS via Radio Shack under the name Game Blaster . This card was identical in every way to the precursor C/MS hardware. Whereas the C/MS package came with five floppy disks full of utilities and song files, Creative supplied only
6732-500: The launch of the Sound Blaster 16 and related products. Rich Sorkin was General Manager of the global business during this time, responsible for product planning, product management, marketing and OEM sales. Moving the card off the ISA bus, which was already approaching obsolescence, meant that no line for host-controlled ISA DMA was available, because the PCI slot offers no such line. Instead, the card used PCI bus mastering to transfer data from
6831-446: The lower to the higher registers ; lower notes don't sound dull, and higher notes don't sound unnaturally bright. It is also possible to sample the same note at several different levels of intensity, reflecting the fact that both volume and timbre change with playing style. For instance, when sampling a piano, 3 samples per key can be made; soft, medium and with force. Every possible volume in between can be made by amplifying and blending
6930-417: The main memory to the D/A converters. Since existing DOS programs expected to be able to initiate host-controlled ISA DMA for producing sound, backward compatibility with the older Sound Blaster cards for DOS programs required a software driver work-around; since this work-around necessarily depended on the virtual 8086 mode of the PC's CPU in order to catch and reroute accesses from the ISA DMA controller to
7029-545: The maximum of 32-voice polyphony. The polyphony level is software-programmable, so the programmer can choose the appropriate value to best match the application. Advanced sound effects such as reverberation and chorus are not supported in hardware. However, software simulation is possible; a basic "echo" effect can be simulated with additional tracks, and some trackers can program effects using additional hardware voices as accumulators. The UltraSound offers MIDI playback by loading instrument patches into adapter RAM located on
7128-421: The model to be sufficiently expressive, it is therefore necessary that multisamples be made across both pitch and force of playing. A more flexible sample-based synthesis design allowing the user to record arbitrary waveforms to form a sound's basic timbre is called a sampler . Early samplers were very expensive, and typically had low sample rates and bit depth , resulting in grainy and aliased sound. Since
7227-519: The need for the TSR. The application programmer can choose to preload all patches from disk, resizing as necessary to fit into the UltraSound's on-board RAM, or have the middleware track the patch change events and dynamically load them on demand. This latter strategy, while providing better sound quality, introduces a noticeable delay when loading patches, so most applications just preload a predefined set. Each application can have its own UltraMID.INI containing
7326-426: The now defunct A3D 2.0 ) added hardware-accelerated acoustic effects. The EMU10K1 provided high-quality 64-voice sample-based synthesizer (marketed as "Wavetable"), with self-produced or third-party customized patches or "Soundfonts", and the ability to resample the audio output as input and apply a range of real-time DSP effects to any set of audio subchannels present in the device. The first model and flagship of
7425-459: The opening music of Space Quest III with the card as "extraordinary", praising the quality compared to the Roland MT-32 and Ad Lib versions. Compute! approved of the card's DMA and Creative's dissemination of technical information, and concluded that while the more-expensive MT-32 was superior, Sound Blaster's audio quality was better than that of Ad Lib or Game Blaster. Released in 1990,
7524-533: The original AudioPCI chip, Ensoniq ES1370 , and several boards using revised versions of this chip ( ES1371 and ES1373 ), and some with Creative-labeled AudioPCI chips. Boards using AudioPCI tech are usually easily identifiable by the board design and the chip size because they all look quite similar. Such boards include Sound Blaster PCI64 (April 1998), PCI128 (July 1998), Creative Ensoniq AudioPCI , Vibra PCI and Sound Blaster 16 PCI . An ES137x chip contains three stereo sample rate converters, some buffers and
7623-519: The original Sound Blaster, the Sound Blaster 2.0 was released in October 1991, CT1350, added support for " auto-init " DMA , which assisted in producing a continuous loop of double-buffered sound output. Similar to version 1.0 and 1.5, it used a 1-channel 8-bit DAC. However, the maximum sampling rate was increased to 44 kHz for playback, and 15 kHz for record. The DSP's MIDI UART was upgraded to full-duplex and offered time stamping features, but
7722-612: The original UltraSound enabled Advanced Gravis to license the new GFA1 chip and software to AMD , who were trying to enter the sound chip market at the time. The chip, released in 1995, was named AMaDeus , with the AMD part number of Am78C201 and was marketed as InterWave . It was enhanced to handle up to 16 MB of onboard memory, IMA ADPCM-compressed samples, have no sample rate drop at full 32 voices, and featured additional logic to support hardware emulation of FM synthesis and simple delay-based digital sound effects such as reverb and chorus. It
7821-413: The output SNR to 113 dB. Other than a breakout box , it has no distinguishable difference from the Audigy 2 ZS. The DSP is identical to the Audigy 2 ZS's but Creative put an "Audigy 4" sticker to cover the chip, making it appear as if it is a new chip. The Audigy 4 Pro is not to be confused with the Audigy 4 (Value) which contains lower quality DACs and does not have golden plated jacks. The Audigy 4 (Value)
7920-475: The programming interface at the application level and thereby eliminated the importance of backward compatibility with Sound Blaster cards. By 1995, Sound Blaster cards had sold over 15 million units worldwide and accounted for seven out of ten sound card sales. To date, Sound Blaster has sold over 400 million units, and their current product lineup includes USB -powered DACs as well as other audio adapters. The history of Creative sound cards started with
8019-626: The rear side of the card, although early and now very rare GUS PnP cards did not have the Synergy logo). The card features 1 MB of sound ROM, no onboard RAM (although it can be expanded to 8 MB with two 30-pin SIMMs), and an ATAPI CD-ROM interface. A 'Pro' version adds 512 kB of on-board RAM required for compatibility with the GUS Classic. In 2014, a RAM adapter for the 72-pin SIMM was produced by retro-computer enthusiasts that made it possible to install 16 MB of RAM on
8118-718: The release of the Creative Music System ("C/MS") CT-1300 board in August 1987. It contained two Philips SAA1099 integrated circuits, which, together, provided 12 channels of square-wave "bee-in-a-box" stereo sound, four channels of which can be used for noise. These ICs were featured earlier in various popular electronics magazines around the world. For many years Creative tended to use off-the-shelf components and manufacturers' reference designs for their early products. The various integrated circuits had white or black paper stickers fully covering their tops to hide their identities. On
8217-502: The release of the Sound Blaster Pro 2 version, Creative discontinued the original Sound Blaster Pro. The Sound Blaster Pro 2 was also sold with the following on-board CD-ROM controllers: Packaged Sound Blaster cards were initially marketed and sold into the retail-channel. Creative's domination of the PC audio card business soon had them selling the Sound Blaster Pro 2 OEM , CT1680, to customers for integration into pre-assembled PCs. Creative also sold Multimedia Upgrade Kits containing
8316-518: The samples. For sample-based models of instruments like the Rhodes piano , this multisampling is very important. The timbre of the Rhodes changes drastically from left to right on the keyboard, and it varies greatly depending on the force with which the key is struck. The lower registers bark , while the higher range has a more bell-like sound. The bark will be more distinct if the keys are struck with force. For
8415-405: The slogan "Get Real", emphasizing its "real 100% Sound Blaster compatibility" and rhetorically asking "why those other manufacturers spend so much time comparing themselves to Sound Blaster". Compute! in 1989 stated that with Sound Blaster, "IBM-compatible computers have taken the lead in sound and music for personal computers". Naming it a Compute! Choice, the magazine described the quality of
8514-451: The sounds must be downloaded to onboard RAM prior to playback. Sound compression algorithms such as IMA ADPCM are not supported, so compressed samples must be decompressed prior to loading. The sound quality of the GF1 is not constant and depends on the selected level of polyphony. A CD-quality 44.1 kHz sample rate is maintainable with up to 14-voice polyphony; the sample rate progressively deteriorates until 19.2 kHz at
8613-423: The top-selling expansion card for the PC. It achieved this by providing an AdLib-compatible product, with additional features, for the same, and often lower, price. The inclusion of a game port was important to its early success. PCs of this era did not include a game port. Game port cards were costly (around US$ 50) and used one of the few expansion slots PCs had at the time. Given the choice between an AdLib card or
8712-560: The user had to patch the games by replacing the existing sound drivers with the UltraSound versions provided on the installation CD. Also, the UltraSound required two DMA channels for full-duplex operation, and 16-bit channels were generally faster, so many users chose to use them, but this led to errors for games that used the DOS/4GW DOS extender, which was common in the UltraSound's era. The two principal software sound emulators included with software package were: The great potential of
8811-450: The user-side, the Sound Blaster emulation was especially hard to get right out of the box, and this resulted in a substantially high number of product returns at the store level and thus soured the retail channel on the product. Bundled software was refined over time, but Gravis could not distribute updates effectively. The company itself also created its own trouble. When Gravis's list of promised supporting game titles failed to materialize,
8910-462: Was capped at 96 kHz. In addition, Audigy 2 supported up to 6.1 (later 7.1 ) speakers and had improved signal-to-noise ratio (SNR) over the Audigy (106 vs. 100 decibels ( A )). It also featured built-in Dolby Digital EX 6.1 and 7.1 decoding for improved DVD play-back. The Audigy 2 line were the first sound cards to receive THX certification. Sound Blaster Audigy 2 ZS (September 2003)
9009-586: Was compatible with CS4231 codec installed in the UltraSound MAX or 16-bit recording daughterboard for the UltraSound Classic. The sound "patch set" was reworked from a collection of individual instrument .PAT files to a unified .FFF/.DAT sound bank format, resembling SoundFont , which could be either ROM or RAM based. There were 4 versions of the sound bank: a full 16-bit 4 MB with 8-bit downsampled 2 MB version, and 16-bit 2 MB (different sample looping ) with 8-bit downsampled 1 MB version. A converter utility, GIPC,
9108-531: Was compliant with the MPC Level 2 standard. The Sound Blaster Pro 2 MCV, CT5330, was a version created for IBM PS/2 model 50 and higher and their MicroChannel bus. The next model, the Sound Blaster 16, announced in June 1992, introduced: Eventually this design proved so popular that Creative made a PCI version of this card. Creative's audio revenue grew from $ 40 million per year to nearly $ 1 billion following
9207-401: Was expensive and samples had to be as short and as few as possible. This was achieved by looping a part of the sample (often a single wave), and then using a volume envelope curve to make the sound fade away. An amplifying stage would translate key velocity into gain so that harder playing would translate into louder playback. In some cases key velocity also modulates the attack time of
9306-409: Was first developed, most affordable consumer synthesizers could not record arbitrary samples, but instead formed timbres by combining pre-recorded samples from ROM before routing the result through analog or digital filters . These synthesizers and their more complex descendants are often referred to as ROMplers . Sample-based instruments have been used since the Computer Music Melodian ,
9405-503: Was fully backward compatible with the original Sound Blaster line, and by extension, the AdLib sound card. The Sound Blaster Pro was the first Creative sound card to have a built-in CD-ROM interface. Most Sound Blaster Pro cards featured a proprietary interface for a Panasonic ( Matsushita MKE ) drive. The Sound Blaster Pro cards are basically 8-bit ISA cards, they use only the lower 8 data bits of
9504-569: Was introduced in August 1998, the use of a programmable digital signal processor in PC-audio was not unprecedented, as IBM had already done that with cheap Mwave sound- and modem-cards and Turtle Beach with their professional Hurricane soundcards. The Live! was built around Creative's new EMU10K1 chip, which contained 2.44 million transistors and was advertised of processing a flashy 1,000 MIPS . The EMU10K1 (and its successors) did not use on-card RAM/ROM storage for instrument samples, instead it used
9603-524: Was named "Sound Buddy". An OEM version of UltraSound Classic produced by Synergy, with 512 – 1024 kB of RAM. It features AT-BUS CD-ROM interfaces following Sony, Mitsumi and MKE/Panasonic standards. This is the only Gravis sound card with a green circuit board . It is similar to a few card clones, including the Primax SoundStorm Wave (model Sound M-16B) and the AltraSound. Released in 1996,
9702-541: Was not yet compatible with the MPU-401 interface used by professional MIDI equipment. The Sound Blaster 2.0's PCB -layout used more highly integrated components, both shrinking the board's size and reducing manufacturing cost. Owners of previous revision Sound Blaster boards could upgrade their board by purchasing the V2.00 DSP chip from Creative Labs, and swapping the older DSP V1.0x with the newer replacement. The upgraded board gained
9801-597: Was provided for making .FFF/.DAT banks out of .PAT/.INI collections. The reference card contained a 1 MB μ-law ADPCM compressed sound ROM, which contained basic General MIDI voices and sound samples to help FM emulation, and 2 slots for RAM expansion through 30-pin SIMMs . The IWSBOS emulator was reworked to include Mega-Em features such as General MIDI emulation, and the SBOS kernel was included in Windows 95 drivers to provide emulation in
#535464