Misplaced Pages

Tsolmon

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A gravity assist , gravity assist maneuver , swing-by , or generally a gravitational slingshot in orbital mechanics , is a type of spaceflight flyby which makes use of the relative movement (e.g. orbit around the Sun ) and gravity of a planet or other astronomical object to alter the path and speed of a spacecraft , typically to save propellant and reduce expense.

#671328

119-536: Tsolmon (Mongolian: Цолмон) is a Mongolian given name used for men and women meaning Venus . Notable people with the name include: Adiyaasambuugiin Tsolmon (born 1992), Mongolian judoka Dorjpalamyn Tsolmon (born 1957), Mongolian cyclist [REDACTED] Name list This page or section lists people that share the same given name . If an internal link led you here, you may wish to change that link to point directly to

238-590: A dust ring-cloud , with a suspected origin either from Venus–trailing asteroids, interplanetary dust migrating in waves, or the remains of the Solar System's original circumstellar disc that formed the planetary system . Earth and Venus have a near orbital resonance of 13:8 (Earth orbits eight times for every 13 orbits of Venus). Therefore, they approach each other and reach inferior conjunction in synodic periods of 584 days, on average. The path that Venus makes in relation to Earth viewed geocentrically draws

357-454: A pentagram over five synodic periods, shifting every period by 144°. This pentagram of Venus is sometimes referred to as the petals of Venus due to the path's visual similarity to a flower. When Venus lies between Earth and the Sun in inferior conjunction, it makes the closest approach to Earth of any planet at an average distance of 41 million km (25 million mi). Because of

476-458: A supercritical state at Venus's surface. Internally, Venus has a core ,  mantle , and  crust . Venus lacks an internal dynamo, and its weakly induced magnetosphere is caused by atmospheric interactions with the solar wind . Internal heat escapes through active volcanism , resulting in resurfacing instead of plate tectonics . Venus is one of two planets in the Solar System ,

595-442: A terrestrial planet and is the closest in mass and size to its orbital neighbour Earth . Venus has by far the densest atmosphere of the terrestrial planets, composed mostly of carbon dioxide with a thick, global sulfuric acid cloud cover. At the surface it has a mean temperature of 737 K (464 °C; 867 °F) and a pressure 92 times that of Earth's at sea level. These extreme conditions compress carbon dioxide into

714-451: A 4" telescope. Although naked eye visibility of Venus's phases is disputed, records exist of observations of its crescent. When Venus is sufficiently bright with enough angular distance from the sun, it is easily observed in a clear daytime sky with the naked eye, though most people do not know to look for it. Astronomer Edmund Halley calculated its maximum naked eye brightness in 1716, when many Londoners were alarmed by its appearance in

833-414: A Venusian year (243 versus 224.7 Earth days). Slowed by its strong atmospheric current the length of the day also fluctuates by up to 20 minutes. Venus's equator rotates at 6.52 km/h (4.05 mph), whereas Earth's rotates at 1,674.4 km/h (1,040.4 mph). Venus's rotation period measured with Magellan spacecraft data over a 500-day period is smaller than the rotation period measured during

952-459: A change that would have occurred over the course of billions of years. The rotation period of Venus may represent an equilibrium state between tidal locking to the Sun's gravitation, which tends to slow rotation, and an atmospheric tide created by solar heating of the thick Venusian atmosphere. The 584-day average interval between successive close approaches to Earth is almost exactly equal to 5   Venusian solar days (5.001444 to be precise), but

1071-538: A deep understanding of the physics behind the concept of gravity assist and its potential for the interplanetary exploration of the solar system. Italian engineer Gaetano Crocco was first to calculate an interplanetary journey considering multiple gravity-assists. The gravity assist maneuver was first used in 1959 when the Soviet probe Luna 3 photographed the far side of the Moon. The maneuver relied on research performed under

1190-561: A depression. These features are volcanic in origin. Most Venusian surface features are named after historical and mythological women. Exceptions are Maxwell Montes, named after James Clerk Maxwell , and highland regions Alpha Regio , Beta Regio , and Ovda Regio . The last three features were named before the current system was adopted by the International Astronomical Union , the body which oversees planetary nomenclature . The longitude of physical features on Venus

1309-463: A dynamo at its core. A dynamo requires three things: a conducting liquid, rotation, and convection . The core is thought to be electrically conductive and, although its rotation is often thought to be too slow, simulations show it is adequate to produce a dynamo. This implies that the dynamo is missing because of a lack of convection in Venus's core. On Earth, convection occurs in the liquid outer layer of

SECTION 10

#1732868582672

1428-449: A more massive primary atmosphere from solar nebula have been proposed to explain the enrichment. However, the atmosphere is depleted of radiogenic argon, a proxy for mantle degassing, suggesting an early shutdown of major magmatism. Studies have suggested that billions of years ago, Venus's atmosphere could have been much more like the one surrounding the early Earth, and that there may have been substantial quantities of liquid water on

1547-480: A particular destination. For example, the Voyager missions which started in the late 1970s were made possible by the " Grand Tour " alignment of Jupiter, Saturn, Uranus and Neptune. A similar alignment will not occur again until the middle of the 22nd century. That is an extreme case, but even for less ambitious missions there are years when the planets are scattered in unsuitable parts of their orbits. Another limitation

1666-442: A velocity low enough to permit orbit insertion with available fuel. Although the flybys were primarily orbital maneuvers, each provided an opportunity for significant scientific observations. The Cassini–Huygens spacecraft was launched from Earth on 15 October 1997, followed by gravity assist flybys of Venus (26 April 1998 and 21 June 1999), Earth (18 August 1999), and Jupiter (30 December 2000). Transit to Saturn took 6.7 years,

1785-486: A velocity of v , but in the horizontal direction. In the Sun reference frame, the planet has a horizontal velocity of v, and by using the Pythagorean Theorem, the spaceship initially has a total velocity of √ 2 v . After the spaceship leaves the planet, it will have a velocity of v + v = 2 v , gaining approximately 0.6 v . This oversimplified example cannot be refined without additional details regarding

1904-508: Is 81.5% of Earth's, making it the third-smallest planet in the Solar System . Conditions on the Venusian surface differ radically from those on Earth because its dense atmosphere is 96.5% carbon dioxide, with most of the remaining 3.5% being nitrogen . The surface pressure is 9.3 megapascals (93 bars ), and the average surface temperature is 737 K (464 °C; 867 °F), above the critical points of both major constituents and making

2023-519: Is called Ishtar Terra after Ishtar , the Babylonian goddess of love, and is about the size of Australia. Maxwell Montes , the highest mountain on Venus, lies on Ishtar Terra. Its peak is 11 km (7 mi) above the Venusian average surface elevation. The southern continent is called Aphrodite Terra , after the Greek mythological goddess of love, and is the larger of the two highland regions at roughly

2142-405: Is currently volcanically active, specifically the detection of olivine , a volcanic product that would weather quickly on the planet's surface. This massive volcanic activity is fuelled by a superheated interior, which models say could be explained by energetic collisions from when the planet was young. Impacts would have had significantly higher velocity than on Earth, both because Venus's orbit

2261-483: Is expressed relative to its prime meridian . The original prime meridian passed through the radar-bright spot at the centre of the oval feature Eve, located south of Alpha Regio. After the Venera missions were completed, the prime meridian was redefined to pass through the central peak in the crater Ariadne on Sedna Planitia . The stratigraphically oldest tessera terrains have consistently lower thermal emissivity than

2380-636: Is far from certain. Studies reported on 26 October 2023 suggest for the first time that Venus may have had plate tectonics during ancient times and, as a result, may have had a more habitable environment , possibly one capable of sustaining life . Venus has gained interest as a case for research into the development of Earth-like planets and their habitability . Much of the Venusian surface appears to have been shaped by volcanic activity. Venus has several times as many volcanoes as Earth, and it has 167 large volcanoes that are over 100 km (60 mi) across. The only volcanic complex of this size on Earth

2499-576: Is faster due to its closer proximity to the Sun and because objects would require higher orbital eccentricities to collide with the planet. In 2008 and 2009, the first direct evidence for ongoing volcanism was observed by Venus Express , in the form of four transient localized infrared hot spots within the rift zone Ganis Chasma , near the shield volcano Maat Mons . Three of the spots were observed in more than one successive orbit. These spots are thought to represent lava freshly released by volcanic eruptions. The actual temperatures are not known, because

SECTION 20

#1732868582672

2618-462: Is formed by sulphur dioxide and water through a chemical reaction resulting in sulfuric acid hydrate. Additionally, the clouds consist of approximately 1% ferric chloride . Other possible constituents of the cloud particles are ferric sulfate , aluminium chloride and phosphoric anhydride . Clouds at different levels have different compositions and particle size distributions. These clouds reflect, similar to thick cloud cover on Earth, about 70% of

2737-452: Is induced by an interaction between the ionosphere and the solar wind , rather than by an internal dynamo as in the Earth's core . Venus's small induced magnetosphere provides negligible protection to the atmosphere against solar and cosmic radiation . The lack of an intrinsic magnetic field on Venus was surprising, given that it is similar to Earth in size and was expected to contain

2856-431: Is limited by the spacecraft's ability to resist the heat. A rotating black hole might provide additional assistance, if its spin axis is aligned the right way. General relativity predicts that a large spinning mass produces frame-dragging —close to the object, space itself is dragged around in the direction of the spin. Any ordinary rotating object produces this effect. Although attempts to measure frame dragging about

2975-404: Is most likely at least partially liquid because the two planets have been cooling at about the same rate, although a completely solid core cannot be ruled out. The slightly smaller size of Venus means pressures are 24% lower in its deep interior than Earth's. The predicted values for the moment of inertia based on planetary models suggest a core radius of 2,900–3,450 km. This is in line with

3094-432: Is not known with certainty, but speculation has ranged from elemental tellurium to lead sulfide ( galena ). Although Venus has no seasons, in 2019 astronomers identified a cyclical variation in sunlight absorption by the atmosphere, possibly caused by opaque, absorbing particles suspended in the upper clouds. The variation causes observed changes in the speed of Venus's zonal winds and appears to rise and fall in time with

3213-474: Is provided by NASA and JPL. At a distance of 152.2  AU (22.8  billion   km ; 14.1 billion  mi ) from Earth as of January 12, 2020, it is the most distant human-made object from Earth. Voyager 2 was launched by NASA on August 20, 1977, to study the outer planets . Its trajectory took longer to reach Jupiter and Saturn than its twin spacecraft but enabled further encounters with Uranus and Neptune . The Galileo spacecraft

3332-451: Is slowed by the Sun's gravity to a speed far less than the orbital speed of that outer planet. Therefore, there must be some way to accelerate the spacecraft when it reaches that outer planet if it is to enter orbit about it. Rocket engines can certainly be used to increase and decrease the speed of the spacecraft. However, rocket thrust takes propellant, propellant has mass, and even a small change in velocity (known as Δ v , or "delta- v ",

3451-406: Is speculation on the possibility that life exists in the upper cloud layers of Venus, 50 km (30 mi) up from the surface, where the atmospheric conditions are the most Earth-like in the Solar System, with temperatures ranging between 303 and 353 K (30 and 80 °C; 86 and 176 °F), and the pressure and radiation being about the same as at Earth's surface, but with acidic clouds and

3570-420: Is that the absence of a late, large impact on Venus ( contra the Earth's "Moon-forming" impact) left the core of Venus stratified from the core's incremental formation, and without the forces to initiate/sustain convection, and thus a "geodynamo". The weak magnetosphere around Venus means that the solar wind is interacting directly with its outer atmosphere. Here, ions of hydrogen and oxygen are being created by

3689-459: Is the Big Island of Hawaii. More than 85,000 volcanoes on Venus were identified and mapped. This is not because Venus is more volcanically active than Earth, but because its crust is older and is not subject to the same erosion process. Earth's oceanic crust is continually recycled by subduction at the boundaries of tectonic plates, and has an average age of about 100 million years, whereas

Tsolmon - Misplaced Pages Continue

3808-481: Is the third brightest object in Earth's sky after the Moon and the Sun. In 1961, Venus became the target of the first interplanetary flight, Venera 1 , followed by many essential interplanetary firsts , such as the first soft landing on another planet by Venera 7 in 1970. These probes demonstrated the extreme surface conditions, an insight that has informed predictions about global warming on Earth. This finding ended

3927-510: Is the atmosphere, if any, of the available planet. The closer the spacecraft can approach, the faster its periapsis speed as gravity accelerates the spacecraft, allowing for more kinetic energy to be gained from a rocket burn. However, if a spacecraft gets too deep into the atmosphere, the energy lost to drag can exceed that gained from the planet's gravity. On the other hand, the atmosphere can be used to accomplish aerobraking . There have also been theoretical proposals to use aerodynamic lift as

4046-450: Is visible in dark skies long after sunset. As the brightest point-like object in the sky, Venus is a commonly misreported " unidentified flying object ". As it orbits the Sun, Venus displays phases like those of the Moon in a telescopic view. The planet appears as a small and "full" disc when it is on the opposite side of the Sun (at superior conjunction ). Venus shows a larger disc and "quarter phase" at its maximum elongations from

4165-417: Is −4.14 with a standard deviation of 0.31. The brightest magnitude occurs during the crescent phase about one month before or after an inferior conjunction. Venus fades to about magnitude −3 when it is backlit by the Sun. The planet is bright enough to be seen in broad daylight, but is more easily visible when the Sun is low on the horizon or setting. As an inferior planet , it always lies within about 47° of

4284-482: The Magellan spacecraft imaged a highly reflective substance at the tops of the highest mountain peaks, a " Venus snow " that bore a strong resemblance to terrestrial snow. This substance likely formed from a similar process to snow, albeit at a far higher temperature. Too volatile to condense on the surface, it rose in gaseous form to higher elevations, where it is cooler and could precipitate. The identity of this substance

4403-464: The Sun . Venus "overtakes" Earth every 584 days as it orbits the Sun. As it does so, it changes from the "Evening Star", visible after sunset, to the "Morning Star", visible before sunrise. Although Mercury, the other inferior planet, reaches a maximum elongation of only 28° and is often difficult to discern in twilight, Venus is hard to miss when it is at its brightest. Its greater maximum elongation means it

4522-401: The decreasing eccentricity of Earth's orbit , the minimum distances will become greater over tens of thousands of years. From the year   1 to 5383, there are 526 approaches less than 40 million km (25 million mi); then, there are none for about 60,158 years. While Venus approaches Earth the closest, Mercury is more often the closest to Earth of all planets. Venus has

4641-442: The delta symbol being used to represent a change and "v" signifying velocity ) translates to a far larger requirement for propellant needed to escape Earth's gravity well . This is because not only must the primary-stage engines lift the extra propellant, they must also lift the extra propellant beyond that which is needed to lift that additional propellant. The liftoff mass requirement increases exponentially with an increase in

4760-422: The dissociation of water molecules from ultraviolet radiation. The solar wind then supplies energy that gives some of these ions sufficient velocity to escape Venus's gravity field. This erosion process results in a steady loss of low-mass hydrogen, helium, and oxygen ions, whereas higher-mass molecules, such as carbon dioxide, are more likely to be retained. Atmospheric erosion by the solar wind could have led to

4879-449: The orbital perturbations planets undergo due to interactions with other celestial bodies on astronomically short timescales. For example, one metric ton is a typical mass for an interplanetary space probe whereas Jupiter has a mass of almost 2 x 10 metric tons. Therefore, a one-ton spacecraft passing Jupiter will theoretically cause the planet to lose approximately 5 x 10 km/s of orbital velocity for every km/s of velocity relative to

Tsolmon - Misplaced Pages Continue

4998-415: The sulphur in the atmosphere may indicate that there have been recent eruptions. About 80% of the Venusian surface is covered by smooth, volcanic plains, consisting of 70% plains with wrinkle ridges and 10% smooth or lobate plains. Two highland "continents" make up the rest of its surface area, one lying in the planet's northern hemisphere and the other just south of the equator. The northern continent

5117-492: The 16-year period between the Magellan spacecraft and Venus Express visits, with a difference of about 6.5   minutes. Because of the retrograde rotation, the length of a solar day on Venus is significantly shorter than the sidereal day, at 116.75 Earth days (making the Venusian solar day shorter than Mercury 's 176 Earth days — the 116-day figure is close to the average number of days it takes Mercury to slip underneath

5236-558: The Earth in its orbit [the number of days of Mercury's synodic orbital period]). One Venusian year is about 1.92   Venusian solar days. To an observer on the surface of Venus, the Sun would rise in the west and set in the east, although Venus's opaque clouds prevent observing the Sun from the planet's surface. Venus may have formed from the solar nebula with a different rotation period and obliquity, reaching its current state because of chaotic spin changes caused by planetary perturbations and tidal effects on its dense atmosphere,

5355-490: The Parker Solar Probe progressively closer to the Sun. As of 2022, the spacecraft has performed five of its seven assists. The Parker Solar Probe's mission will make the closest approach to the Sun by any space mission. Solar Orbiter was launched by ESA in 2020. In its initial cruise phase, which lasts until November 2021, Solar Orbiter performed two gravity-assist manoeuvres around Venus and one around Earth to alter

5474-487: The Sun and thus receives only 25% of Mercury's solar irradiance , of 2,600 W/m (double that of Earth). Because of its runaway greenhouse effect , Venus has been identified by scientists such as Carl Sagan as a warning and research object linked to climate change on Earth. Venus's atmosphere is rich in primordial noble gases compared to that of Earth. This enrichment indicates an early divergence from Earth in evolution. An unusually large comet impact or accretion of

5593-447: The Sun gained by the spacecraft. For all practical purposes the effects on the planet can be ignored in the calculation. Realistic portrayals of encounters in space require the consideration of three dimensions. The same principles apply as above except adding the planet's velocity to that of the spacecraft requires vector addition as shown below. Due to the reversibility of orbits , gravitational slingshots can also be used to reduce

5712-416: The Sun have produced no clear evidence, experiments performed by Gravity Probe B have detected frame-dragging effects caused by Earth. General relativity predicts that a spinning black hole is surrounded by a region of space, called the ergosphere , within which standing still (with respect to the black hole's spin) is impossible, because space itself is dragged at the speed of light in the same direction as

5831-470: The Sun's 11-year sunspot cycle . The existence of lightning in the atmosphere of Venus has been controversial since the first suspected bursts were detected by the Soviet Venera probes . In 2006–07, Venus Express clearly detected whistler mode waves , the signatures of lightning. Their intermittent appearance indicates a pattern associated with weather activity. According to these measurements,

5950-431: The Sun, and a spacecraft traveling from Earth to an outer planet will decrease its speed because it is leaving the vicinity of the Sun. Although the orbital speed of an inner planet is greater than that of the Earth, a spacecraft traveling to an inner planet, even at the minimum speed needed to reach it, is still accelerated by the Sun's gravity to a speed notably greater than the orbital speed of that destination planet. If

6069-422: The Sun, and appears at its brightest in the night sky. The planet presents a much larger thin "crescent" in telescopic views as it passes along the near side between Earth and the Sun. Venus displays its largest size and "new phase" when it is between Earth and the Sun (at inferior conjunction). Its atmosphere is visible through telescopes by the halo of sunlight refracted around it. The phases are clearly visible in

SECTION 50

#1732868582672

6188-403: The Sun. A close terrestrial analogy is provided by a tennis ball bouncing off the front of a moving train. Imagine standing on a train platform, and throwing a ball at 30 km/h toward a train approaching at 50 km/h. The driver of the train sees the ball approaching at 80 km/h and then departing at 80 km/h after the ball bounces elastically off the front of the train. Because of

6307-422: The Sun. This results in Venus transiting above Earth in a sequence of currently 8 years , 105.5 years , 8 years and 121.5 years , forming cycles of 243 years . Gravity assist Gravity assistance can be used to accelerate a spacecraft, that is, to increase or decrease its speed or redirect its path. The "assist" is provided by the motion of the gravitating body as it pulls on

6426-778: The Sun. All the planets orbit approximately in a plane aligned with the equator of the Sun. Thus, to enter an orbit passing over the poles of the Sun, the spacecraft would have to eliminate the speed it inherited from the Earth's orbit around the Sun and gain the speed needed to orbit the Sun in the pole-to-pole plane. It was achieved by a gravity assist from Jupiter on February 8, 1992. The MESSENGER mission (launched in August 2004) made extensive use of gravity assists to slow its speed before orbiting Mercury. The MESSENGER mission included one flyby of Earth, two flybys of Venus, and three flybys of Mercury before finally arriving at Mercury in March 2011 with

6545-590: The Venusian surface is estimated to be 300–600   million years old. Several lines of evidence point to ongoing volcanic activity on Venus. Sulfur dioxide concentrations in the upper atmosphere dropped by a factor of 10 between 1978 and 1986, jumped in 2006, and again declined 10-fold. This may mean that levels had been boosted several times by large volcanic eruptions. It has been suggested that Venusian lightning (discussed below) could originate from volcanic activity (i.e. volcanic lightning ). In January 2020, astronomers reported evidence that suggests that Venus

6664-411: The atmosphere before reaching the ground. Without data from reflection seismology or knowledge of its moment of inertia , little direct information is available about the internal structure and geochemistry of Venus. The similarity in size and density between Venus and Earth suggests that they share a similar internal structure: a core , mantle , and crust . Like that of Earth, the Venusian core

6783-474: The atmosphere of Venus. On 29 January 2013, ESA scientists reported that the ionosphere of Venus streams outwards in a manner similar to "the ion tail seen streaming from a comet under similar conditions." In December 2015, and to a lesser extent in April and May 2016, researchers working on Japan's Akatsuki mission observed bow-shaped objects in the atmosphere of Venus. This was considered direct evidence of

6902-443: The atmosphere. Later research attributed the spectroscopic signal that was interpreted as phosphine to sulphur dioxide, or found that in fact there was no absorption line. Thermal inertia and the transfer of heat by winds in the lower atmosphere mean that the temperature of Venus's surface does not vary significantly between the planet's two hemispheres, those facing and not facing the Sun, despite Venus's slow rotation. Winds at

7021-400: The beginning and end of its trajectory by using the gravity of the two planets' moons. The portion of his manuscript considering gravity-assists received no later development and was not published until the 1960s. In his 1925 paper "Problems of Flight by Jet Propulsion: Interplanetary Flights" ( "Проблема полета при помощи реактивных аппаратов: межпланетные полеты" ), Friedrich Zander showed

7140-434: The black hole's spin. The Penrose process may offer a way to gain energy from the ergosphere, although it would require the spaceship to dump some "ballast" into the black hole, and the spaceship would have had to expend energy to carry the "ballast" to the black hole. The gravity assist maneuver was first attempted in 1959 for Luna 3 , to photograph the far side of the Moon. The satellite did not gain speed, but its orbit

7259-512: The carbon dioxide air. Venus's atmosphere could also have a potential thermal habitable zone at elevations of 54 to 48 km, with lower elevations inhibiting cell growth and higher elevations exceeding evaporation temperature. The putative detection of an absorption line of phosphine in Venus's atmosphere, with no known pathway for abiotic production, led to speculation in September 2020 that there could be extant life currently present in

SECTION 60

#1732868582672

7378-420: The core because the bottom of the liquid layer is much higher in temperature than the top. On Venus, a global resurfacing event may have shut down plate tectonics and led to a reduced heat flux through the crust. This insulating effect would cause the mantle temperature to increase, thereby reducing the heat flux out of the core. As a result, no internal geodynamo is available to drive a magnetic field. Instead,

7497-552: The crust. Then, over a period of about 100   million years, subduction occurs on an enormous scale, completely recycling the crust. Venusian craters range from 3 to 280 km (2 to 174 mi) in diameter. No craters are smaller than 3   km, because of the effects of the dense atmosphere on incoming objects. Objects with less than a certain kinetic energy are slowed so much by the atmosphere that they do not create an impact crater. Incoming projectiles less than 50 m (160 ft) in diameter will fragment and burn up in

7616-455: The currents and drag of its atmosphere. It takes 224.7 Earth days for Venus to complete an orbit around the Sun, and a Venusian solar year is just under two Venusian days long. The orbits of Venus and Earth are the closest between any two Solar System planets, approaching each other in synodic periods of 1.6 years. Venus and Earth have the lowest difference in gravitational potential of any pair of Solar System planets. This allows Venus to be

7735-412: The daytime with overcast clouds". Strong 300 km/h (185 mph) winds at the cloud tops go around Venus about every four to five Earth days. Winds on Venus move at up to 60 times the speed of its rotation, whereas Earth's fastest winds are only 10–20% rotation speed. The surface of Venus is effectively isothermal ; it retains a constant temperature not only between the two hemispheres but between

7854-579: The daytime. French emperor Napoleon Bonaparte once witnessed a daytime apparition of the planet while at a reception in Luxembourg . Another historical daytime observation of the planet took place during the inauguration of the American president Abraham Lincoln in Washington, D.C., on 4   March 1865. A transit of Venus is the appearance of Venus in front of the Sun, during inferior conjunction . Since

7973-602: The direction of Mstislav Keldysh at the Keldysh Institute of Applied Mathematics . In 1961, Michael Minovitch , UCLA graduate student who worked at NASA's Jet Propulsion Laboratory (JPL), developed a gravity assist technique, that would later be used for the Gary Flandro 's Planetary Grand Tour idea. During the summer of 1964 at the NASA JPL, Gary Flandro was assigned the task of studying techniques for exploring

8092-578: The early solar system orbital dynamics have shown that the eccentricity of the Venus orbit may have been substantially larger in the past, reaching values as high as 0.31 and possibly impacting early climate evolution. All planets in the Solar System orbit the Sun in an anticlockwise direction as viewed from above Earth's north pole. Most planets rotate on their axes in an anticlockwise direction, but Venus rotates clockwise in retrograde rotation once every 243 Earth days—the slowest rotation of any planet. This Venusian sidereal day lasts therefore longer than

8211-442: The equator and the poles. Venus's minute axial tilt —less than 3°, compared to 23° on Earth—also minimizes seasonal temperature variation. Altitude is one of the few factors that affect Venusian temperatures. The highest point on Venus, Maxwell Montes , is therefore the coolest point on Venus, with a temperature of about 655 K (380 °C; 715 °F) and an atmospheric pressure of about 4.5 MPa (45 bar). In 1995,

8330-415: The existence of perhaps the largest stationary gravity waves in the solar system. Venus orbits the Sun at an average distance of about 0.72  AU (108 million  km ; 67 million  mi ), and completes an orbit every 224.7 days. Although all planetary orbits are elliptical , Venus's orbit is currently the closest to circular, with an eccentricity of less than 0.01. Simulations of

8449-621: The first observation-based estimate of 3,500 km. The principal difference between the two planets is the lack of evidence for plate tectonics on Venus, possibly because its crust is too strong to subduct without water to make it less viscous . This results in reduced heat loss from the planet, preventing it from cooling and providing a likely explanation for its lack of an internally generated magnetic field . Instead, Venus may lose its internal heat in periodic major resurfacing events. In 1967, Venera 4 found Venus's magnetic field to be much weaker than that of Earth. This magnetic field

8568-544: The first spacecraft to explore Mercury . Voyager 1 was launched by NASA on September 5, 1977. It gained the energy to escape the Sun's gravity by performing slingshot maneuvers around Jupiter and Saturn. Having operated for 47 years, 2 months and 23 days as of November 28, 2024 UTC [ refresh ] , the spacecraft still communicates with the Deep Space Network to receive routine commands and to transmit data to Earth. Real-time distance and velocity data

8687-465: The following 200 years , but most were determined to be stars in the vicinity. Alex Alemi's and David Stevenson 's 2006 study of models of the early Solar System at the California Institute of Technology shows Venus likely had at least one moon created by a huge impact event billions of years ago. About 10   million   years later, according to the study, another impact reversed

8806-470: The gravity assist technique with Earth once, with Venus twice, and six times with Mercury . It will arrive in 2025. BepiColombo is named after Giuseppe (Bepi) Colombo who was a pioneer thinker with this way of maneuvers. Lucy was launched by NASA on 16 October 2021. It gained one gravity assist from Earth on the 16th of October, 2022, and after a flyby of the main-belt asteroid 152830 Dinkinesh it will gain another in 2024. In 2025, it will fly by

8925-429: The heat from the core is reheating the crust. One possibility is that Venus has no solid inner core, or that its core is not cooling, so that the entire liquid part of the core is at approximately the same temperature. Another possibility is that its core has already been completely solidified. The state of the core is highly dependent on the concentration of sulphur , which is unknown at present. Another possibility

9044-399: The hypothesis of a spin-orbit resonance with Earth has been discounted. Venus has no natural satellites. It has several trojan asteroids : the quasi-satellite 524522 Zoozve and two other temporary trojans, 2001 CK 32 and 2012 XE 133 . In the 17th century, Giovanni Cassini reported a moon orbiting Venus, which was named Neith and numerous sightings were reported over

9163-516: The impact craters, mountains, and valleys commonly found on rocky planets. Among these are flat-topped volcanic features called " farra ", which look somewhat like pancakes and range in size from 20 to 50 km (12 to 31 mi) across, and from 100 to 1,000 m (330 to 3,280 ft) high; radial, star-like fracture systems called "novae"; features with both radial and concentric fractures resembling spider webs, known as " arachnoids "; and "coronae", circular rings of fractures sometimes surrounded by

9282-548: The inner main-belt asteroid 52246 Donaldjohanson . In 2027, it will arrive at the L 4 Trojan cloud (the Greek camp of asteroids that orbits about 60° ahead of Jupiter), where it will fly by four Trojans, 3548 Eurybates (with its satellite), 15094 Polymele , 11351 Leucus , and 21900 Orus . After these flybys, Lucy will return to Earth in 2031 for another gravity assist toward the L 5 Trojan cloud (the Trojan camp which trails about 60° behind Jupiter), where it will visit

9401-399: The intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Tsolmon&oldid=1121503005 " Categories : Given names Mongolian given names Hidden categories: Articles with short description Short description with empty Wikidata description All set index articles Venus Venus is the second planet from the Sun . It is

9520-402: The lightning rate is at least half that on Earth, however other instruments have not detected lightning at all. The origin of any lightning remains unclear, but could originate from clouds or Venusian volcanoes . In 2007, Venus Express discovered that a huge double atmospheric polar vortex exists at the south pole. Venus Express discovered, in 2011, that an ozone layer exists high in

9639-410: The limited amount which has been carried into space. Gravity assist maneuvers can greatly change the speed of a spacecraft without expending propellant, and can save significant amounts of propellant, so they are a very common technique to save fuel. The main practical limit to the use of a gravity assist maneuver is that planets and other large masses are seldom in the right places to enable a voyage to

9758-492: The loss of most of Venus's water during the first billion years after it formed. However, the planet may have retained a dynamo for its first 2–3 billion years, so the water loss may have occurred more recently. The erosion has increased the ratio of higher-mass deuterium to lower-mass hydrogen in the atmosphere 100 times compared to the rest of the solar system. Venus has a dense atmosphere composed of 96.5% carbon dioxide , 3.5% nitrogen—both exist as supercritical fluids at

9877-467: The lowest gravitational potential difference to Earth than any other planet, needing the lowest delta-v to transfer between them. Tidally Venus exerts the third strongest tidal force on Earth, after the Moon and the Sun, though significantly less. To the naked eye , Venus appears as a white point of light brighter than any other planet or star (apart from the Sun). The planet's mean apparent magnitude

9996-420: The most accessible destination and a useful gravity assist waypoint for interplanetary flights from Earth. Venus figures prominently in human culture and in the history of astronomy. Orbiting inferiorly (inside of Earth's orbit), it always appears close to the Sun in Earth's sky, as either a "morning star" or an "evening star". While this is also true for Mercury , Venus appears more prominent, since it

10115-404: The orbit of Venus is slightly inclined relative to Earth's orbit, most inferior conjunctions with Earth, which occur every synodic period of 1.6 years, do not produce a transit of Venus above Earth. Consequently, Venus transits above Earth only occur when an inferior conjunction takes place during some days of June or December, the time where the orbits of Venus and Earth cross a straight line with

10234-418: The orbit, but if the spaceship travels in a path which forms a hyperbola , it can leave the planet in the opposite direction without firing its engine. This example is one of many trajectories and gains of speed the spaceship can experience. This explanation might seem to violate the conservation of energy and momentum, apparently adding velocity to the spacecraft out of nothing, but the spacecraft's effects on

10353-437: The other being Mercury , that have no moons . Conditions perhaps favourable for life on Venus have been identified at its cloud layers. Venus may have had liquid surface water early in its history with a habitable environment , before a runaway greenhouse effect evaporated any water and turned Venus into its present state. The rotation of Venus has been slowed and turned against its orbital direction ( retrograde ) by

10472-474: The outer planets of the solar system. In this study he discovered the rare alignment of the outer planets (Jupiter, Saturn, Uranus, and Neptune) and conceived the Planetary Grand Tour multi-planet mission utilizing gravity assist to reduce mission duration from forty years to less than ten. A spacecraft traveling from Earth to an inner planet will increase its relative speed because it is falling toward

10591-569: The plane of the rings. A typical Titan encounter changed the spacecraft's velocity by 0.75 km/s, and the spacecraft made 127 Titan encounters. These encounters enabled an orbital tour with a wide range of periapsis and apoapsis distances, various alignments of the orbit with respect to the Sun, and orbital inclinations from 0° to 74°. The multiple flybys of Titan also allowed Cassini to flyby other moons, such as Rhea and Enceladus . The Rosetta probe, launched in March 2004, used four gravity assist maneuvers (including one just 250 km from

10710-405: The planet must also be taken into consideration to provide a complete picture of the mechanics involved. The linear momentum gained by the spaceship is equal in magnitude to that lost by the planet, so the spacecraft gains velocity and the planet loses velocity. However, the planet's enormous mass compared to the spacecraft makes the resulting change in its speed negligibly small even when compared to

10829-405: The planet underwent a global resurfacing event 300–600   million years ago, followed by a decay in volcanism. Whereas Earth's crust is in continuous motion, Venus is thought to be unable to sustain such a process. Without plate tectonics to dissipate heat from its mantle, Venus instead undergoes a cyclical process in which mantle temperatures rise until they reach a critical level that weakens

10948-421: The planet's spin direction and the resulting tidal deceleration caused the Venusian moon gradually to spiral inward until it collided with Venus. If later impacts created moons, these were removed in the same way. An alternative explanation for the lack of satellites is the effect of strong solar tides, which can destabilize large satellites orbiting the inner terrestrial planets. The orbital space of Venus has

11067-581: The planet's surface with a density 6.5% that of water —and traces of other gases including sulphur dioxide . The mass of its atmosphere is 92 times that of Earth's, whereas the pressure at its surface is about 93 times that at Earth's—a pressure equivalent to that at a depth of nearly 1 km ( 5 ⁄ 8  mi) under Earth's ocean surfaces. The density at the surface is 65 kg/m (4.1 lb/cu ft), 6.5% that of water or 50 times as dense as Earth's atmosphere at 293 K (20 °C; 68 °F) at sea level. The CO 2 -rich atmosphere generates

11186-460: The point of closest approach (limited by either the surface or the atmosphere.) Interplanetary slingshots using the Sun itself are not possible because the Sun is at rest relative to the Solar System as a whole. However, thrusting when near the Sun has the same effect as the powered slingshot described as the Oberth effect . This has the potential to magnify a spacecraft's thrusting power enormously, but

11305-735: The required delta- v of the spacecraft. Because additional fuel is needed to lift fuel into space, space missions are designed with a tight propellant "budget", known as the " delta-v budget ". The delta-v budget is in effect the total propellant that will be available after leaving the earth, for speeding up, slowing down, stabilization against external buffeting (by particles or other external effects), or direction changes, if it cannot acquire more propellant. The entire mission must be planned within that capability. Therefore, methods of speed and direction change that do not require fuel to be burned are advantageous, because they allow extra maneuvering capability and course enhancement, without spending fuel from

11424-442: The size of South America. A network of fractures and faults covers much of this area. There is recent evidence of lava flow on Venus (2024), such as flows on Sif Mons, a shield volcano, and on Niobe Planitia, a flat plain. There are visible calderas . The planet has few impact craters , demonstrating that the surface is relatively young, at 300–600   million years old. Venus has some unique surface features in addition to

11543-523: The size of the hot spots could not be measured, but are likely to have been in the 800–1,100 K (527–827 °C; 980–1,520 °F) range, relative to a normal temperature of 740 K (467 °C; 872 °F). In 2023, scientists reexamined topographical images of the Maat Mons region taken by the Magellan orbiter. Using computer simulations, they determined that the topography had changed during an 8-month interval, and concluded that active volcanism

11662-556: The spacecraft arrived at 1 July 2004. Its trajectory was called "the Most Complex Gravity-Assist Trajectory Flown to Date" in 2019. After entering orbit around Saturn, the Cassini spacecraft used multiple Titan gravity assists to achieve significant changes in the inclination of its orbit as well so that instead of staying nearly in the equatorial plane, the spacecraft's flight path was inclined well out of

11781-429: The spacecraft flies through the atmosphere. This maneuver, called an aerogravity assist , could bend the trajectory through a larger angle than gravity alone, and hence increase the gain in energy. Even in the case of an airless body, there is a limit to how close a spacecraft may approach. The magnitude of the achievable change in velocity depends on the spacecraft's approach velocity and the planet's escape velocity at

11900-422: The spacecraft's purpose is only to fly by the inner planet, then there is typically no need to slow the spacecraft. However, if the spacecraft is to be inserted into orbit about that inner planet, then there must be some way to slow it down. Similarly, while the orbital speed of an outer planet is less than that of the Earth, a spacecraft leaving the Earth at the minimum speed needed to travel to some outer planet

12019-539: The spacecraft's trajectory, guiding it towards the innermost regions of the Solar System. The first close solar pass will take place on 26 March 2022 at around a third of Earth's distance from the Sun. BepiColombo is a joint mission of the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) to the planet Mercury . It was launched on 20 October 2018. It will use

12138-405: The spacecraft. Any gain or loss of kinetic energy and linear momentum by a passing spacecraft is correspondingly lost or gained by the gravitational body, in accordance with Newton's Third Law . The gravity assist maneuver was first used in 1959 when the Soviet probe Luna 3 photographed the far side of Earth's Moon , and it was used by interplanetary probes from Mariner 10 onward, including

12257-408: The speed of a spacecraft. Both Mariner 10 and MESSENGER performed this maneuver to reach Mercury . If more speed is needed than available from gravity assist alone, a rocket burn near the periapsis (closest planetary approach) uses the least fuel. A given rocket burn always provides the same change in velocity ( Δv ), but the change in kinetic energy is proportional to the vehicle's velocity at

12376-410: The strongest greenhouse effect in the Solar System, creating surface temperatures of at least 735 K (462 °C; 864 °F). This makes the Venusian surface hotter than Mercury 's, which has a minimum surface temperature of 53 K (−220 °C; −364 °F) and maximum surface temperature of 700 K (427 °C; 801 °F), even though Venus is nearly twice Mercury's distance from

12495-443: The sunlight that falls on them back into space, and since they cover the whole planet they prevent visual observation of Venus's surface. The permanent cloud cover means that although Venus is closer than Earth to the Sun, it receives less sunlight on the ground, with only 10% of the received sunlight reaching the surface, resulting in average daytime levels of illumination at the surface of 14,000 lux , comparable to that on Earth "in

12614-459: The surface are slow, moving at a few kilometres per hour, but because of the high density of the atmosphere at the surface, they exert a significant amount of force against obstructions, and transport dust and small stones across the surface. This alone would make it difficult for a human to walk through, even without the heat, pressure, and lack of oxygen. Above the dense CO 2 layer are thick clouds, consisting mainly of sulfuric acid , which

12733-489: The surface atmosphere a supercritical fluid out of mainly supercritical carbon dioxide and some supercritical nitrogen. The Venusian surface was a subject of speculation until some of its secrets were revealed by planetary science in the 20th century. Venera landers in 1975 and 1982 returned images of a surface covered in sediment and relatively angular rocks. The surface was mapped in detail by Magellan in 1990–91. The ground shows evidence of extensive volcanism, and

12852-446: The surface of Mars, and three assists from Earth) to accelerate throughout the inner Solar System. That enabled it to flyby the asteroids 21 Lutetia and 2867 Šteins as well as eventually match the velocity of the 67P/Churyumov–Gerasimenko comet at the rendezvous point in August 2014. New Horizons was launched by NASA in 2006, and reached Pluto in 2015. In 2007 it performed a gravity assist on Jupiter. The Juno spacecraft

12971-503: The surface. After a period of 600 million to several billion years, solar forcing from rising luminosity of the Sun and possibly large volcanic resurfacing caused the evaporation of the original water and the current atmosphere. A runaway greenhouse effect was created once a critical level of greenhouse gases (including water) was added to its atmosphere. Although the surface conditions on Venus are no longer hospitable to any Earth-like life that may have formed before this event, there

13090-420: The surrounding basaltic plains measured by Venus Express and Magellan , indicating a different, possibly a more felsic , mineral assemblage. The mechanism to generate a large amount of felsic crust usually requires the presence of water ocean and plate tectonics , implying that habitable condition had existed on early Venus with large bodies of water at some point. However, the nature of tessera terrains

13209-487: The theories and then popular science fiction about Venus being a habitable or inhabited planet. Venus is one of the four terrestrial planets in the Solar System, meaning that it is a rocky body like Earth. It is similar to Earth in size and mass and is often described as Earth's "sister" or "twin". Venus is close to spherical due to its slow rotation. Venus has a diameter of 12,103.6 km (7,520.8 mi)—only 638.4 km (396.7 mi) less than Earth's—and its mass

13328-498: The time of the burn. Therefore the maximum kinetic energy is obtained when the burn occurs at the vehicle's maximum velocity (periapsis). The Oberth effect describes this technique in more detail. In his paper "To Those Who Will Be Reading in Order to Build" ( "Тем, кто будет читать, чтобы строить" ), published in 1938 but dated 1918–1919, Yuri Kondratyuk suggested that a spacecraft traveling between two planets could be accelerated at

13447-418: The train's motion, however, that departure is at 130 km/h relative to the train platform; the ball has added twice the train's velocity to its own. Translating this analogy into space: in the planet reference frame , the spaceship has a vertical velocity of v relative to the planet. After the slingshot occurs the spaceship is leaving on a course 90 degrees to that which it arrived on. It will still have

13566-427: The two Voyager probes' notable flybys of Jupiter and Saturn. A gravity assist around a planet changes a spacecraft's velocity (relative to the Sun ) by entering and leaving the gravitational sphere of influence of a planet. The sum of the kinetic energies of both bodies remains constant (see elastic collision ). A slingshot maneuver can therefore be used to change the spaceship's trajectory and speed relative to

13685-496: Was changed in a way that allowed successful transmission of the photos. NASA's Pioneer 10 is a space probe launched in 1972 that completed the first mission to the planet Jupiter . Thereafter, Pioneer 10 became the first of five artificial objects to achieve the escape velocity needed to leave the Solar System . In December 1973, Pioneer 10 spacecraft was the first one to use the gravitational slingshot effect to reach escape velocity to leave Solar System. Pioneer 11

13804-507: Was launched by NASA in 1989 and on its route to Jupiter got three gravity assists, one from Venus (February 10, 1990), and two from Earth (December 8, 1990 and December 8, 1992). Spacecraft reached Jupiter in December 1995. Gravity assists also allowed Galileo to flyby two asteroids, 243 Ida and 951 Gaspra . In 1990, NASA launched the ESA spacecraft Ulysses to study the polar regions of

13923-515: Was launched by NASA in 1973, to study the asteroid belt , the environment around Jupiter and Saturn , solar winds , and cosmic rays . It was the first probe to encounter Saturn , the second to fly through the asteroid belt , and the second to fly by Jupiter . To get to Saturn, the spacecraft got a gravity assist on Jupiter. The Mariner 10 probe was the first spacecraft to use the gravitational slingshot effect to reach another planet, passing by Venus on 5 February 1974 on its way to becoming

14042-471: Was launched on August 5, 2011 (UTC). The trajectory used a gravity assist speed boost from Earth, accomplished by an Earth flyby in October 2013, two years after its launch on August 5, 2011. In that way Juno changed its orbit (and speed) toward its final goal, Jupiter , after only five years. The Parker Solar Probe , launched by NASA in 2018, has seven planned Venus gravity assists. Each gravity assist brings

14161-458: Was the cause. Almost a thousand impact craters on Venus are evenly distributed across its surface. On other cratered bodies, such as Earth and the Moon, craters show a range of states of degradation. On the Moon, degradation is caused by subsequent impacts, whereas on Earth it is caused by wind and rain erosion. On Venus, about 85% of the craters are in pristine condition. The number of craters, together with their well-preserved condition, indicates

#671328