Misplaced Pages

Troja Bridge

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an accepted version of this page

#528471

70-565: Coordinates : 50°6′44.1″N 14°26′10.15″E  /  50.112250°N 14.4361528°E  / 50.112250; 14.4361528 Bridge in Prague [REDACTED] You can help expand this article with text translated from the corresponding article in Czech . (March 2024) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate ,

140-502: A tan ⁡ ϕ {\displaystyle \textstyle {\tan \beta ={\frac {b}{a}}\tan \phi }\,\!} ; for the GRS   80 and WGS   84 spheroids, b a = 0.99664719 {\textstyle {\tfrac {b}{a}}=0.99664719} . ( β {\displaystyle \textstyle {\beta }\,\!} is known as the reduced (or parametric) latitude ). Aside from rounding, this

210-456: A datum transformation such as a Helmert transformation , although in certain situations a simple translation may be sufficient. Datums may be global, meaning that they represent the whole Earth, or they may be local, meaning that they represent an ellipsoid best-fit to only a portion of the Earth. Examples of global datums include World Geodetic System (WGS   84, also known as EPSG:4326 ),

280-543: A first-class entity , rather than the specific place where the object is located at a certain time. It implements the Uniform Resource Identifier ( Uniform Resource Name ) concept and adds to it a data model and social infrastructure. A DOI name also differs from standard identifier registries such as the ISBN , ISRC , etc. The purpose of an identifier registry is to manage a given collection of identifiers, whereas

350-448: A DOI name is a handle, and so has a set of values assigned to it and may be thought of as a record that consists of a group of fields. Each handle value must have a data type specified in its <type> field, which defines the syntax and semantics of its data. While a DOI persistently and uniquely identifies the object to which it is assigned, DOI resolution may not be persistent, due to technical and administrative issues. To resolve

420-537: A DOI name, it may be input to a DOI resolver, such as doi.org . Another approach, which avoids typing or copying and pasting into a resolver is to include the DOI in a document as a URL which uses the resolver as an HTTP proxy, such as https://doi.org/ (preferred) or http://dx.doi.org/ , both of which support HTTPS. For example, the DOI 10.1000/182 can be included in a reference or hyperlink as https://doi.org/10.1000/182 . This approach allows users to click on

490-401: A managed registry (providing both social and technical infrastructure). It does not assume any specific business model for the provision of identifiers or services and enables other existing services to link to it in defined ways. Several approaches for making identifiers persistent have been proposed. The comparison of persistent identifier approaches is difficult because they are not all doing

560-544: A non-profit organization created in 1997, is the governance body of the DOI system. It safeguards all intellectual property rights relating to the DOI system, manages common operational features, and supports the development and promotion of the DOI system. The IDF ensures that any improvements made to the DOI system (including creation, maintenance, registration, resolution and policymaking of DOI names) are available to any DOI registrant. It also prevents third parties from imposing additional licensing requirements beyond those of

630-588: A point on Earth's surface is the angle east or west of a reference meridian to another meridian that passes through that point. All meridians are halves of great ellipses (often called great circles ), which converge at the North and South Poles. The meridian of the British Royal Observatory in Greenwich , in southeast London, England, is the international prime meridian , although some organizations—such as

700-473: A region of the surface of the Earth. Some newer datums are bound to the center of mass of the Earth. This combination of mathematical model and physical binding mean that anyone using the same datum will obtain the same location measurement for the same physical location. However, two different datums will usually yield different location measurements for the same physical location, which may appear to differ by as much as several hundred meters; this not because

770-419: A transaction, etc. The names can refer to objects at varying levels of detail: thus DOI names can identify a journal, an individual issue of a journal, an individual article in the journal, or a single table in that article. The choice of level of detail is left to the assigner, but in the DOI system it must be declared as part of the metadata that is associated with a DOI name, using a data dictionary based on

SECTION 10

#1733094411529

840-1000: A čtyři tramvaje" . Mladá fronta DNES (in Czech). 21 August 2014 . Retrieved 16 November 2014 . v t e Bridges in Prague Radotín Bridge Braník Bridge Barrandov Bridge Charles Bridge Franz Joseph Bridge Jirásek Bridge Legion Bridge Libeň Bridge Mánes Bridge Nusle Bridge Palacký Bridge Svatopluk Čech Bridge Troja Bridge Vyšehrad railway bridge Authority control databases : Geographic [REDACTED] Structurae Retrieved from " https://en.wikipedia.org/w/index.php?title=Troja_Bridge&oldid=1256624264 " Categories : 2014 establishments in

910-411: Is 6,367,449 m . Since the Earth is an oblate spheroid , not spherical, that result can be off by several tenths of a percent; a better approximation of a longitudinal degree at latitude ϕ {\displaystyle \phi } is where Earth's equatorial radius a {\displaystyle a} equals 6,378,137 m and tan ⁡ β = b

980-475: Is 110.6 km. The circles of longitude, meridians, meet at the geographical poles, with the west–east width of a second naturally decreasing as latitude increases. On the Equator at sea level, one longitudinal second measures 30.92 m, a longitudinal minute is 1855 m and a longitudinal degree is 111.3 km. At 30° a longitudinal second is 26.76 m, at Greenwich (51°28′38″N) 19.22 m, and at 60° it

1050-519: Is 15.42 m. On the WGS   84 spheroid, the length in meters of a degree of latitude at latitude ϕ (that is, the number of meters you would have to travel along a north–south line to move 1 degree in latitude, when at latitude ϕ ), is about The returned measure of meters per degree latitude varies continuously with latitude. Similarly, the length in meters of a degree of longitude can be calculated as (Those coefficients can be improved, but as they stand

1120-1346: Is a bowstring arch bridge in Prague that crosses the Vltava river. It opened to traffic in October 2014. The bridge is 262 metres (860 ft) long. It was designed by Mott MacDonald and Koucky Architects, and was constructed by Metrostav . It connects the districts of Troja and Holešovice . The bridge is noted for slender arch and low height-to-span ratio. References [ edit ] [REDACTED] Wikimedia Commons has media related to Trojský most . ^ Janata, V.; Gregor, D.; Šašek, L.; Nehasil, P.; Wangler, T. (2012). "New Troja Bridge in Prague–Structural Solution of Steel Parts" . Procedia Engineering . 40 : 159–164. doi : 10.1016/j.proeng.2012.07.073 . ^ Reina, Peter (May 20, 2013), Unusually Slender Arch Marks Prague Bridge , New York: Engineering News-Record , retrieved January 8, 2015 ^ Lazarová, Daniela (6 October 2014). "Trója Bridge opens to traffic" . Radio Prague . Retrieved 16 November 2014 . ^ "Troja bridge, Czech Republic" . Mott MacDonald . 2014 . Retrieved 13 March 2015 . ^ "Trojský most v Praze zatěžkalo 24 náklaďáků

1190-661: Is a persistent identifier or handle used to uniquely identify various objects, standardized by the International Organization for Standardization (ISO). DOIs are an implementation of the Handle System ; they also fit within the URI system ( Uniform Resource Identifier ). They are widely used to identify academic, professional, and government information, such as journal articles, research reports, data sets, and official publications . A DOI aims to resolve to its target,

1260-450: Is a type of Handle System handle, which takes the form of a character string divided into two parts, a prefix and a suffix, separated by a slash. The prefix identifies the registrant of the identifier and the suffix is chosen by the registrant and identifies the specific object associated with that DOI. Most legal Unicode characters are allowed in these strings, which are interpreted in a case-insensitive manner. The prefix usually takes

1330-483: Is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Misplaced Pages. Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article. You must provide copyright attribution in

1400-452: Is known as a graticule . The origin/zero point of this system is located in the Gulf of Guinea about 625 km (390 mi) south of Tema , Ghana , a location often facetiously called Null Island . In order to use the theoretical definitions of latitude, longitude, and height to precisely measure actual locations on the physical earth, a geodetic datum must be used. A horizonal datum

1470-667: Is maintained by the International DOI Foundation. The IDF is recognized as one of the federated registrars for the Handle System by the DONA Foundation (of which the IDF is a board member), and is responsible for assigning Handle System prefixes under the top-level 10 prefix. Registration agencies generally charge a fee to assign a new DOI name; parts of these fees are used to support the IDF. The DOI system overall, through

SECTION 20

#1733094411529

1540-469: Is on Wikidata Pages using the Kartographer extension Geographic coordinate system A geographic coordinate system ( GCS ) is a spherical or geodetic coordinate system for measuring and communicating positions directly on Earth as latitude and longitude . It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms

1610-464: Is shown with a DOI name that leads to an Excel file of data underlying the tables and graphs. Further development of such services is planned. Other registries include Crossref and the multilingual European DOI Registration Agency (mEDRA) . Since 2015, RFCs can be referenced as doi:10.17487/rfc ... . The IDF designed the DOI system to provide a form of persistent identification , in which each DOI name permanently and unambiguously identifies

1680-656: Is the exact distance along a parallel of latitude; getting the distance along the shortest route will be more work, but those two distances are always within 0.6 m of each other if the two points are one degree of longitude apart. Like any series of multiple-digit numbers, latitude-longitude pairs can be challenging to communicate and remember. Therefore, alternative schemes have been developed for encoding GCS coordinates into alphanumeric strings or words: These are not distinct coordinate systems, only alternative methods for expressing latitude and longitude measurements. Doi (identifier) A digital object identifier ( DOI )

1750-555: Is to use one of a number of add-ons and plug-ins for browsers , thereby avoiding the conversion of the DOIs to URLs, which depend on domain names and may be subject to change, while still allowing the DOI to be treated as a normal hyperlink. A disadvantage of this approach for publishers is that, at least at present, most users will be encountering the DOIs in a browser, mail reader , or other software which does not have one of these plug-ins installed. The International DOI Foundation ( IDF ),

1820-465: Is used to precisely measure latitude and longitude, while a vertical datum is used to measure elevation or altitude. Both types of datum bind a mathematical model of the shape of the earth (usually a reference ellipsoid for a horizontal datum, and a more precise geoid for a vertical datum) to the earth. Traditionally, this binding was created by a network of control points , surveyed locations at which monuments are installed, and were only accurate for

1890-471: The International Date Line , which diverges from it in several places for political and convenience reasons, including between far eastern Russia and the far western Aleutian Islands . The combination of these two components specifies the position of any location on the surface of Earth, without consideration of altitude or depth. The visual grid on a map formed by lines of latitude and longitude

1960-1159: The edit summary accompanying your translation by providing an interlanguage link to the source of your translation. A model attribution edit summary is Content in this edit is translated from the existing Czech Misplaced Pages article at [[:cs:Trojský most]]; see its history for attribution. You may also add the template {{Translated|cs|Trojský most}} to the talk page . For more guidance, see Misplaced Pages:Translation . Troja Bridge [REDACTED] Coordinates 50°6′44.1″N 14°26′10.15″E  /  50.112250°N 14.4361528°E  / 50.112250; 14.4361528 Crosses Vltava River Locale Prague Official name Trojský most Characteristics Design Bowstring arch bridge Total length 262 metres (860 ft) Longest span 200.4 metres (657 ft) History Architect Koucky Architects Designer Mott MacDonald Constructed by Metrostav Construction end 2014 Opened October 2014 Location [REDACTED] The Troja Bridge (2014) ( Czech : Trojský most )

2030-491: The indecs Content Model . The official DOI Handbook explicitly states that DOIs should be displayed on screens and in print in the format doi:10.1000/182 . Contrary to the DOI Handbook , Crossref , a major DOI registration agency, recommends displaying a URL (for example, https://doi.org/10.1000/182 ) instead of the officially specified format. This URL is persistent (there is a contract that ensures persistence in

2100-515: The 1st or 2nd century, Marinus of Tyre compiled an extensive gazetteer and mathematically plotted world map using coordinates measured east from a prime meridian at the westernmost known land, designated the Fortunate Isles , off the coast of western Africa around the Canary or Cape Verde Islands , and measured north or south of the island of Rhodes off Asia Minor . Ptolemy credited him with

2170-836: The Czech Republic Bridges completed in 2014 Bridges in Prague Bridges over the Vltava Network arch bridges 21st-century architecture in the Czech Republic Hidden categories: Pages using gadget WikiMiniAtlas CS1 Czech-language sources (cs) Articles with short description Short description matches Wikidata Building and structure articles needing translation from Czech Misplaced Pages Coordinates on Wikidata Infobox mapframe without OSM relation ID on Wikidata Articles containing Czech-language text Commons category link

Troja Bridge - Misplaced Pages Continue

2240-479: The DOI System. It requires an additional layer of administration for defining DOI as a URN namespace (the string urn:doi:10.1000/1 rather than the simpler doi:10.1000/1 ) and an additional step of unnecessary redirection to access the resolution service, already achieved through either http proxy or native resolution. If RDS mechanisms supporting URN specifications become widely available, DOI will be registered as

2310-413: The DOI as a normal hyperlink . Indeed, as previously mentioned, this is how Crossref recommends that DOIs always be represented (preferring HTTPS over HTTP), so that if they are cut-and-pasted into other documents, emails, etc., they will be actionable. Other DOI resolvers and HTTP Proxies include the Handle System and PANGAEA . At the beginning of the year 2016, a new class of alternative DOI resolvers

2380-409: The DOI system associates metadata with objects. A small kernel of common metadata is shared by all DOI names and can be optionally extended with other relevant data, which may be public or restricted. Registrants may update the metadata for their DOI names at any time, such as when publication information changes or when an object moves to a different URL. The International DOI Foundation (IDF) oversees

2450-436: The DOI system have deliberately not registered a DOI namespace for URNs , stating that: URN architecture assumes a DNS-based Resolution Discovery Service (RDS) to find the service appropriate to the given URN scheme. However no such widely deployed RDS schemes currently exist.... DOI is not registered as a URN namespace, despite fulfilling all the functional requirements, since URN registration appears to offer no advantage to

2520-459: The DOI system. DOI name-resolution may be used with OpenURL to select the most appropriate among multiple locations for a given object, according to the location of the user making the request. However, despite this ability, the DOI system has drawn criticism from librarians for directing users to non-free copies of documents, that would have been available for no additional fee from alternative locations. The indecs Content Model as used within

2590-634: The DOI useless. The developer and administrator of the DOI system is the International DOI Foundation (IDF), which introduced it in 2000. Organizations that meet the contractual obligations of the DOI system and are willing to pay to become a member of the system can assign DOIs. The DOI system is implemented through a federation of registration agencies coordinated by the IDF. By late April 2011 more than 50 million DOI names had been assigned by some 4,000 organizations, and by April 2013 this number had grown to 85 million DOI names assigned through 9,500 organizations. Fake registries have even appeared. A DOI

2660-499: The Earth's surface move relative to each other due to continental plate motion, subsidence, and diurnal Earth tidal movement caused by the Moon and the Sun. This daily movement can be as much as a meter. Continental movement can be up to 10 cm a year, or 10 m in a century. A weather system high-pressure area can cause a sinking of 5 mm . Scandinavia is rising by 1 cm a year as a result of

2730-708: The European ED50 , and the British OSGB36 . Given a location, the datum provides the latitude ϕ {\displaystyle \phi } and longitude λ {\displaystyle \lambda } . In the United Kingdom there are three common latitude, longitude, and height systems in use. WGS   84 differs at Greenwich from the one used on published maps OSGB36 by approximately 112   m. The military system ED50 , used by NATO , differs from about 120   m to 180   m. Points on

2800-524: The French Institut national de l'information géographique et forestière —continue to use other meridians for internal purposes. The prime meridian determines the proper Eastern and Western Hemispheres , although maps often divide these hemispheres further west in order to keep the Old World on a single side. The antipodal meridian of Greenwich is both 180°W and 180°E. This is not to be conflated with

2870-495: The IDF on users of the DOI system. The IDF is controlled by a Board elected by the members of the Foundation, with an appointed Managing Agent who is responsible for co-ordinating and planning its activities. Membership is open to all organizations with an interest in electronic publishing and related enabling technologies. The IDF holds annual open meetings on the topics of DOI and related issues. Registration agencies, appointed by

Troja Bridge - Misplaced Pages Continue

2940-597: The IDF, operates on a not-for-profit cost recovery basis. The DOI system is an international standard developed by the International Organization for Standardization in its technical committee on identification and description, TC46/SC9. The Draft International Standard ISO/DIS 26324, Information and documentation – Digital Object Identifier System met the ISO requirements for approval. The relevant ISO Working Group later submitted an edited version to ISO for distribution as an FDIS (Final Draft International Standard) ballot, which

3010-472: The IDF, provide services to DOI registrants: they allocate DOI prefixes, register DOI names, and provide the necessary infrastructure to allow registrants to declare and maintain metadata and state data. Registration agencies are also expected to actively promote the widespread adoption of the DOI system, to cooperate with the IDF in the development of the DOI system as a whole, and to provide services on behalf of their specific user community. A list of current RAs

3080-528: The basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system , the geographic coordinate system is not cartesian because the measurements are angles and are not on a planar surface. A full GCS specification, such as those listed in the EPSG and ISO 19111 standards, also includes a choice of geodetic datum (including an Earth ellipsoid ), as different datums will yield different latitude and longitude values for

3150-566: The center of the Earth. Lines joining points of the same latitude trace circles on the surface of Earth called parallels , as they are parallel to the Equator and to each other. The North Pole is 90° N; the South Pole is 90° S. The 0° parallel of latitude is designated the Equator , the fundamental plane of all geographic coordinate systems. The Equator divides the globe into Northern and Southern Hemispheres . The longitude λ of

3220-459: The characters 1000 in the prefix identify the registrant; in this case the registrant is the International DOI Foundation itself. 182 is the suffix, or item ID, identifying a single object (in this case, the latest version of the DOI Handbook ). DOI names can identify creative works (such as texts, images, audio or video items, and software) in both electronic and physical forms, performances , and abstract works such as licenses, parties to

3290-613: The default datum used for the Global Positioning System , and the International Terrestrial Reference System and Frame (ITRF), used for estimating continental drift and crustal deformation . The distance to Earth's center can be used both for very deep positions and for positions in space. Local datums chosen by a national cartographical organization include the North American Datum ,

3360-490: The distance they give is correct within a centimeter.) The formulae both return units of meters per degree. An alternative method to estimate the length of a longitudinal degree at latitude ϕ {\displaystyle \phi } is to assume a spherical Earth (to get the width per minute and second, divide by 60 and 3600, respectively): where Earth's average meridional radius M r {\displaystyle \textstyle {M_{r}}\,\!}

3430-459: The document, whereas its location and other metadata may change. Referring to an online document by its DOI should provide a more stable link than directly using its URL. But if its URL changes, the publisher must update the metadata for the DOI to maintain the link to the URL. It is the publisher's responsibility to update the DOI database. If they fail to do so, the DOI resolves to a dead link , leaving

3500-403: The doi.org domain, ) so it is a PURL —providing the location of an name resolver which will redirect HTTP requests to the correct online location of the linked item. The Crossref recommendation is primarily based on the assumption that the DOI is being displayed without being hyperlinked to its appropriate URL—the argument being that without the hyperlink it is not as easy to copy-and-paste

3570-457: The form 10.NNNN , where NNNN is a number greater than or equal to 1000 , whose limit depends only on the total number of registrants. The prefix may be further subdivided with periods, like 10.NNNN.N . For example, in the DOI name 10.1000/182 , the prefix is 10.1000 and the suffix is 182 . The "10" part of the prefix distinguishes the handle as part of the DOI namespace, as opposed to some other Handle System namespace, and

SECTION 50

#1733094411529

3640-558: The full URL to actually bring up the page for the DOI, thus the entire URL should be displayed, allowing people viewing the page containing the DOI to copy-and-paste the URL, by hand, into a new window/tab in their browser in order to go to the appropriate page for the document the DOI represents. Major content of the DOI system currently includes: In the Organisation for Economic Co-operation and Development 's publication service OECD iLibrary , each table or graph in an OECD publication

3710-468: The full adoption of longitude and latitude, rather than measuring latitude in terms of the length of the midsummer day. Ptolemy's 2nd-century Geography used the same prime meridian but measured latitude from the Equator instead. After their work was translated into Arabic in the 9th century, Al-Khwārizmī 's Book of the Description of the Earth corrected Marinus' and Ptolemy's errors regarding

3780-443: The functionality of a registry-controlled scheme and will usually lack accompanying metadata in a controlled scheme. The DOI system does not have this approach and should not be compared directly to such identifier schemes. Various applications using such enabling technologies with added features have been devised that meet some of the features offered by the DOI system for specific sectors (e.g., ARK ). A DOI name does not depend on

3850-405: The information object to which the DOI refers. This is achieved by binding the DOI to metadata about the object, such as a URL where the object is located. Thus, by being actionable and interoperable , a DOI differs from ISBNs or ISRCs which are identifiers only. The DOI system uses the indecs Content Model to represent metadata . The DOI for a document remains fixed over the lifetime of

3920-537: The integration of these technologies and operation of the system through a technical and social infrastructure. The social infrastructure of a federation of independent registration agencies offering DOI services was modelled on existing successful federated deployments of identifiers such as GS1 and ISBN . A DOI name differs from commonly used Internet pointers to material, such as the Uniform Resource Locator (URL), in that it identifies an object itself as

3990-749: The length of the Mediterranean Sea , causing medieval Arabic cartography to use a prime meridian around 10° east of Ptolemy's line. Mathematical cartography resumed in Europe following Maximus Planudes ' recovery of Ptolemy's text a little before 1300; the text was translated into Latin at Florence by Jacopo d'Angelo around 1407. In 1884, the United States hosted the International Meridian Conference , attended by representatives from twenty-five nations. Twenty-two of them agreed to adopt

4060-461: The location has moved, but because the reference system used to measure it has shifted. Because any spatial reference system or map projection is ultimately calculated from latitude and longitude, it is crucial that they clearly state the datum on which they are based. For example, a UTM coordinate based on WGS84 will be different than a UTM coordinate based on NAD27 for the same location. Converting coordinates from one datum to another requires

4130-579: The longitude of the Royal Observatory in Greenwich , England as the zero-reference line. The Dominican Republic voted against the motion, while France and Brazil abstained. France adopted Greenwich Mean Time in place of local determinations by the Paris Observatory in 1911. The latitude ϕ of a point on Earth's surface is the angle between the equatorial plane and the straight line that passes through that point and through (or close to)

4200-460: The melting of the ice sheets of the last ice age , but neighboring Scotland is rising by only 0.2 cm . These changes are insignificant if a local datum is used, but are statistically significant if a global datum is used. On the GRS   80 or WGS   84 spheroid at sea level at the Equator, one latitudinal second measures 30.715 m , one latitudinal minute is 1843 m and one latitudinal degree

4270-430: The object to which it is associated (although when the publisher of a journal changes, sometimes all the DOIs will be changed, with the old DOIs no longer working). It also associates metadata with objects, allowing it to provide users with relevant pieces of information about the objects and their relationships. Included as part of this metadata are network actions that allow DOI names to be resolved to web locations where

SECTION 60

#1733094411529

4340-462: The object's location and, in this way, is similar to a Uniform Resource Name (URN) or PURL but differs from an ordinary URL. URLs are often used as substitute identifiers for documents on the Internet although the same document at two different locations has two URLs. By contrast, persistent identifiers such as DOI names identify objects as first class entities: two instances of the same object would have

4410-454: The objects they describe can be found. To achieve its goals, the DOI system combines the Handle System and the indecs Content Model with a social infrastructure. The Handle System ensures that the DOI name for an object is not based on any changeable attributes of the object such as its physical location or ownership, that the attributes of the object are encoded in its metadata rather than in its DOI name, and that no two objects are assigned

4480-467: The primary purpose of the DOI system is to make a collection of identifiers actionable and interoperable, where that collection can include identifiers from many other controlled collections. The DOI system offers persistent, semantically interoperable resolution to related current data and is best suited to material that will be used in services outside the direct control of the issuing assigner (e.g., public citation or managing content of value). It uses

4550-411: The same DOI name. DOI name resolution is provided through the Handle System , developed by Corporation for National Research Initiatives , and is freely available to any user encountering a DOI name. Resolution redirects the user from a DOI name to one or more pieces of typed data: URLs representing instances of the object, services such as e-mail, or one or more items of metadata. To the Handle System,

4620-537: The same DOI name. Because DOI names are short character strings, they are human-readable, may be copied and pasted as text, and fit into the URI specification. The DOI name-resolution mechanism acts behind the scenes, so that users communicate with it in the same way as with any other web service; it is built on open architectures , incorporates trust mechanisms , and is engineered to operate reliably and flexibly so that it can be adapted to changing demands and new applications of

4690-507: The same location. The invention of a geographic coordinate system is generally credited to Eratosthenes of Cyrene , who composed his now-lost Geography at the Library of Alexandria in the 3rd century BC. A century later, Hipparchus of Nicaea improved on this system by determining latitude from stellar measurements rather than solar altitude and determining longitude by timings of lunar eclipses , rather than dead reckoning . In

4760-431: The same thing. Imprecisely referring to a set of schemes as "identifiers" does not mean that they can be compared easily. Other "identifier systems" may be enabling technologies with low barriers to entry, providing an easy to use labeling mechanism that allows anyone to set up a new instance (examples include Persistent Uniform Resource Locator (PURL), URLs, Globally Unique Identifiers (GUIDs), etc.), but may lack some of

4830-510: Was approved by 100% of those voting in a ballot closing on 15 November 2010. The final standard was published on 23 April 2012. DOI is a registered URI under the info URI scheme specified by IETF RFC   4452 . info:doi/ is the infoURI Namespace of Digital Object Identifiers. The DOI syntax is a NISO standard, first standardized in 2000, ANSI/NISO Z39.84-2005 Syntax for the Digital Object Identifier. The maintainers of

4900-564: Was started by http://doai.io. This service is unusual in that it tries to find a non-paywalled (often author archived ) version of a title and redirects the user to that instead of the publisher's version . Since then, other open-access favoring DOI resolvers have been created, notably https://oadoi.org/ in October 2016 (later Unpaywall ). While traditional DOI resolvers solely rely on the Handle System, alternative DOI resolvers first consult open access resources such as BASE (Bielefeld Academic Search Engine). An alternative to HTTP proxies

#528471