58-484: A platelayer , fettler or trackman is a railway employee who inspects and maintains the permanent way of a railway, usually under the charge of a foreman called (in UK, Australia and NZ) the "ganger". The term "platelayer" derives from the plates used to build plateways , an early form of railway. Inspecting and maintaining the track, including all its component parts such as rails, sleepers, fishplates, bolts, etc., are
116-502: A slipformed (or pre-cast) concrete base (development 2000s). The 'embedded rail structure', used in the Netherlands since 1976, initially used a conventional UIC 54 rail embedded in concrete, and later developed (late 1990s) to use a 'mushroom' shaped SA42 rail profile; a version for light rail using a rail supported in an asphalt concrete –filled steel trough has also been developed (2002). Modern ladder track can be considered
174-440: A "clickety-clack" sound. Unless it is well-maintained, jointed track does not have the ride quality of welded rail and is less desirable for high speed trains . However, jointed track is still used in many countries on lower speed lines and sidings , and is used extensively in poorer countries due to the lower construction cost and the simpler equipment required for its installation and maintenance. A major problem of jointed track
232-415: A continuous reinforced concrete slab and the use of pre-cast pre-stressed concrete units laid on a base layer. Many permutations of design have been put forward. However, ballastless track has a high initial cost, and in the case of existing railroads the upgrade to such requires closure of the route for a long period. Its whole-life cost can be lower because of the reduction in maintenance. Ballastless track
290-481: A development of baulk road. Ladder track utilizes sleepers aligned along the same direction as the rails with rung-like gauge restraining cross members. Both ballasted and ballastless types exist. Modern track typically uses hot-rolled steel with a profile of an asymmetrical rounded I-beam . Unlike some other uses of iron and steel , railway rails are subject to very high stresses and have to be made of very high-quality steel alloy. It took many decades to improve
348-401: A large number of abandoned and generally dilapidated platelayers' huts. As platelayers usually work in gangs, the head and assistant are known as Railway Ganger and Assistant Ganger. Platelayers' huts were generally a single room, immediately adjacent to the running lines, equipped with a table, chairs, and a simple stove for heating. In Sweden, each railway employed a number of platelayers with
406-468: A lineside shelter in which a platelayer would historically be based. In the heyday of steam railway operation a platelayer might be assigned to each mile or two miles of track, with a platelayers' hut as his shelter and working base. He would regularly patrol his section of track. In modern railway operation platelayers tend to operate in mobile teams, but the lineside of the British railway network still includes
464-445: A nautical term for the stones used to stabilize a ship. The appropriate thickness of a layer of track ballast depends on the size and spacing of the ties , the amount of traffic on the line, and various other factors. Track ballast should never be laid down less than 150 mm (6 inches) thick, and high-speed railway lines may require ballast up to 0.5 metres (20 inches) thick. An insufficient depth of ballast causes overloading of
522-607: A solid support for the top ballast and reduce ingress of water from the underlying ground. Sometimes an elastic mat is placed between the sub-ballast and ballast, significantly reducing vibration. It is essential for ballast to both cover the ties and form a substantial "shoulder" to restrain lateral movement of the track. This shoulder should be at least 150 mm (6 inches) wide, and may be as wide as 450 mm (18 inches). Most railways use between 300 and 400 mm (12 and 16 inches). Stones must be irregular, with sharp edges to ensure they properly interlock with each other and
580-465: A temperature roughly midway between the extremes experienced at that location. (This is known as the "rail neutral temperature".) This installation procedure is intended to prevent tracks from buckling in summer heat or pulling apart in the winter cold. In North America, because broken rails are typically detected by interruption of the current in the signaling system, they are seen as less of a potential hazard than undetected heat kinks. Joints are used in
638-606: A walkway for the people or horses that moved wagons along the track. The rails were usually about 3 feet (0.91 m) long and were not joined - instead, adjacent rails were laid on a common sleeper. The straight rails could be angled at these joints to form primitive curved track. The first iron rails laid in Britain were at the Darby Ironworks in Coalbrookdale in 1767. When steam locomotives were introduced, starting in 1804,
SECTION 10
#1732869407922696-462: Is 115 to 141 lb/yd (57 to 70 kg/m). In Europe, rail is graded in kilograms per metre and the usual range is 40 to 60 kg/m (81 to 121 lb/yd). The heaviest mass-produced rail was 155 pounds per yard (77 kg/m), rolled for the Pennsylvania Railroad . The rails used in rail transport are produced in sections of fixed length. Rail lengths are made as long as possible, as
754-408: Is a manual process requiring a reaction crucible and form to contain the molten iron. North American practice is to weld 1 ⁄ 4 -mile-long (400 m) segments of rail at a rail facility and load it on a special train to carry it to the job site. This train is designed to carry many segments of rail which are placed so they can slide off their racks to the rear of the train and be attached to
812-488: Is cracking around the bolt holes, which can lead to breaking of the rail head (the running surface). This was the cause of the Hither Green rail crash which caused British Railways to begin converting much of its track to continuous welded rail. Where track circuits exist for signalling purposes, insulated block joints are required. These compound the weaknesses of ordinary joints. Specially-made glued joints, where all
870-459: Is graded by its linear density , that is, its mass over a standard length. Heavier rail can support greater axle loads and higher train speeds without sustaining damage than lighter rail, but at a greater cost. In North America and the United Kingdom, rail is graded in pounds per yard (usually shown as pound or lb ), so 130-pound rail would weigh 130 lb/yd (64 kg/m). The usual range
928-402: Is scarce and where tonnage or speeds are high. Steel is used in some applications. The track ballast is customarily crushed stone, and the purpose of this is to support the sleepers and allow some adjustment of their position, while allowing free drainage. A disadvantage of traditional track structures is the heavy demand for maintenance, particularly surfacing (tamping) and lining to restore
986-456: Is starting to paint rails white to lower the peak temperatures reached in summer days. After new segments of rail are laid, or defective rails replaced (welded-in), the rails can be artificially stressed if the temperature of the rail during laying is cooler than what is desired. The stressing process involves either heating the rails, causing them to expand, or stretching the rails with hydraulic equipment. They are then fastened (clipped) to
1044-754: Is to bolt them together using metal fishplates (jointbars in the US), producing jointed track . For more modern usage, particularly where higher speeds are required, the lengths of rail may be welded together to form continuous welded rail (CWR). Jointed track is made using lengths of rail, usually around 20 m (66 ft) long (in the UK) and 39 or 78 ft (12 or 24 m) long (in North America), bolted together using perforated steel plates known as fishplates (UK) or joint bars (North America). Fishplates are usually 600 mm (2 ft) long, used in pairs either side of
1102-435: Is usually considered for new very high speed or very high loading routes, in short extensions that require additional strength (e.g. railway stations), or for localised replacement where there are exceptional maintenance difficulties, for example in tunnels. Most rapid transit lines and rubber-tyred metro systems use ballastless track. Early railways (c. 1840s) experimented with continuous bearing railtrack, in which
1160-419: The rails , fasteners , railroad ties (sleepers, British English) and ballast (or slab track ), plus the underlying subgrade . It enables trains to move by providing a dependable surface for their wheels to roll upon. Early tracks were constructed with wooden or cast iron rails, and wooden or stone sleepers; since the 1870s, rails have almost universally been made from steel. The first railway in Britain
1218-400: The bolt heads on the same side of the rail. Small gaps which function as expansion joints are deliberately left between the rail ends to allow for expansion of the rails in hot weather. European practice was to have the rail joints on both rails adjacent to each other, while North American practice is to stagger them. Because of these small gaps, when trains pass over jointed tracks they make
SECTION 20
#17328694079221276-408: The canefields themselves. These tracks were narrow gauge (for example, 2 ft ( 610 mm )) and the portable track came in straights, curves, and turnouts, rather like on a model railway. Track ballast Track ballast is the material which forms the trackbed upon which railroad ties (UK: sleepers) are laid. It is packed between, below, and around the ties. It is used to bear
1334-400: The chief responsibility of the platelayer. Their duties include greasing points, and generally watching for wear and tear. When sections of track require complete replacement, larger teams of platelayers work together, and today employ a range of labour-saving machinery for many of the tasks traditionally undertaken by hand by platelayers. In British usage the term platelayers' hut refers to
1392-597: The compression load of the railroad ties, rails, and rolling stock ; to facilitate drainage ; and keep down vegetation that can compromise the integrity of the combined track structure. Ballast also physically holds the track in place as the trains roll over it. Not all types of railway tracks use ballast. A variety of materials have been used as track ballast, including crushed stone , washed gravel , bank run (unwashed) gravel, torpedo gravel (a mixture of coarse sand and small gravel), slag , chats , coal cinders , sand , and burnt clay . The term " ballast " comes from
1450-458: The continuous welded rail when necessary, usually for signal circuit gaps. Instead of a joint that passes straight across the rail, the two rail ends are sometimes cut at an angle to give a smoother transition. In extreme cases, such as at the end of long bridges, a breather switch (referred to in North America and Britain as an expansion joint ) gives a smooth path for the wheels while allowing
1508-440: The desired track geometry and smoothness of vehicle running. Weakness of the subgrade and drainage deficiencies also lead to heavy maintenance costs. This can be overcome by using ballastless track. In its simplest form this consists of a continuous slab of concrete (like a highway structure) with the rails supported directly on its upper surface (using a resilient pad). There are a number of proprietary systems; variations include
1566-440: The end of one rail to expand relative to the next rail. A sleeper (tie or crosstie) is a rectangular object on which the rails are supported and fixed. The sleeper has two main roles: to transfer the loads from the rails to the track ballast and the ground underneath, and to hold the rails to the correct width apart (to maintain the rail gauge ). They are generally laid transversely to the rails. Various methods exist for fixing
1624-428: The gaps are filled with epoxy resin , increase the strength again. As an alternative to the insulated joint, audio frequency track circuits can be employed using a tuned loop formed in approximately 20 m (66 ft) of the rail as part of the blocking circuit. Some insulated joints are unavoidable within turnouts. Another alternative is an axle counter , which can reduce the number of track circuits and thus
1682-626: The intrinsic weakness in resisting vertical loading results in the ballast becoming depressed and a heavy maintenance workload is imposed to prevent unacceptable geometrical defects at the joints. The joints also needed to be lubricated, and wear at the fishplate (joint bar) mating surfaces needed to be rectified by shimming. For this reason jointed track is not financially appropriate for heavily operated railroads. Timber sleepers are of many available timbers, and are often treated with creosote , chromated copper arsenate , or other wood preservatives. Pre-stressed concrete sleepers are often used where timber
1740-474: The iron came loose, began to curl, and intruded into the floors of the coaches. The iron strap rail coming through the floors of the coaches came to be referred to as "snake heads" by early railroaders. The Deeside Tramway in North Wales used this form of rail. It opened around 1870 and closed in 1947, with long sections still using these rails. It was one of the last uses of iron-topped wooden rails. Rail
1798-402: The joints between rails are a source of weakness. Throughout the history of rail production, lengths have increased as manufacturing processes have improved. The following are lengths of single sections produced by steel mills , without any thermite welding . Shorter rails may be welded with flashbutt welding , but the following rail lengths are unwelded. Welding of rails into longer lengths
Platelayer - Misplaced Pages Continue
1856-863: The mid- to late-20th century used rails 39 feet (11.9 m) long so they could be carried in gondola cars ( open wagons ), often 40 feet (12.2 m) long; as gondola sizes increased, so did rail lengths. According to the Railway Gazette International the planned-but-cancelled 150-kilometre rail line for the Baffinland Iron Mine , on Baffin Island , would have used older carbon steel alloys for its rails, instead of more modern, higher performance alloys, because modern alloy rails can become brittle at very low temperatures. Early North American railroads used iron on top of wooden rails as an economy measure but gave up this method of construction after
1914-620: The number of insulated rail joints required. Most modern railways use continuous welded rail (CWR), sometimes referred to as ribbon rails or seamless rails . In this form of track, the rails are welded together by utilising flash butt welding to form one continuous rail that may be several kilometres long. Because there are few joints, this form of track is very strong, gives a smooth ride, and needs less maintenance; trains can travel on it at higher speeds and with less friction. Welded rails are more expensive to lay than jointed tracks, but have much lower maintenance costs. The first welded track
1972-404: The outside of sharp curves compared to the rails on the inside. Rails can be supplied pre-drilled with boltholes for fishplates or without where they will be welded into place. There are usually two or three boltholes at each end. Rails are produced in fixed lengths and need to be joined end-to-end to make a continuous surface on which trains may run. The traditional method of joining the rails
2030-423: The quality of the materials, including the change from iron to steel. The stronger the rails and the rest of the trackwork, the heavier and faster the trains the track can carry. Other profiles of rail include: bullhead rail ; grooved rail ; flat-bottomed rail (Vignoles rail or flanged T-rail); bridge rail (inverted U–shaped used in baulk road ); and Barlow rail (inverted V). North American railroads until
2088-682: The rail by special clips that resist longitudinal movement of the rail. There is no theoretical limit to how long a welded rail can be. However, if longitudinal and lateral restraint are insufficient, the track could become distorted in hot weather and cause a derailment. Distortion due to heat expansion is known in North America as sun kink , and elsewhere as buckling. In extreme hot weather special inspections are required to monitor sections of track known to be problematic. In North American practice, extreme temperature conditions will trigger slow orders to allow for crews to react to buckling or "sun kinks" if encountered. The German railway company Deutsche Bahn
2146-425: The rail ends and bolted together (usually four, but sometimes six bolts per joint). The bolts have alternating orientations so that in the event of a derailment and a wheel flange striking the joint, only some of the bolts will be sheared, reducing the likelihood of the rails misaligning with each other and exacerbating the derailment. This technique is not applied universally; European practice being to have all
2204-494: The rail to the sleeper. Historically, spikes gave way to cast iron chairs fixed to the sleeper. More recently, springs (such as Pandrol clips ) are used to fix the rail to the sleeper chair. Sometimes rail tracks are designed to be portable and moved from one place to another as required. During construction of the Panama Canal , tracks were moved around excavation works. These track gauge were 5 ft ( 1,524 mm ) and
2262-630: The rail was supported along its length, with examples including Brunel's baulk road on the Great Western Railway , as well as use on the Newcastle and North Shields Railway , on the Lancashire and Yorkshire Railway to a design by John Hawkshaw , and elsewhere. Continuous-bearing designs were also promoted by other engineers. The system was tested on the Baltimore and Ohio railway in the 1840s, but
2320-449: The responsibility for the maintenance of a designated part of the line. Instead of working from huts, they lived in cottages along the line ( banvaktsstugor , singular banvaktsstuga ). These cottages were usually designed to match the stations in architectural design. Each cottage would typically have a couple of rooms and a kitchen, and the platelayers often kept a cow or chicken, as well as growing vegetables and fruit. The platelayer system
2378-549: The rolling stock full size. Portable tracks have often been used in open pit mines. In 1880 in New York City , sections of heavy portable track (along with much other improvised technology) helped in the move of the ancient obelisk in Central Park to its final location from the dock where it was unloaded from the cargo ship SS Dessoug . Cane railways often had permanent tracks for the main lines, with portable tracks serving
Platelayer - Misplaced Pages Continue
2436-411: The shoulder again. If the trackbed becomes uneven, it is necessary to pack ballast underneath sunken ties to level the track again, which is usually done by a ballast tamping machine . A more recent, and probably better, technique is to lift the rails and ties, and to force stones, smaller than the track ballast particles and all of the same size, into the gap. That has the advantage of not disturbing
2494-426: The sleepers in their expanded form. This process ensures that the rail will not expand much further in subsequent hot weather. In cold weather the rails try to contract, but because they are firmly fastened, cannot do so. In effect, stressed rails are a bit like a piece of stretched elastic firmly fastened down. In extremely cold weather, rails are heated to prevent "pull aparts". CWR is laid (including fastening) at
2552-540: The sleepers with base plates that spread the load. When concrete sleepers are used, a plastic or rubber pad is usually placed between the rail and the tie plate. Rail is usually attached to the sleeper with resilient fastenings, although cut spikes are widely used in North America. For much of the 20th century, rail track used softwood timber sleepers and jointed rails, and a considerable amount of this track remains on secondary and tertiary routes. In North America and Australia, flat-bottomed rails were typically fastened to
2610-476: The sleepers with dog spikes through a flat tie plate. In Britain and Ireland, bullhead rails were carried in cast-iron chairs which were spiked to the sleepers. In 1936, the London, Midland and Scottish Railway pioneered the conversion to flat-bottomed rail in Britain, though earlier lines had made some use of it. Jointed rails were used at first because contemporary technology did not offer any alternative. However,
2668-511: The ties (sleepers) in a continuous operation. If not restrained, rails would lengthen in hot weather and shrink in cold weather. To provide this restraint, the rail is prevented from moving in relation to the sleeper by use of clips or anchors. Attention needs to be paid to compacting the ballast effectively, including under, between, and at the ends of the sleepers, to prevent the sleepers from moving. Anchors are more common for wooden sleepers, whereas most concrete or steel sleepers are fastened to
2726-418: The ties to fully secure them against movement. Speed limits are often reduced for a period of time on sections of track where fresh ballast has been laid in order to allow it to properly settle. Ballast can only be cleaned so often before it is damaged beyond re-use. Ballast that is completely fouled can not be corrected by shoulder cleaning. One method of "replacing" ballast is to simply dump fresh ballast on
2784-406: The track then in use proved too weak to carry the additional weight. Richard Trevithick 's pioneering locomotive at Pen-y-darren broke the plateway track and had to be withdrawn. As locomotives became more widespread in the 1810s and 1820s, engineers built rigid track formations, with iron rails mounted on stone sleepers, and cast-iron chairs holding them in place. This proved to be a mistake, and
2842-572: The track, jack the whole track on top of it, and then tamp it down. Alternatively, the ballast underneath the track can be removed with an undercutter, which does not require removing or lifting the track. The dump and jack method cannot be used through tunnels, under bridges, or where there are platforms. Where the track is laid over a swamp the ballast is likely to sink continuously, and needs to be "topped up" to maintain its line and level. After 150 years of topping up at Hexham, Australia, there appears to be 10 m (33 ft) of sunken ballast under
2900-455: The tracks. Chat Moss in the United Kingdom is similar. Regular inspection of the ballast shoulder is important. The shoulder acquires some amount of stability over time, being compacted by traffic, but maintenance tasks such as replacing ties, tamping, and ballast cleaning can upset that stability. After performing those tasks, it is necessary either for trains to run at reduced speed on the repaired sections, or to employ machinery to compact
2958-437: The underlying soil , and in unfavourable conditions, overloading the soil causes the track to sink, usually unevenly. Ballast less than 300 mm (12 inches) thick can lead to vibrations that damage nearby structures. However, increasing the depth beyond 300 mm (12 inches) confers no extra benefit in reducing vibration. In turn, track ballast typically rests on a layer of sub-ballast, small crushed stones which provide
SECTION 50
#17328694079223016-475: The well-compacted ballast on the trackbed, which tamping is likely to do. The technique is called pneumatic ballast injection (PBI), or, less formally, "stoneblowing". However, it is not as effective as fresh ballast, because the smaller stones tend to move down between the larger pieces of ballast and degrade its bonds. The quantity of ballast used tends to vary with gauge, with the wider gauges tending to have wider formations, although one report states that for
3074-460: Was finally dismantled in the 1950s, but many cottages still stand, typically used for holiday purposes. Permanent way A railway track ( British English and UIC terminology ) or railroad track ( American English ), also known as a train track or permanent way (often " perway " in Australia or " P Way " in Britain and India), is the structure on a railway or railroad consisting of
3132-467: Was first introduced around 1893, making train rides quieter and safer. With the introduction of thermite welding after 1899, the process became less labour-intensive, and ubiquitous. Modern production techniques allowed the production of longer unwelded segments. Newer longer rails tend to be made as simple multiples of older shorter rails, so that old rails can be replaced without cutting. Some cutting would be needed as slightly longer rails are needed on
3190-432: Was found to be more expensive to maintain than rail with cross sleepers . This type of track still exists on some bridges on Network Rail where the timber baulks are called waybeams or longitudinal timbers. Generally the speed over such structures is low. Later applications of continuously supported track include Balfour Beatty 's 'embedded slab track', which uses a rounded rectangular rail profile (BB14072) embedded in
3248-466: Was soon replaced with flexible track structures that allowed a degree of elastic movement as trains passed over them. Traditionally, tracks are constructed using flat-bottomed steel rails laid on and spiked or screwed into timber or pre-stressed concrete sleepers (known as ties in North America), with crushed stone ballast placed beneath and around the sleepers. Most modern railroads with heavy traffic use continuously welded rails that are attached to
3306-526: Was the Wollaton Wagonway , built in 1603 between Wollaton and Strelley in Nottinghamshire. It used wooden rails and was the first of around 50 wooden-railed tramways built over the next 164 years. These early wooden tramways typically used rails of oak or beech, attached to wooden sleepers with iron or wooden nails. Gravel or small stones were packed around the sleepers to hold them in place and provide
3364-500: Was used in Germany in 1924. and has become common on main lines since the 1950s. The preferred process of flash butt welding involves an automated track-laying machine running a strong electric current through the touching ends of two unjoined rails. The ends become white hot due to electrical resistance and are then pressed together forming a strong weld. Thermite welding is used to repair or splice together existing CWR segments. This
#921078