Misplaced Pages

Timesaver

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Track diagram of the puzzle Squares indicate car positions

#39960

110-415: Timesaver is a well-known model railroad switching puzzle (U.K. English: shunting puzzle) created by John Allen . It consists of a specific track layout, a set of initial conditions, a defined goal, and rules which must be obeyed while performing the shunting operations. The standard layout consists of a simple yard, with five switches (three lefthand, two righthand), five spurs, and a runaround track at

220-408: A crank on a driving axle. Steam locomotives have been phased out in most parts of the world for economical and safety reasons, although many are preserved in working order by heritage railways . Electric locomotives draw power from a stationary source via an overhead wire or third rail . Some also or instead use a battery . In locomotives that are powered by high-voltage alternating current ,

330-586: A dining car . Some lines also provide over-night services with sleeping cars . Some long-haul trains have been given a specific name . Regional trains are medium distance trains that connect cities with outlying, surrounding areas, or provide a regional service, making more stops and having lower speeds. Commuter trains serve suburbs of urban areas, providing a daily commuting service. Airport rail links provide quick access from city centres to airports . High-speed rail are special inter-city trains that operate at much higher speeds than conventional railways,

440-710: A fourth rail system in 1890 on the City and South London Railway , now part of the London Underground Northern line . This was the first major railway to use electric traction . The world's first deep-level electric railway, it runs from the City of London , under the River Thames , to Stockwell in south London. The first practical AC electric locomotive was designed by Charles Brown , then working for Oerlikon , Zürich. In 1891, Brown had demonstrated long-distance power transmission, using three-phase AC , between

550-527: A funicular railway at the Hohensalzburg Fortress in Austria. The line originally used wooden rails and a hemp haulage rope and was operated by human or animal power, through a treadwheel . The line is still operational, although in updated form and is possibly the oldest operational railway. Wagonways (or tramways ) using wooden rails, hauled by horses, started appearing in the 1550s to facilitate

660-488: A hydro-electric plant at Lauffen am Neckar and Frankfurt am Main West, a distance of 280 km (170 mi). Using experience he had gained while working for Jean Heilmann on steam–electric locomotive designs, Brown observed that three-phase motors had a higher power-to-weight ratio than DC motors and, because of the absence of a commutator , were simpler to manufacture and maintain. However, they were much larger than

770-431: A steam engine that provides adhesion. Coal , petroleum , or wood is burned in a firebox , boiling water in the boiler to create pressurized steam. The steam travels through the smokebox before leaving via the chimney or smoke stack. In the process, it powers a piston that transmits power directly through a connecting rod (US: main rod) and a crankpin (US: wristpin) on the driving wheel (US main driver) or to

880-687: A stub . You can help Misplaced Pages by expanding it . This model rail-related article is a stub . You can help Misplaced Pages by expanding it . Model railroad Railway modelling (UK, Australia, New Zealand, and Ireland) or model railroading (US and Canada) is a hobby in which rail transport systems are modelled at a reduced scale . The scale models include locomotives , rolling stock , streetcars , tracks , signalling , cranes , and landscapes including: countryside, roads, bridges, buildings, vehicles, harbors, urban landscape, model figures , lights, and features such as rivers , hills , tunnels, and canyons . The earliest model railways were

990-469: A transformer in the locomotive converts the high-voltage low-current power to low-voltage high current used in the traction motors that power the wheels. Modern locomotives may use three-phase AC induction motors or direct current motors. Under certain conditions, electric locomotives are the most powerful traction. They are also the cheapest to run and provide less noise and no local air pollution. However, they require high capital investments both for

1100-425: A "layout". Hobbyists, called "railway modellers" or "model railroaders", may maintain models large enough to ride (see Live steam , Ridable miniature railway and Backyard railroad ). Modellers may collect model trains, building a landscape for the trains to pass through. They may also operate their own railroad in miniature. For some modellers, the goal of building a layout is to eventually run it as if it were

1210-555: A branch of model railways for unpowered locomotives, examples are Lone Star and Airfix models. Powered model railways are now generally operated by low voltage direct current (DC) electricity supplied via the tracks, but there are exceptions, such as Märklin and Lionel Corporation , which use alternating current (AC). Modern Digital Command Control (DCC) systems use alternating current. Other locomotives, particularly large models, can use steam. Steam and clockwork-driven engines are still sought by collectors. Most early models for

SECTION 10

#1733084974040

1320-544: A diesel locomotive from the company in 1909. The world's first diesel-powered locomotive was operated in the summer of 1912 on the Winterthur–Romanshorn railway in Switzerland, but was not a commercial success. The locomotive weight was 95 tonnes and the power was 883 kW with a maximum speed of 100 km/h (62 mph). Small numbers of prototype diesel locomotives were produced in a number of countries through

1430-468: A double track plateway, erroneously sometimes cited as world's first public railway, in south London. William Jessop had earlier used a form of all-iron edge rail and flanged wheels successfully for an extension to the Charnwood Forest Canal at Nanpantan , Loughborough, Leicestershire in 1789. In 1790, Jessop and his partner Outram began to manufacture edge rails. Jessop became a partner in

1540-506: A fantasy world or modelling an actual location, often historic. Landscaping is termed "scenery building" or "scenicking". Constructing scenery involves preparing a sub-terrain using a wide variety of building materials, including (but not limited to) screen wire, a lattice of cardboard strips, or carved stacks of expanded polystyrene (styrofoam) sheets. A scenery base is applied over the sub-terrain; typical base include casting plaster, plaster of Paris , hybrid paper-pulp ( papier-mâché ) or

1650-413: A foam backing. Castings can be painted with stains to give colouring and shadows. Weathering refers to making a model look used and exposed to weather by simulating dirt and wear on real vehicles, structures and equipment. Most models come out of the box looking new, because unweathered finishes are easier to produce. Also, the wear a freight car or building undergoes depends not only on age but where it

1760-502: A high degree of precision and realism. In the past this was not the case and scratch building was very common. Simple models are made using cardboard engineering techniques. More sophisticated models can be made using a combination of etched sheets of brass and low temperature castings . Parts that need machining , such as wheels and couplings are purchased. Etched kits are still popular, still accompanied by low temperature castings. These kits produce models that are not covered by

1870-437: A large turning radius in its design. While high-speed rail is most often designed for passenger travel, some high-speed systems also offer freight service. Since 1980, rail transport has changed dramatically, but a number of heritage railways continue to operate as part of living history to preserve and maintain old railway lines for services of tourist trains. A train is a connected series of rail vehicles that move along

1980-488: A larger locomotive named Galvani , exhibited at the Royal Scottish Society of Arts Exhibition in 1841. The seven-ton vehicle had two direct-drive reluctance motors , with fixed electromagnets acting on iron bars attached to a wooden cylinder on each axle, and simple commutators . It hauled a load of six tons at four miles per hour (6 kilometers per hour) for a distance of one and a half miles (2.4 kilometres). It

2090-478: A lightweight foam/fiberglass/bubblewrap composite as in Geodesic Foam Scenery. The scenery base is covered with substitutes for ground cover, which may be Static Grass or scatter . Scatter or flock is a substance used in the building of dioramas and model railways to simulate the effect of grass, poppies, fireweed, track ballast and other scenic ground cover. Scatter used to simulate track ballast

2200-423: A locomotive. This involves one or more powered vehicles being located at the front of the train, providing sufficient tractive force to haul the weight of the full train. This arrangement remains dominant for freight trains and is often used for passenger trains. A push–pull train has the end passenger car equipped with a driver's cab so that the engine driver can remotely control the locomotive. This allows one of

2310-485: A metal track with metal sleepers that conducted power and a middle rail which provided power to a skid under the locomotive. This made sense at the time as models were metal and conductive. Modern plastics were not available and insulation was a problem. In addition the notion of accurate models had yet to evolve and toy trains and track were crude tinplate. A variation on the three-rail system, Trix Twin , allowed two trains to be independently controlled on one track, before

SECTION 20

#1733084974040

2420-589: A number of other manufactures in recent years. Working knuckle couplers are a closer approximation to the "automatic" couplers used on the prototype there and elsewhere. Also in HO, the European manufacturers have standardized, but on a coupler mount, not a coupler: many varieties of coupler can be plugged in (and out) of the NEM coupler box. None of the popular couplers has any resemblance to the prototype three-link chains generally used on

2530-477: A number of trains per hour (tph). Passenger trains can usually be into two types of operation, intercity railway and intracity transit. Whereas intercity railway involve higher speeds, longer routes, and lower frequency (usually scheduled), intracity transit involves lower speeds, shorter routes, and higher frequency (especially during peak hours). Intercity trains are long-haul trains that operate with few stops between cities. Trains typically have amenities such as

2640-650: A piece of circular rail track in Bloomsbury , London, the Catch Me Who Can , but never got beyond the experimental stage with railway locomotives, not least because his engines were too heavy for the cast-iron plateway track then in use. The first commercially successful steam locomotive was Matthew Murray 's rack locomotive Salamanca built for the Middleton Railway in Leeds in 1812. This twin-cylinder locomotive

2750-460: A pivotal role in the development and widespread adoption of the steam locomotive. His designs considerably improved on the work of the earlier pioneers. He built the locomotive Blücher , also a successful flanged -wheel adhesion locomotive. In 1825 he built the locomotive Locomotion for the Stockton and Darlington Railway in the northeast of England, which became the first public steam railway in

2860-436: A real railroad (if the layout is based on the fancy of the builder) or as the real railroad did (if the layout is based on a prototype). If modellers choose to model a prototype, they may reproduce track-by-track reproductions of the real railroad in miniature, often using prototype track diagrams and historic maps. Layouts vary from a circle or oval of track to realistic reproductions of real places modelled to scale. Probably

2970-439: A revival in recent decades due to road congestion and rising fuel prices, as well as governments investing in rail as a means of reducing CO 2 emissions . Smooth, durable road surfaces have been made for wheeled vehicles since prehistoric times. In some cases, they were narrow and in pairs to support only the wheels. That is, they were wagonways or tracks. Some had grooves or flanges or other mechanical means to keep

3080-724: A single lever to control both engine and generator in a coordinated fashion, and was the prototype for all diesel–electric locomotive control systems. In 1914, world's first functional diesel–electric railcars were produced for the Königlich-Sächsische Staatseisenbahnen ( Royal Saxon State Railways ) by Waggonfabrik Rastatt with electric equipment from Brown, Boveri & Cie and diesel engines from Swiss Sulzer AG . They were classified as DET 1 and DET 2 ( de.wiki ). The first regular used diesel–electric locomotives were switcher (shunter) locomotives . General Electric produced several small switching locomotives in

3190-407: A standard. Following SNCF's successful trials, 50 Hz, now also called industrial frequency was adopted as standard for main-lines across the world. Earliest recorded examples of an internal combustion engine for railway use included a prototype designed by William Dent Priestman . Sir William Thomson examined it in 1888 and described it as a "Priestman oil engine mounted upon a truck which

3300-620: A terminus about one-half mile (800 m) away. A funicular railway was also made at Broseley in Shropshire some time before 1604. This carried coal for James Clifford from his mines down to the River Severn to be loaded onto barges and carried to riverside towns. The Wollaton Wagonway , completed in 1604 by Huntingdon Beaumont , has sometimes erroneously been cited as the earliest British railway. It ran from Strelley to Wollaton near Nottingham . The Middleton Railway in Leeds , which

3410-408: A wheel. This was a large stationary engine , powering cotton mills and a variety of machinery; the state of boiler technology necessitated the use of low-pressure steam acting upon a vacuum in the cylinder, which required a separate condenser and an air pump . Nevertheless, as the construction of boilers improved, Watt investigated the use of high-pressure steam acting directly upon a piston, raising

Timesaver - Misplaced Pages Continue

3520-539: A wide range of prototypes. The first clockwork (spring-drive) and live steam locomotives ran until out of power, with no way for the operator to stop and restart the locomotive or vary its speed. The advent of electric trains, which appeared commercially in the 1890s, allowed control of the speed by varying the current or voltage. As trains began to be powered by transformers and rectifiers more sophisticated throttles appeared, and soon trains powered by AC contained mechanisms to change direction or go into neutral gear when

3630-432: Is "EM" which uses a gauge of 18.2 mm ( 0.717 in ) with more generous tolerances than P4 for check clearances. It gives a better appearance than OO though pointwork is not as close to reality as P4. It suits many where time and improved appearance are important. There is a small following of finescale OO which uses the same 16.5mm gauge as OO, but with the finer scale wheels and smaller clearances as used with EM- it

3740-402: Is 1:8, with 1:4 sometimes used for park rides. G scale (Garden, 1:24 scale ) is most popular for backyard modelling. It is easier to fit a G scale model into a garden and keep scenery proportional to the trains. Gauge 1 and Gauge 3 are also popular for gardens. O, S, HO, and N scale are more often used indoors. At first, model railways were not to scale. Aided by trade associations such as

3850-410: Is a single, self-powered car, and may be electrically propelled or powered by a diesel engine . Multiple units have a driver's cab at each end of the unit, and were developed following the ability to build electric motors and other engines small enough to fit under the coach. There are only a few freight multiple units, most of which are high-speed post trains. Steam locomotives are locomotives with

3960-410: Is constant (usually in the range of 20 volts AC) and the command throttle sends a signal to small circuit cards, or decoders, hidden inside the piece of equipment which control several functions of an individual locomotive, including speed, direction of travel, lights, smoke and various sound effects. This allows more realistic operation in that the modeller can operate independently several locomotives on

4070-399: Is dominant. Electro-diesel locomotives are built to run as diesel–electric on unelectrified sections and as electric locomotives on electrified sections. Alternative methods of motive power include magnetic levitation , horse-drawn, cable , gravity, pneumatics and gas turbine . A passenger train stops at stations where passengers may embark and disembark. The oversight of the train is

4180-400: Is essentially 'EM-minus-1.7mm.' Many groups build modules, which are sections of layouts, and can be joined together to form a larger layout, for meetings or for special occasions. For each kind of module system, there is an interface standard, so that modules made by different participants may be connected, even if they have never been connected before. Many of these module types are listed in

4290-499: Is one in Z in Australia . Occasionally gasoline -electric models, patterned after real diesel-electric locomotives, come up among hobbyists and companies like Pilgrim Locomotive Works have sold such locomotives. Large-scale petrol-mechanical and petrol-hydraulic models are available but unusual and pricier than the electrically powered versions. Modern manufacturing techniques can allow mass-produced models to cost-effectively achieve

4400-606: Is the model's measurement as a proportion to the original, while gauge is the measurement between the rails. The size of engines depends on the scale and can vary from 700 mm (27.6 in) tall for the largest rideable live steam scales such as 1:4, down to matchbox size for the smallest: Z-scale (1:220) or T scale (1:450). A typical HO (1:87) engine is 50 mm (1.97 in) tall, and 100 to 300 mm (3.94 to 11.81 in) long. The most popular scales are: G scale , Gauge 1 , O scale , S scale , HO scale (in Britain,

4510-450: Is used. Rail cars in cities accumulate grime from building and automobile exhaust and graffiti , while cars in deserts may be subjected to sandstorms which etch or strip paint. A model that is weathered would not fit as many layouts as a pristine model which can be weathered by its purchaser. There are many weather techniques that include, but are not limited to, painting (by either drybrushing or an airbrush ), sanding, breaking, and even

Timesaver - Misplaced Pages Continue

4620-880: Is usually fine-grained ground granite . Scatter which simulates coloured grass is usually tinted sawdust , wood chips or ground foam . Foam or natural lichen or commercial scatter materials can be used to simulate shrubbery. An alternative to scatter, for grass, is static grass which uses static electricity to make its simulated grass actually stand up. Buildings and structures can be purchased as kits, or built from cardboard, balsa wood , basswood , other soft woods, paper , or polystyrene or other plastic. Trees can be fabricated from materials such as Western sagebrush , candytuft , and caspia, to which adhesive and model foliage are applied; or they can be bought ready-made from specialist manufacturers. Water can be simulated using polyester casting resin , polyurethane , or rippled glass. Rocks can be cast in plaster or in plastic with

4730-408: Is usually provided by diesel or electrical locomotives . While railway transport is capital-intensive and less flexible than road transport, it can carry heavy loads of passengers and cargo with greater energy efficiency and safety. Precursors of railways driven by human or animal power have existed since antiquity, but modern rail transport began with the invention of the steam locomotive in

4840-550: Is worked on a temporary line of rails to show the adaptation of a petroleum engine for locomotive purposes." In 1894, a 20 hp (15 kW) two axle machine built by Priestman Brothers was used on the Hull Docks . In 1906, Rudolf Diesel , Adolf Klose and the steam and diesel engine manufacturer Gebrüder Sulzer founded Diesel-Sulzer-Klose GmbH to manufacture diesel-powered locomotives. Sulzer had been manufacturing diesel engines since 1898. The Prussian State Railways ordered

4950-627: The Layout standards organizations section of this article. In addition to different scales, there are also different types of couplers for connecting cars, which are not compatible with each other. In HO, the Americans standardized on horn-hook, or X2F couplers. Horn hook couplers have largely given way to a design known as a working knuckle coupler which was popularized by the Kadee Quality Products Co., and which has subsequently been emulated by

5060-562: The National Model Railroad Association (NMRA) and Normen Europäischer Modellbahnen (NEM), manufacturers and hobbyists soon arrived at de facto standards for interchangeability, such as gauge, but trains were only a rough approximation to the real thing. Official scales for the gauges were drawn up but not at first rigidly followed and not necessarily correctly proportioned for the gauge chosen. 0 (zero) gauge trains, for instance, operate on track too widely spaced in

5170-496: The National Railway Museum , York, England and dates back to 1912. It remained in use until 1995. The model was built as a training exercise by apprentices of the company's Horwich Works and supplied with rolling stock by Bassett-Lowke . Involvement ranges from possession of a train set to spending hours and large sums of money on a large and exacting model of a railroad and the scenery through which it passes, called

5280-671: The United Kingdom at the beginning of the 19th century. The first passenger railway, the Stockton and Darlington Railway , opened in 1825. The quick spread of railways throughout Europe and North America, following the 1830 opening of the first intercity connection in England, was a key component of the Industrial Revolution . The adoption of rail transport lowered shipping costs compared to water transport, leading to "national markets" in which prices varied less from city to city. In

5390-609: The United Kingdom , South Korea , Scandinavia, Belgium and the Netherlands. The construction of many of these lines has resulted in the dramatic decline of short-haul flights and automotive traffic between connected cities, such as the London–Paris–Brussels corridor, Madrid–Barcelona, Milan–Rome–Naples, as well as many other major lines. High-speed trains normally operate on standard gauge tracks of continuously welded rail on grade-separated right-of-way that incorporates

5500-414: The overhead lines and the supporting infrastructure, as well as the generating station that is needed to produce electricity. Accordingly, electric traction is used on urban systems, lines with high traffic and for high-speed rail. Diesel locomotives use a diesel engine as the prime mover . The energy transmission may be either diesel–electric , diesel-mechanical or diesel–hydraulic but diesel–electric

5610-458: The puddling process in 1784. In 1783 Cort also patented the rolling process , which was 15 times faster at consolidating and shaping iron than hammering. These processes greatly lowered the cost of producing iron and rails. The next important development in iron production was hot blast developed by James Beaumont Neilson (patented 1828), which considerably reduced the amount of coke (fuel) or charcoal needed to produce pig iron. Wrought iron

SECTION 50

#1733084974040

5720-418: The rotary phase converter , enabling electric locomotives to use three-phase motors whilst supplied via a single overhead wire, carrying the simple industrial frequency (50 Hz) single phase AC of the high-voltage national networks. An important contribution to the wider adoption of AC traction came from SNCF of France after World War II. The company conducted trials at AC 50 Hz, and established it as

5830-607: The ' carpet railways ' in the 1840s. The first documented model railway was the Railway of the Prince Imperial (French: Chemin de fer du Prince Impérial) built in 1859 by Emperor Napoleon III for his then 3-year-old son, also Napoleon , in the grounds of the Château de Saint-Cloud in Paris. It was powered by clockwork and ran in a figure-of-eight. Electric trains appeared around the start of

5940-532: The 1880s, railway electrification began with tramways and rapid transit systems. Starting in the 1940s, steam locomotives were replaced by diesel locomotives . The first high-speed railway system was introduced in Japan in 1964, and high-speed rail lines now connect many cities in Europe , East Asia , and the eastern United States . Following some decline due to competition from cars and airplanes, rail transport has had

6050-510: The 1930s (the famous " 44-tonner " switcher was introduced in 1940) Westinghouse Electric and Baldwin collaborated to build switching locomotives starting in 1929. In 1929, the Canadian National Railways became the first North American railway to use diesels in mainline service with two units, 9000 and 9001, from Westinghouse. Although steam and diesel services reaching speeds up to 200 km/h (120 mph) were started before

6160-500: The 1960s in Europe, they were not very successful. The first electrified high-speed rail Tōkaidō Shinkansen was introduced in 1964 between Tokyo and Osaka in Japan. Since then high-speed rail transport, functioning at speeds up to and above 300 km/h (190 mph), has been built in Japan, Spain, France , Germany, Italy, the People's Republic of China, Taiwan (Republic of China),

6270-455: The 20th century, but these were crude likenesses. Model trains today are more realistic, in addition to being much more technologically advanced. Today modellers create model railway layouts , often recreating real locations and periods throughout history. The world's oldest working model railway is a model designed to train signalmen on the Lancashire and Yorkshire Railway . It is located in

6380-460: The 40 km Burgdorf–Thun line , Switzerland. Italian railways were the first in the world to introduce electric traction for the entire length of a main line rather than a short section. The 106 km Valtellina line was opened on 4 September 1902, designed by Kandó and a team from the Ganz works. The electrical system was three-phase at 3 kV 15 Hz. In 1918, Kandó invented and developed

6490-886: The Atlantic in the magazines Model Railway News and Model Railroader . Bekonscot in Buckinghamshire is the oldest model village and includes a model railway, dating from the 1930s. The world's largest model railroad in H0 scale is the Miniatur Wunderland in Hamburg , Germany . The largest live steam layout, with 25 miles (40 km) of track is Train Mountain in Chiloquin, Oregon , U.S. Operations form an important aspect of rail transport modelling with many layouts being dedicated to emulating

6600-522: The Butterley Company in 1790. The first public edgeway (thus also first public railway) built was Lake Lock Rail Road in 1796. Although the primary purpose of the line was to carry coal, it also carried passengers. These two systems of constructing iron railways, the "L" plate-rail and the smooth edge-rail, continued to exist side by side until well into the early 19th century. The flanged wheel and edge-rail eventually proved its superiority and became

6710-511: The DC motors of the time and could not be mounted in underfloor bogies : they could only be carried within locomotive bodies. In 1894, Hungarian engineer Kálmán Kandó developed a new type 3-phase asynchronous electric drive motors and generators for electric locomotives. Kandó's early 1894 designs were first applied in a short three-phase AC tramway in Évian-les-Bains (France), which was constructed between 1896 and 1898. In 1896, Oerlikon installed

SECTION 60

#1733084974040

6820-1048: The United States as the scale is accepted as 1:48 whereas in Britain 0 gauge uses a ratio of 43.5:1 or 7 mm/1 foot and the gauge is near to correct. British OO standards operate on track significantly too narrow. The 4 mm/1 foot scale on a 16.5 mm ( 0.65 in ) gauge corresponds to a track gauge of 4 ft  1 + 1 ⁄ 2  in ( 1,257 mm ), 7 inches or 178 millimetres (undersized). 16.5 mm ( 0.65 in ) gauge corresponds to 4 ft  8 + 1 ⁄ 2  in ( 1,435 mm ) standard gauge in H0 (half-0) 3.5 mm/1 foot or 1:87.1. This arose due to British locomotives and rolling stock being smaller than those found elsewhere, leading to an increase in scale to enable H0 scale mechanisms to be used. Most commercial scales have standards that include wheel flanges that are too deep, wheel treads that are too wide, and rail tracks that are too large. In H0 scale,

6930-465: The advent of Digital Command Control . As accuracy became important some systems adopted two-rail power in which the wheels were isolated from each other and the rails carried the positive and negative supply with the right rail carrying the positive potential. This system precludes some track layouts that occur in the real world but would create short circuits in a two-rail model. Other systems such as Märklin instead used fine metal studs to replace

7040-414: The center. Power is supplied to the track, sufficient to run a locomotive at a fixed slow speed, controlled by a simple center-off reversing switch. Several freight cars are placed on the track, and the object is to move all of them to clearly marked destination positions. Timesaver can be played as a game, with the object to complete a given puzzle in the shortest amount of time. (Time spent thinking counts

7150-441: The central rail, allowing existing three-rail models to use more realistic track. Where the model is of an electric locomotive , it may be supplied by overhead lines , like the full-size locomotive. Before Digital Command Control became available, this was one way of controlling two trains separately on the same track. The electric-outline model would be supplied by the overhead wire and the other model could be supplied by one of

7260-514: The commercial scales ensure reliable operation and allow for shortcuts necessary for cost control. The finescale standards include the UK's P4, and the even finer S4, which uses track dimensions scaled from the prototype. This 4 mm:1 ft modelling uses wheels 2 mm (0.079 in) or less wide running on track with a gauge of 18.83 mm ( 0.741 in ). Check-rail and wing-rail clearances are similarly accurate. A compromise of P4 and OO

7370-426: The common rails on a section of track, and use a passing train to complete the circuit and activate an accessory. Many layout builders are choosing digital operation of their layouts rather than the more traditional DC design. Of the several competing systems, the command system offered by the majority of manufacturers in 2020 was a variant of Digital Command Control (DCC). The advantages of DCC are that track voltage

7480-433: The continent. For British modellers, whose most popular scale is OO, the normal coupler is a tension-lock coupler, which, again has no pretence of replicating the usual prototype three-link chain couplers. Bachmann and more recently Hornby have begun to offer models fitted with NEM coupler pockets. This theoretically enables modellers of British railways to substitute any other NEM362 coupler, though many Bachmann models place

7590-434: The coupler pocket at the wrong height. A fairly common alternative is to use representations of chain couplings as found on the prototype, though these require large radius curves to be used to avoid derailments. Other scales have similar ranges of non-compatible couplers available. In all scales couplers can be exchanged, with varying degrees of difficulty. Some modellers pay attention to landscaping their layout, creating

7700-845: The difficulty in obtaining reliable power supply through the outdoor rails. The high power consumption and current draw of large-scale garden models is more easily and safely met with internal rechargeable batteries. Most large-scale battery-powered models use radio control. Engines powered by live steam are often built in large outdoor gauges of 5 inches (130 mm) and 7 + 1 ⁄ 2 inches (190 mm), are also available in Gauge 1 , G scale , 16 mm scale and can be found in O and OO/HO. Hornby Railways produce live steam locomotives in OO, based on designs first arrived at by an amateur modeller. Other modellers have built live steam models in HO/OO, OO9 and N, and there

7810-430: The duty of a guard/train manager/conductor . Passenger trains are part of public transport and often make up the stem of the service, with buses feeding to stations. Passenger trains provide long-distance intercity travel, daily commuter trips, or local urban transit services, operating with a diversity of vehicles, operating speeds, right-of-way requirements, and service frequency. Service frequencies are often expressed as

7920-402: The end of the 19th century, because they were cleaner compared to steam-driven trams which caused smoke in city streets. In 1784 James Watt , a Scottish inventor and mechanical engineer, patented a design for a steam locomotive . Watt had improved the steam engine of Thomas Newcomen , hitherto used to pump water out of mines, and developed a reciprocating engine in 1769 capable of powering

8030-467: The end of the 19th century, improving the quality of steel and further reducing costs. Thus steel completely replaced the use of iron in rails, becoming standard for all railways. The first passenger horsecar or tram , Swansea and Mumbles Railway , was opened between Swansea and Mumbles in Wales in 1807. Horses remained the preferable mode for tram transport even after the arrival of steam engines until

8140-515: The engine by one power stroke. The transmission system employed a large flywheel to even out the action of the piston rod. On 21 February 1804, the world's first steam-powered railway journey took place when Trevithick's unnamed steam locomotive hauled a train along the tramway of the Penydarren ironworks, near Merthyr Tydfil in South Wales . Trevithick later demonstrated a locomotive operating upon

8250-668: The engines are often powerful enough to haul dozens of human passengers. The Tech Model Railroad Club (TMRC) at MIT in the 1950s pioneered automatic control of track-switching by using telephone relays. The oldest society is 'The Model Railway Club' (established 1910), near Kings Cross, London , UK. As well as building model railways, it has 5,000 books and periodicals. Similarly, 'The Historical Model Railway Society' at Butterley , near Ripley, Derbyshire specialises in historical matters and has archives available to members and non-members. The words scale and gauge seem at first interchangeable but their meanings are different. Scale

8360-470: The era of great expansion of railways that began in the late 1860s. Steel rails lasted several times longer than iron. Steel rails made heavier locomotives possible, allowing for longer trains and improving the productivity of railroads. The Bessemer process introduced nitrogen into the steel, which caused the steel to become brittle with age. The open hearth furnace began to replace the Bessemer process near

8470-515: The first commercial example of the system on the Lugano Tramway . Each 30-tonne locomotive had two 110 kW (150 hp) motors run by three-phase 750 V 40 Hz fed from double overhead lines. Three-phase motors run at a constant speed and provide regenerative braking , and are well suited to steeply graded routes, and the first main-line three-phase locomotives were supplied by Brown (by then in partnership with Walter Boveri ) in 1899 on

8580-677: The largest model landscape in the UK is in the Pendon Museum in Oxfordshire , UK , where an EM gauge (same 1:76.2 scale as 00 but with more accurate track gauge) model of the Vale of White Horse in the 1930s is under construction. The museum also houses one of the earliest scenic models – the Madder Valley layout built by John Ahern . This was built in the late 1930s to late 1950s and brought in realistic modelling, receiving coverage on both sides of

8690-1218: The limit being regarded at 200 to 350 kilometres per hour (120 to 220 mph). High-speed trains are used mostly for long-haul service and most systems are in Western Europe and East Asia. Magnetic levitation trains such as the Shanghai maglev train use under-riding magnets which attract themselves upward towards the underside of a guideway and this line has achieved somewhat higher peak speeds in day-to-day operation than conventional high-speed railways, although only over short distances. Due to their heightened speeds, route alignments for high-speed rail tend to have broader curves than conventional railways, but may have steeper grades that are more easily climbed by trains with large kinetic energy. High kinetic energy translates to higher horsepower-to-ton ratios (e.g. 20 horsepower per short ton or 16 kilowatts per tonne); this allows trains to accelerate and maintain higher speeds and negotiate steep grades as momentum builds up and recovered in downgrades (reducing cut and fill and tunnelling requirements). Since lateral forces act on curves, curvatures are designed with

8800-429: The locomotive-hauled train's drawbacks to be removed, since the locomotive need not be moved to the front of the train each time the train changes direction. A railroad car is a vehicle used for the haulage of either passengers or freight. A multiple unit has powered wheels throughout the whole train. These are used for rapid transit and tram systems, as well as many both short- and long-haul passenger trains. A railcar

8910-560: The main portion of the B&;O to the new line to New York through a series of tunnels around the edges of Baltimore's downtown. Electricity quickly became the power supply of choice for subways, abetted by the Sprague's invention of multiple-unit train control in 1897. By the early 1900s most street railways were electrified. The London Underground , the world's oldest underground railway, opened in 1863, and it began operating electric services using

9020-462: The major manufacturers or in scales that are not in mass production. Laser machining techniques have extended this ability to thicker materials for scale steam and other locomotive types. Scratch builders may also make silicone rubber moulds of the parts they create, and cast them in various plastic resins (see Resin casting ), or plasters. This may be done to save duplication of effort, or to sell to others. Resin "craftsman kits" are also available for

9130-433: The mid-1920s. The Soviet Union operated three experimental units of different designs since late 1925, though only one of them (the E el-2 ) proved technically viable. A significant breakthrough occurred in 1914, when Hermann Lemp , a General Electric electrical engineer, developed and patented a reliable direct current electrical control system (subsequent improvements were also patented by Lemp). Lemp's design used

9240-412: The noise they made on the tracks. There are many references to their use in central Europe in the 16th century. Such a transport system was later used by German miners at Caldbeck , Cumbria , England, perhaps from the 1560s. A wagonway was built at Prescot , near Liverpool , sometime around 1600, possibly as early as 1594. Owned by Philip Layton, the line carried coal from a pit near Prescot Hall to

9350-603: The operational aspects of a working railway. These layouts can become extremely complex with multiple routes, movement patterns and timetabled operation. The British outline model railway of Banbury Connections is one of the world's most complicated model railways. Model railroad clubs exist where enthusiasts meet. Clubs often display models for the public. One specialist branch concentrates on larger scales and gauges , commonly using track gauges from 3.5 to 7.5 inches (89 to 191 mm). Models in these scales are usually hand-built and powered by live steam , or diesel-hydraulic, and

9460-511: The operator cycled the power. Trains powered by DC can change direction by reversing polarity. Electricity permits control by dividing the layout into isolated blocks, where trains can be slowed or stopped by lowering or cutting power to a block. Dividing a layout into blocks permits operators to run more than one train with less risk of a fast train catching and hitting a slow train. Blocks can also trigger signals or other accessories, adding realism or whimsy. Three-rail systems often insulate one of

9570-451: The other. In this form, it becomes a cooperative board game . Because it can provide complex switching challenges in a small space, it has also been incorporated into a number of larger layouts. Timesaver was first published in the November 1972 issue of Model Railroader , in what would be Allen's last article; he died the following year. This puzzle/logic game -related article is

9680-513: The possibility of a smaller engine that might be used to power a vehicle. Following his patent, Watt's employee William Murdoch produced a working model of a self-propelled steam carriage in that year. The first full-scale working railway steam locomotive was built in the United Kingdom in 1804 by Richard Trevithick , a British engineer born in Cornwall . This used high-pressure steam to drive

9790-429: The rail heights are codes 100, 87, 83, 70, 55, 53, and 40 -- the height in thousandths of an inch from base to railhead (so code 100 is a tenth of an inch and represents 156-pound rail). Later, modellers became dissatisfied with inaccuracies and developed standards in which everything is correctly scaled. These are used by modellers but have not spread to mass-production because the inaccuracies and overscale properties of

9900-422: The running rails. The other running rail would act as a common return. Early electric trains ran on trackside batteries because few homes in the late 19th century and early 20th century had electricity. Today, inexpensive train sets running on batteries are again common but regarded as toys and seldom used by hobbyists. Batteries located in the model often power garden railway and larger scale systems because of

10010-412: The same as time spent actually moving cars, and the number of moves is irrelevant.) The switching game became a contest at National Model Railroad Association conventions. Optionally, two Timesaver layouts can be connected with an unpowered interchange track (adding a sixth switch to each), with space for a single car. In this configuration, each player must (typically) exchange two "outbound" cars with

10120-680: The same specifications, standardized electricals, equipment, curve radii. Railroad Rail transport (also known as train transport ) is a means of transport using wheeled vehicles running in tracks , which usually consist of two parallel steel rails . Rail transport is one of the two primary means of land transport , next to road transport . It is used for about 8% of passenger and freight transport globally, thanks to its energy efficiency and potentially high speed . Rolling stock on rails generally encounters lower frictional resistance than rubber-tyred road vehicles, allowing rail cars to be coupled into longer trains . Power

10230-739: The same stretch of track. Several manufacturers also offer software that can provide computer -control of DCC layouts. In large scales, particularly for garden railways , radio control and DCC in the garden have become popular. Several organizations exist to set standardizations for connectibility between individual layout sections (commonly called "modules"). This is so several (or hundreds, given enough space and power) people or groups can bring together their own modules, connect them together with as little trouble as possible, and operate their trains. Despite different design and operation philosophies, different organizations have similar goals; standardized ends to facilitate connection with other modules built to

10340-505: The similar OO ), TT scale , and N scale (1:160 in the United States, but 1:148 in the UK). HO and OO are the most popular. Popular narrow-gauge scales include Sn3 , HOn3 and Nn3 , which are the same in scale as S, HO and N except with a narrower spacing between the tracks (in these examples, a scale 3 ft ( 914 mm ) instead of the 4 ft  8 + 1 ⁄ 2  in ( 1,435 mm ) standard gauge). The largest common scale

10450-441: The standard for railways. Cast iron used in rails proved unsatisfactory because it was brittle and broke under heavy loads. The wrought iron invented by John Birkinshaw in 1820 replaced cast iron. Wrought iron, usually simply referred to as "iron", was a ductile material that could undergo considerable deformation before breaking, making it more suitable for iron rails. But iron was expensive to produce until Henry Cort patented

10560-470: The time, was Liverpool and Manchester Railway , built in 1830. Steam power continued to be the dominant power system in railways around the world for more than a century. The first known electric locomotive was built in 1837 by chemist Robert Davidson of Aberdeen in Scotland, and it was powered by galvanic cells (batteries). Thus it was also the earliest battery-electric locomotive. Davidson later built

10670-411: The toy market were powered by clockwork and controlled by levers on the locomotive. Although this made control crude the models were large and robust enough that handling the controls was practical. Various manufacturers introduced slowing and stopping tracks that could trigger levers on the locomotive and allow station stops. Early electrical models used a three-rail system with the wheels resting on

10780-536: The track. Propulsion for the train is provided by a separate locomotive or from individual motors in self-propelled multiple units. Most trains carry a revenue load, although non-revenue cars exist for the railway's own use, such as for maintenance-of-way purposes. The engine driver (engineer in North America) controls the locomotive or other power cars, although people movers and some rapid transits are under automatic control. Traditionally, trains are pulled using

10890-466: The transport of ore tubs to and from mines and soon became popular in Europe. Such an operation was illustrated in Germany in 1556 by Georgius Agricola in his work De re metallica . This line used "Hund" carts with unflanged wheels running on wooden planks and a vertical pin on the truck fitting into the gap between the planks to keep it going the right way. The miners called the wagons Hunde ("dogs") from

11000-797: The use of chemicals to cause corrosion. Some processes become very creative depending on the skill of the modeller. For instance several steps may be taken to create a rusting effect to ensure not only proper colouring, but also proper texture and lustre. Weathering purchased models is common, at the least, weathering aims to reduce the plastic-like finish of scale models. The simulation of grime, rust, dirt, and wear adds realism. Some modellers simulate fuel stains on tanks, or corrosion on battery boxes. In some cases, evidence of accidents or repairs may be added, such as dents or freshly painted replacement parts, and weathered models can be nearly indistinguishable from their prototypes when photographed appropriately. Static diorama models or "push along" scale models are

11110-609: The wheels on track. For example, evidence indicates that a 6 to 8.5 km long Diolkos paved trackway transported boats across the Isthmus of Corinth in Greece from around 600 BC. The Diolkos was in use for over 650 years, until at least the 1st century AD. Paved trackways were also later built in Roman Egypt . In 1515, Cardinal Matthäus Lang wrote a description of the Reisszug ,

11220-545: The world in 1825, although it used both horse power and steam power on different runs. In 1829, he built the locomotive Rocket , which entered in and won the Rainhill Trials . This success led to Stephenson establishing his company as the pre-eminent builder of steam locomotives for railways in Great Britain and Ireland, the United States, and much of Europe. The first public railway which used only steam locomotives, all

11330-507: Was a soft material that contained slag or dross . The softness and dross tended to make iron rails distort and delaminate and they lasted less than 10 years. Sometimes they lasted as little as one year under high traffic. All these developments in the production of iron eventually led to the replacement of composite wood/iron rails with superior all-iron rails. The introduction of the Bessemer process , enabling steel to be made inexpensively, led to

11440-585: Was accomplished by the distribution of weight between a number of wheels. Puffing Billy is now on display in the Science Museum in London, and is the oldest locomotive in existence. In 1814, George Stephenson , inspired by the early locomotives of Trevithick, Murray and Hedley, persuaded the manager of the Killingworth colliery where he worked to allow him to build a steam-powered machine. Stephenson played

11550-509: Was built by Siemens. The tram ran on 180 volts DC, which was supplied by running rails. In 1891 the track was equipped with an overhead wire and the line was extended to Berlin-Lichterfelde West station . The Volk's Electric Railway opened in 1883 in Brighton , England. The railway is still operational, thus making it the oldest operational electric railway in the world. Also in 1883, Mödling and Hinterbrühl Tram opened near Vienna in Austria. It

11660-687: Was built in 1758, later became the world's oldest operational railway (other than funiculars), albeit now in an upgraded form. In 1764, the first railway in the Americas was built in Lewiston, New York . In the late 1760s, the Coalbrookdale Company began to fix plates of cast iron to the upper surface of the wooden rails. This allowed a variation of gauge to be used. At first only balloon loops could be used for turning, but later, movable points were taken into use that allowed for switching. A system

11770-535: Was introduced in which unflanged wheels ran on L-shaped metal plates, which came to be known as plateways . John Curr , a Sheffield colliery manager, invented this flanged rail in 1787, though the exact date of this is disputed. The plate rail was taken up by Benjamin Outram for wagonways serving his canals, manufacturing them at his Butterley ironworks . In 1803, William Jessop opened the Surrey Iron Railway ,

11880-479: Was light enough to not break the edge-rails track and solved the problem of adhesion by a cog-wheel using teeth cast on the side of one of the rails. Thus it was also the first rack railway . This was followed in 1813 by the locomotive Puffing Billy built by Christopher Blackett and William Hedley for the Wylam Colliery Railway, the first successful locomotive running by adhesion only. This

11990-742: Was tested on the Edinburgh and Glasgow Railway in September of the following year, but the limited power from batteries prevented its general use. It was destroyed by railway workers, who saw it as a threat to their job security. By the middle of the nineteenth century most european countries had military uses for railways. Werner von Siemens demonstrated an electric railway in 1879 in Berlin. The world's first electric tram line, Gross-Lichterfelde Tramway , opened in Lichterfelde near Berlin , Germany, in 1881. It

12100-609: Was the first tram line in the world in regular service powered from an overhead line. Five years later, in the U.S. electric trolleys were pioneered in 1888 on the Richmond Union Passenger Railway , using equipment designed by Frank J. Sprague . The first use of electrification on a main line was on a four-mile section of the Baltimore Belt Line of the Baltimore and Ohio Railroad (B&O) in 1895 connecting

#39960