Misplaced Pages

Eyes (disambiguation)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#442557

119-402: Eyes are the organs of vision. Eyes or The Eyes may also refer to: Eye An eye is a sensory organ that allows an organism to perceive visual information. It detects light and converts it into electro-chemical impulses in neurons (neurones). It is part of an organism's visual system . In higher organisms, the eye is a complex optical system that collects light from

238-455: A fovea area which gives acute vision. In the acute zone, the eyes are flattened and the facets larger. The flattening allows more ommatidia to receive light from a spot and therefore higher resolution. The black spot that can be seen on the compound eyes of such insects, which always seems to look directly at the observer, is called a pseudopupil . This occurs because the ommatidia which one observes "head-on" (along their optical axes ) absorb

357-460: A central point. The nature of these eyes means that if one were to peer into the pupil of an eye, one would see the same image that the organism would see, reflected back out. Many small organisms such as rotifers , copepods and flatworms use such organs, but these are too small to produce usable images. Some larger organisms, such as scallops , also use reflector eyes. The scallop Pecten has up to 100 millimetre-scale reflector eyes fringing

476-421: A characteristic ladder-like appearance. The brain is in the head, encircling and mainly above the esophagus. It consists of the fused ganglia of the acron and one or two of the foremost segments that form the head – a total of three pairs of ganglia in most arthropods, but only two in chelicerates, which do not have antennae or the ganglion connected to them. The ganglia of other head segments are often close to

595-428: A cluster of numerous ommatidia on each side of the head, organised in a way that resembles a true compound eye. The body of Ophiocoma wendtii , a type of brittle star , is covered with ommatidia, turning its whole skin into a compound eye. The same is true of many chitons . The tube feet of sea urchins contain photoreceptor proteins, which together act as a compound eye; they lack screening pigments, but can detect

714-455: A common ancestor that was itself an arthropod. For example, Graham Budd 's analyses of Kerygmachela in 1993 and of Opabinia in 1996 convinced him that these animals were similar to onychophorans and to various Early Cambrian " lobopods ", and he presented an "evolutionary family tree" that showed these as "aunts" and "cousins" of all arthropods. These changes made the scope of the term "arthropod" unclear, and Claus Nielsen proposed that

833-599: A different system: the end-product of nitrogen metabolism is uric acid , which can be excreted as dry material; the Malpighian tubule system filters the uric acid and other nitrogenous waste out of the blood in the hemocoel, and dumps these materials into the hindgut, from which they are expelled as feces . Most aquatic arthropods and some terrestrial ones also have organs called nephridia ("little kidneys "), which extract other wastes for excretion as urine . The stiff cuticles of arthropods would block out information about

952-427: A factor of 1,000 or more. Ocelli , some of the simplest eyes, are found in animals such as some of the snails . They have photosensitive cells but no lens or other means of projecting an image onto those cells. They can distinguish between light and dark but no more, enabling them to avoid direct sunlight . In organisms dwelling near deep-sea vents , compound eyes are adapted to see the infra-red light produced by

1071-641: A few facets, each with a retina capable of creating an image. With each eye producing a different image, a fused, high-resolution image is produced in the brain. The mantis shrimp has the world's most complex colour vision system. It has detailed hyperspectral colour vision. Trilobites , now extinct, had unique compound eyes. Clear calcite crystals formed the lenses of their eyes. They differ in this from most other arthropods, which have soft eyes. The number of lenses in such an eye varied widely; some trilobites had only one while others had thousands of lenses per eye. In contrast to compound eyes, simple eyes have

1190-407: A focusing lens , and often an iris . Muscles around the iris change the size of the pupil , regulating the amount of light that enters the eye and reducing aberrations when there is enough light. The eyes of most cephalopods , fish , amphibians and snakes have fixed lens shapes, and focusing is achieved by telescoping the lens in a similar manner to that of a camera . The compound eyes of

1309-612: A high refractive index, decreasing to the edges; this decreases the focal length and thus allows a sharp image to form on the retina. This also allows a larger aperture for a given sharpness of image, allowing more light to enter the lens; and a flatter lens, reducing spherical aberration . Such a non-homogeneous lens is necessary for the focal length to drop from about 4 times the lens radius, to 2.5 radii. So-called under-focused lens eyes, found in gastropods and polychaete worms, have eyes that are intermediate between lens-less cup eyes and real camera eyes. Also box jellyfish have eyes with

SECTION 10

#1732869071443

1428-403: A lens focusing light from one direction on the rhabdom, while light from other directions is absorbed by the dark wall of the ommatidium . The second type is named the superposition eye. The superposition eye is divided into three types: The refracting superposition eye has a gap between the lens and the rhabdom, and no side wall. Each lens takes light at an angle to its axis and reflects it to

1547-447: A limit on the possible resolution that can be obtained (assuming that they do not function as phased arrays ). This can only be countered by increasing lens size and number. To see with a resolution comparable to our simple eyes, humans would require very large compound eyes, around 11 metres (36 ft) in radius. Compound eyes fall into two groups: apposition eyes, which form multiple inverted images, and superposition eyes, which form

1666-399: A lower, segmented endopod. These would later fuse into a single pair of biramous appendages united by a basal segment (protopod or basipod), with the upper branch acting as a gill while the lower branch was used for locomotion. The appendages of most crustaceans and some extinct taxa such as trilobites have another segmented branch known as exopods , but whether these structures have

1785-469: A means of locomotion that was not dependent on water. Around the same time the aquatic, scorpion-like eurypterids became the largest ever arthropods, some as long as 2.5 m (8 ft 2 in). The oldest known arachnid is the trigonotarbid Palaeotarbus jerami , from about 420  million years ago in the Silurian period. Attercopus fimbriunguis , from 386  million years ago in

1904-468: A modular organism with each module covered by its own sclerite (armor plate) and bearing a pair of biramous limbs . However, whether the ancestral limb was uniramous or biramous is far from a settled debate. This Ur-arthropod had a ventral mouth, pre-oral antennae and dorsal eyes at the front of the body. It was assumed to have been a non-discriminatory sediment feeder, processing whatever sediment came its way for food, but fossil findings hint that

2023-424: A muscular tube that runs just under the back and for most of the length of the hemocoel. It contracts in ripples that run from rear to front, pushing blood forwards. Sections not being squeezed by the heart muscle are expanded either by elastic ligaments or by small muscles , in either case connecting the heart to the body wall. Along the heart run a series of paired ostia, non-return valves that allow blood to enter

2142-421: A narrow category of " true bugs ", insects of the order Hemiptera . Arthropods are invertebrates with segmented bodies and jointed limbs. The exoskeleton or cuticles consists of chitin , a polymer of N-Acetylglucosamine . The cuticle of many crustaceans, beetle mites , the clades Penetini and Archaeoglenini inside the beetle subfamily Phrenapatinae , and millipedes (except for bristly millipedes )

2261-451: A parabolic mirror to focus the image; it combines features of superposition and apposition eyes. Another kind of compound eye, found in males of Order Strepsiptera , employs a series of simple eyes—eyes having one opening that provides light for an entire image-forming retina. Several of these eyelets together form the strepsipteran compound eye, which is similar to the 'schizochroal' compound eyes of some trilobites . Because each eyelet

2380-420: A pit to reduce the angles of light that enters and affects the eye-spot, to allow the organism to deduce the angle of incoming light. Found in about 85% of phyla, these basic forms were probably the precursors to more advanced types of "simple eyes". They are small, comprising up to about 100 cells covering about 100 μm. The directionality can be improved by reducing the size of the aperture, by incorporating

2499-707: A process by which they shed their exoskeleton to reveal a new one. They form an extremely diverse group of up to ten million species. Haemolymph is the analogue of blood for most arthropods. An arthropod has an open circulatory system , with a body cavity called a haemocoel through which haemolymph circulates to the interior organs . Like their exteriors, the internal organs of arthropods are generally built of repeated segments. They have ladder-like nervous systems , with paired ventral nerve cords running through all segments and forming paired ganglia in each segment. Their heads are formed by fusion of varying numbers of segments, and their brains are formed by fusion of

SECTION 20

#1732869071443

2618-498: A reflective layer behind the receptor cells, or by filling the pit with a refractile material. Pit vipers have developed pits that function as eyes by sensing thermal infra-red radiation, in addition to their optical wavelength eyes like those of other vertebrates (see infrared sensing in snakes ). However, pit organs are fitted with receptors rather different from photoreceptors, namely a specific transient receptor potential channel (TRP channels) called TRPV1 . The main difference

2737-466: A refractive cornea: these have a negative lens, enlarging the observed image by up to 50% over the receptor cells, thus increasing their optical resolution. In the eyes of most mammals , birds , reptiles, and most other terrestrial vertebrates (along with spiders and some insect larvae) the vitreous fluid has a higher refractive index than the air. In general, the lens is not spherical. Spherical lenses produce spherical aberration. In refractive corneas,

2856-612: A resolution better than 1°. Also, superposition eyes can achieve greater sensitivity than apposition eyes , so are better suited to dark-dwelling creatures. Eyes also fall into two groups on the basis of their photoreceptor's cellular construction, with the photoreceptor cells either being ciliated (as in the vertebrates) or rhabdomeric . These two groups are not monophyletic; the Cnidaria also possess ciliated cells, and some gastropods and annelids possess both. Some organisms have photosensitive cells that do nothing but detect whether

2975-405: A sharp image. Ocelli (pit-type eyes of arthropods) blur the image across the whole retina, and are consequently excellent at responding to rapid changes in light intensity across the whole visual field; this fast response is further accelerated by the large nerve bundles which rush the information to the brain. Focusing the image would also cause the sun's image to be focused on a few receptors, with

3094-499: A single erect image. Compound eyes are common in arthropods, annelids and some bivalved molluscs. Compound eyes in arthropods grow at their margins by the addition of new ommatidia. Apposition eyes are the most common form of eyes and are presumably the ancestral form of compound eyes. They are found in all arthropod groups, although they may have evolved more than once within this phylum. Some annelids and bivalves also have apposition eyes. They are also possessed by Limulus ,

3213-517: A single lens and focus light onto the retina to form a single image. This type of eye is common in mammals, including humans. The simplest eyes are pit eyes. They are eye-spots which may be set into a pit to reduce the angle of light that enters and affects the eye-spot, to allow the organism to deduce the angle of incoming light. Eyes enable several photo response functions that are independent of vision. In an organism that has more complex eyes, retinal photosensitive ganglion cells send signals along

3332-454: A single lens. Jumping spiders have one pair of large simple eyes with a narrow field of view , augmented by an array of smaller eyes for peripheral vision . Some insect larvae , like caterpillars , have a type of simple eye ( stemmata ) which usually provides only a rough image, but (as in sawfly larvae) can possess resolving powers of 4 degrees of arc, be polarization-sensitive, and capable of increasing its absolute sensitivity at night by

3451-539: A single origin remain controversial. In some segments of all known arthropods the appendages have been modified, for example to form gills, mouth-parts, antennae for collecting information, or claws for grasping; arthropods are "like Swiss Army knives , each equipped with a unique set of specialized tools." In many arthropods, appendages have vanished from some regions of the body; it is particularly common for abdominal appendages to have disappeared or be highly modified. The most conspicuous specialization of segments

3570-408: A spherical lens, cornea and retina, but the vision is blurry. Heterogeneous eyes have evolved at least nine times: four or more times in gastropods , once in the copepods , once in the annelids , once in the cephalopods , and once in the chitons , which have aragonite lenses. No extant aquatic organisms possess homogeneous lenses; presumably the evolutionary pressure for a heterogeneous lens

3689-453: A superphylum Ecdysozoa . Overall, however, the basal relationships of animals are not yet well resolved. Likewise, the relationships between various arthropod groups are still actively debated. Today, arthropods contribute to the human food supply both directly as food, and more importantly, indirectly as pollinators of crops. Some species are known to spread severe disease to humans, livestock , and crops . The word arthropod comes from

Eyes (disambiguation) - Misplaced Pages Continue

3808-458: A total metamorphosis to produce the adult form. The level of maternal care for hatchlings varies from nonexistent to the prolonged care provided by social insects . The evolutionary ancestry of arthropods dates back to the Cambrian period. The group is generally regarded as monophyletic , and many analyses support the placement of arthropods with cycloneuralians (or their constituent clades) in

3927-415: A transparent humour that optimised colour filtering, blocked harmful radiation, improved the eye's refractive index , and allowed functionality outside of water. The transparent protective cells eventually split into two layers, with circulatory fluid in between that allowed wider viewing angles and greater imaging resolution, and the thickness of the transparent layer gradually increased, in most species with

4046-507: A wide field of view, and can detect fast movement and, in some cases, the polarization of light . On the other hand, the relatively large size of ommatidia makes the images rather coarse, and compound eyes are shorter-sighted than those of birds and mammals – although this is not a severe disadvantage, as objects and events within 20 cm (8 in) are most important to most arthropods. Several arthropods have color vision, and that of some insects has been studied in detail; for example,

4165-400: Is copper -based hemocyanin ; this is used by many crustaceans and a few centipedes . A few crustaceans and insects use iron-based hemoglobin , the respiratory pigment used by vertebrates . As with other invertebrates, the respiratory pigments of those arthropods that have them are generally dissolved in the blood and rarely enclosed in corpuscles as they are in vertebrates. The heart is

4284-400: Is a combination of inputs from the numerous ommatidia (individual "eye units"), which are located on a convex surface, thus pointing in slightly different directions. Compared with simple eyes, compound eyes possess a very large view angle, and can detect fast movement and, in some cases, the polarisation of light. Because the individual lenses are so small, the effects of diffraction impose

4403-412: Is a simple eye, it produces an inverted image; those images are combined in the brain to form one unified image. Because the aperture of an eyelet is larger than the facets of a compound eye, this arrangement allows vision under low light levels. Good fliers such as flies or honey bees, or prey-catching insects such as praying mantis or dragonflies , have specialised zones of ommatidia organised into

4522-404: Is advantageous to have a convex eye-spot, which gathers more light than a flat or concave one. This would have led to a somewhat different evolutionary trajectory for the vertebrate eye than for other animal eyes. The thin overgrowth of transparent cells over the eye's aperture, originally formed to prevent damage to the eyespot, allowed the segregated contents of the eye chamber to specialise into

4641-502: Is also biomineralized with calcium carbonate . Calcification of the endosternite, an internal structure used for muscle attachments, also occur in some opiliones , and the pupal cuticle of the fly Bactrocera dorsalis contains calcium phosphate. Arthropoda is the largest animal phylum with the estimates of the number of arthropod species varying from 1,170,000 to 5~10 million and accounting for over 80 percent of all known living animal species. One arthropod sub-group ,

4760-542: Is considered a key factor in this. The majority of the advancements in early eyes are believed to have taken only a few million years to develop, since the first predator to gain true imaging would have touched off an "arms race" among all species that did not flee the photopic environment. Prey animals and competing predators alike would be at a distinct disadvantage without such capabilities and would be less likely to survive and reproduce. Hence multiple eye types and subtypes developed in parallel (except those of groups, such as

4879-438: Is encased in hardened cuticle. The joints between body segments and between limb sections are covered by flexible cuticle. The exoskeletons of most aquatic crustaceans are biomineralized with calcium carbonate extracted from the water. Some terrestrial crustaceans have developed means of storing the mineral, since on land they cannot rely on a steady supply of dissolved calcium carbonate. Biomineralization generally affects

Eyes (disambiguation) - Misplaced Pages Continue

4998-401: Is great enough for this stage to be quickly "outgrown". This eye creates an image that is sharp enough that motion of the eye can cause significant blurring. To minimise the effect of eye motion while the animal moves, most such eyes have stabilising eye muscles. The ocelli of insects bear a simple lens, but their focal point usually lies behind the retina; consequently, those can not form

5117-859: Is in the head. The four major groups of arthropods – Chelicerata ( sea spiders , horseshoe crabs and arachnids ), Myriapoda ( symphylans , pauropods , millipedes and centipedes ), Pancrustacea ( oligostracans , copepods , malacostracans , branchiopods , hexapods , etc.), and the extinct Trilobita  – have heads formed of various combinations of segments, with appendages that are missing or specialized in different ways. Despite myriapods and hexapods both having similar head combinations, hexapods are deeply nested within crustacea while myriapods are not, so these traits are believed to have evolved separately. In addition, some extinct arthropods, such as Marrella , belong to none of these groups, as their heads are formed by their own particular combinations of segments and specialized appendages. Working out

5236-501: Is largely taken by a hemocoel , a cavity that runs most of the length of the body and through which blood flows. Arthropods have open circulatory systems . Most have a few short, open-ended arteries . In chelicerates and crustaceans, the blood carries oxygen to the tissues, while hexapods use a separate system of tracheae . Many crustaceans and a few chelicerates and tracheates use respiratory pigments to assist oxygen transport. The most common respiratory pigment in arthropods

5355-410: Is little difference in refractive index between the vitreous fluid and the surrounding water. Hence creatures that have returned to the water—penguins and seals, for example—lose their highly curved cornea and return to lens-based vision. An alternative solution, borne by some divers, is to have a very strongly focusing cornea. A unique feature of most mammal eyes is the presence of eyelids which wipe

5474-481: Is sometimes by indirect transfer of the sperm via an appendage or the ground, rather than by direct injection. Aquatic species use either internal or external fertilization . Almost all arthropods lay eggs, with many species giving birth to live young after the eggs have hatched inside the mother; but a few are genuinely viviparous , such as aphids . Arthropod hatchlings vary from miniature adults to grubs and caterpillars that lack jointed limbs and eventually undergo

5593-472: Is that photoreceptors are G-protein coupled receptors but TRP are ion channels . The resolution of pit eyes can be greatly improved by incorporating a material with a higher refractive index to form a lens, which may greatly reduce the blur radius encountered—hence increasing the resolution obtainable. The most basic form, seen in some gastropods and annelids, consists of a lens of one refractive index. A far sharper image can be obtained using materials with

5712-536: Is the Devonian Rhyniognatha hirsti , dated at 396 to 407 million years ago , its mandibles are thought to be a type found only in winged insects , which suggests that the earliest insects appeared in the Silurian period. However later study shows that Rhyniognatha most likely represent a myriapod, not even a hexapod. The unequivocal oldest known hexapod and insect is the springtail Rhyniella , from about 410  million years ago in

5831-459: Is widespread among arthropods including both those that reproduce sexually and those that reproduce parthenogenetically . Although meiosis is a major characteristic of arthropods, understanding of its fundamental adaptive benefit has long been regarded as an unresolved problem, that appears to have remained unsettled. Aquatic arthropods may breed by external fertilization, as for example horseshoe crabs do, or by internal fertilization , where

5950-585: The American lobster reaching weights over 20 kg (44 lbs). The embryos of all arthropods are segmented, built from a series of repeated modules. The last common ancestor of living arthropods probably consisted of a series of undifferentiated segments, each with a pair of appendages that functioned as limbs. However, all known living and fossil arthropods have grouped segments into tagmata in which segments and their limbs are specialized in various ways. The three-part appearance of many insect bodies and

6069-554: The Burgess Shale fossils from about 505  million years ago identified many arthropods, some of which could not be assigned to any of the well-known groups, and thus intensified the debate about the Cambrian explosion . A fossil of Marrella from the Burgess Shale has provided the earliest clear evidence of moulting . The earliest fossil of likely pancrustacean larvae date from about 514  million years ago in

SECTION 50

#1732869071443

6188-490: The Cambrian , followed by unique taxa like Yicaris and Wujicaris . The purported pancrustacean/ crustacean affinity of some cambrian arthropods (e.g. Phosphatocopina , Bradoriida and Hymenocarine taxa like waptiids) were disputed by subsequent studies, as they might branch before the mandibulate crown-group. Within the pancrustacean crown-group, only Malacostraca , Branchiopoda and Pentastomida have Cambrian fossil records. Crustacean fossils are common from

6307-666: The Devonian period, bears the earliest known silk-producing spigots, but its lack of spinnerets means it was not one of the true spiders , which first appear in the Late Carboniferous over 299  million years ago . The Jurassic and Cretaceous periods provide a large number of fossil spiders, including representatives of many modern families. The oldest known scorpion is Dolichophonus , dated back to 436  million years ago . Lots of Silurian and Devonian scorpions were previously thought to be gill -breathing, hence

6426-560: The Greek ἄρθρον árthron ' joint ' , and πούς pous ( gen. ποδός podos ) ' foot ' or ' leg ' , which together mean "jointed leg", with the word "arthropodes" initially used in anatomical descriptions by Barthélemy Charles Joseph Dumortier published in 1832. The designation "Arthropoda" appears to have been first used in 1843 by the German zoologist Johann Ludwig Christian Gravenhorst (1777–1857). The origin of

6545-690: The Ordovician period onwards. They have remained almost entirely aquatic, possibly because they never developed excretory systems that conserve water. Arthropods provide the earliest identifiable fossils of land animals, from about 419  million years ago in the Late Silurian , and terrestrial tracks from about 450  million years ago appear to have been made by arthropods. Arthropods possessed attributes that were easy coopted for life on land; their existing jointed exoskeletons provided protection against desiccation, support against gravity and

6664-442: The arthropods are composed of many simple facets which, depending on anatomical detail, may give either a single pixelated image or multiple images per eye. Each sensor has its own lens and photosensitive cell(s). Some eyes have up to 28,000 such sensors arranged hexagonally, which can give a full 360° field of vision. Compound eyes are very sensitive to motion. Some arthropods, including many Strepsiptera , have compound eyes of only

6783-465: The chelicerates , including spiders and scorpions ; the crustaceans; and the uniramia , consisting of onychophorans , myriapods and hexapods . These arguments usually bypassed trilobites , as the evolutionary relationships of this class were unclear. Proponents of polyphyly argued the following: that the similarities between these groups are the results of convergent evolution , as natural consequences of having rigid, segmented exoskeletons ; that

6902-440: The copepod Pontella has three. The outer has a parabolic surface, countering the effects of spherical aberration while allowing a sharp image to be formed. Another copepod, Copilia , has two lenses in each eye, arranged like those in a telescope. Such arrangements are rare and poorly understood, but represent an alternative construction. Multiple lenses are seen in some hunters such as eagles and jumping spiders, which have

7021-420: The incident light , while those to one side reflect it. There are some exceptions from the types mentioned above. Some insects have a so-called single lens compound eye, a transitional type which is something between a superposition type of the multi-lens compound eye and the single lens eye found in animals with simple eyes. Then there is the mysid shrimp, Dioptromysis paucispinosa . The shrimp has an eye of

7140-662: The insects , includes more described species than any other taxonomic class . The total number of species remains difficult to determine. This is due to the census modeling assumptions projected onto other regions in order to scale up from counts at specific locations applied to the whole world. A study in 1992 estimated that there were 500,000 species of animals and plants in Costa Rica alone, of which 365,000 were arthropods. They are important members of marine, freshwater, land and air ecosystems and one of only two major animal groups that have adapted to life in dry environments;

7259-410: The ova remain in the female's body and the sperm must somehow be inserted. All known terrestrial arthropods use internal fertilization. Opiliones (harvestmen), millipedes , and some crustaceans use modified appendages such as gonopods or penises to transfer the sperm directly to the female. However, most male terrestrial arthropods produce spermatophores , waterproof packets of sperm , which

SECTION 60

#1732869071443

7378-414: The retinohypothalamic tract to the suprachiasmatic nuclei to effect circadian adjustment and to the pretectal area to control the pupillary light reflex . Complex eyes distinguish shapes and colours . The visual fields of many organisms, especially predators, involve large areas of binocular vision for depth perception . In other organisms, particularly prey animals, eyes are located to maximise

7497-671: The Devonian period, and the palaeodictyopteran Delitzschala bitterfeldensis , from about 325  million years ago in the Carboniferous period, respectively. The Mazon Creek lagerstätten from the Late Carboniferous, about 300  million years ago , include about 200 species, some gigantic by modern standards, and indicate that insects had occupied their main modern ecological niches as herbivores , detritivores and insectivores . Social termites and ants first appear in

7616-628: The Early Cretaceous , and advanced social bees have been found in Late Cretaceous rocks but did not become abundant until the Middle Cenozoic . From 1952 to 1977, zoologist Sidnie Manton and others argued that arthropods are polyphyletic , in other words, that they do not share a common ancestor that was itself an arthropod. Instead, they proposed that three separate groups of "arthropods" evolved separately from common worm-like ancestors:

7735-423: The adult body. Dragonfly larvae have the typical cuticles and jointed limbs of arthropods but are flightless water-breathers with extendable jaws. Crustaceans commonly hatch as tiny nauplius larvae that have only three segments and pairs of appendages. Based on the distribution of shared plesiomorphic features in extant and fossil taxa, the last common ancestor of all arthropods is inferred to have been as

7854-470: The animal cannot support itself and finds it very difficult to move, and the new endocuticle has not yet formed. The animal continues to pump itself up to stretch the new cuticle as much as possible, then hardens the new exocuticle and eliminates the excess air or water. By the end of this phase, the new endocuticle has formed. Many arthropods then eat the discarded cuticle to reclaim its materials. Because arthropods are unprotected and nearly immobilized until

7973-440: The brain and function as part of it. In insects these other head ganglia combine into a pair of subesophageal ganglia , under and behind the esophagus. Spiders take this process a step further, as all the segmental ganglia are incorporated into the subesophageal ganglia, which occupy most of the space in the cephalothorax (front "super-segment"). There are two different types of arthropod excretory systems. In aquatic arthropods,

8092-399: The cells of the dilator muscle. The vitreous is the transparent, colourless, gelatinous mass that fills the space between the lens of the eye and the retina lining the back of the eye. It is produced by certain retinal cells. It is of rather similar composition to the cornea, but contains very few cells (mostly phagocytes which remove unwanted cellular debris in the visual field, as well as

8211-456: The class was already quite diverse and worldwide, suggesting that they had been around for quite some time. In the Maotianshan shales , which date back to 518 million years ago, arthropods such as Kylinxia and Erratus have been found that seem to represent transitional fossils between stem (e.g. Radiodonta such as Anomalocaris ) and true arthropods. Re-examination in the 1970s of

8330-449: The details of their structure, but generally consist of three main layers: the epicuticle , a thin outer waxy coat that moisture-proofs the other layers and gives them some protection; the exocuticle , which consists of chitin and chemically hardened proteins ; and the endocuticle , which consists of chitin and unhardened proteins. The exocuticle and endocuticle together are known as the procuticle . Each body segment and limb section

8449-520: The direction from which light is coming, using the shadow cast by the walls of the cup. However, the main eyes of spiders are pigment-cup ocelli that are capable of forming images, and those of jumping spiders can rotate to track prey. Compound eyes consist of fifteen to several thousand independent ommatidia , columns that are usually hexagonal in cross section . Each ommatidium is an independent sensor, with its own light-sensitive cells and often with its own lens and cornea . Compound eyes have

8568-399: The directionality of light by the shadow cast by its opaque body. The ciliary body is triangular in horizontal section and is coated by a double layer, the ciliary epithelium. The inner layer is transparent and covers the vitreous body, and is continuous from the neural tissue of the retina. The outer layer is highly pigmented, continuous with the retinal pigment epithelium, and constitutes

8687-588: The edge of its shell. It detects moving objects as they pass successive lenses. There is at least one vertebrate, the spookfish , whose eyes include reflective optics for focusing of light. Each of the two eyes of a spookfish collects light from both above and below; the light coming from above is focused by a lens, while that coming from below, by a curved mirror composed of many layers of small reflective plates made of guanine crystals . A compound eye may consist of thousands of individual photoreceptor units or ommatidia ( ommatidium , singular). The image perceived

8806-469: The end-product of biochemical reactions that metabolise nitrogen is ammonia , which is so toxic that it needs to be diluted as much as possible with water. The ammonia is then eliminated via any permeable membrane, mainly through the gills. All crustaceans use this system, and its high consumption of water may be responsible for the relative lack of success of crustaceans as land animals. Various groups of terrestrial arthropods have independently developed

8925-415: The epidermis. Setae are as varied in form and function as appendages. For example, they are often used as sensors to detect air or water currents, or contact with objects; aquatic arthropods use feather -like setae to increase the surface area of swimming appendages and to filter food particles out of water; aquatic insects, which are air-breathers, use thick felt -like coats of setae to trap air, extending

9044-403: The evolutionary stages by which all these different combinations could have appeared is so difficult that it has long been known as "The arthropod head problem ". In 1960, R. E. Snodgrass even hoped it would not be solved, as he found trying to work out solutions to be fun. Arthropod exoskeletons are made of cuticle , a non-cellular material secreted by the epidermis . Their cuticles vary in

9163-504: The exocuticle and the outer part of the endocuticle. Two recent hypotheses about the evolution of biomineralization in arthropods and other groups of animals propose that it provides tougher defensive armor, and that it allows animals to grow larger and stronger by providing more rigid skeletons; and in either case a mineral-organic composite exoskeleton is cheaper to build than an all-organic one of comparable strength. The cuticle may have setae (bristles) growing from special cells in

9282-422: The eye allows light to enter and project onto a light-sensitive layer of cells known as the retina . The cone cells (for colour) and the rod cells (for low-light contrasts) in the retina detect and convert light into neural signals which are transmitted to the brain via the optic nerve to produce vision. Such eyes are typically spheroid, filled with the transparent gel-like vitreous humour , possess

9401-412: The eye and spread tears across the cornea to prevent dehydration. These eyelids are also supplemented by the presence of eyelashes , multiple rows of highly innervated and sensitive hairs which grow from the eyelid margins to protect the eye from fine particles and small irritants such as insects. An alternative to a lens is to line the inside of the eye with "mirrors", and reflect the image to focus at

9520-446: The eye. Photoreception is phylogenetically very old, with various theories of phylogenesis. The common origin ( monophyly ) of all animal eyes is now widely accepted as fact. This is based upon the shared genetic features of all eyes; that is, all modern eyes, varied as they are, have their origins in a proto-eye believed to have evolved some 650-600 million years ago, and the PAX6 gene

9639-502: The females take into their bodies. A few such species rely on females to find spermatophores that have already been deposited on the ground, but in most cases males only deposit spermatophores when complex courtship rituals look likely to be successful. Most arthropods lay eggs, but scorpions are ovoviviparous : they produce live young after the eggs have hatched inside the mother, and are noted for prolonged maternal care. Newly born arthropods have diverse forms, and insects alone cover

9758-435: The field of view, such as in rabbits and horses , which have monocular vision . The first proto-eyes evolved among animals 600  million years ago about the time of the Cambrian explosion . The last common ancestor of animals possessed the biochemical toolkit necessary for vision, and more advanced eyes have evolved in 96% of animal species in six of the ~35 main phyla . In most vertebrates and some molluscs ,

9877-425: The form of membranes that function as eardrums , but are connected directly to nerves rather than to auditory ossicles . The antennae of most hexapods include sensor packages that monitor humidity , moisture and temperature. Most arthropods lack balance and acceleration sensors, and rely on their eyes to tell them which way is up. The self-righting behavior of cockroaches is triggered when pressure sensors on

9996-406: The ganglia of these segments and encircle the esophagus . The respiratory and excretory systems of arthropods vary, depending as much on their environment as on the subphylum to which they belong. Arthropods use combinations of compound eyes and pigment-pit ocelli for vision. In most species, the ocelli can only detect the direction from which light is coming, and the compound eyes are

10115-481: The geometry of cephalopod and most vertebrate eyes creates the impression that the vertebrate eye evolved from an imaging cephalopod eye , but this is not the case, as the reversed roles of their respective ciliary and rhabdomeric opsin classes and different lens crystallins show. The very earliest "eyes", called eye-spots, were simple patches of photoreceptor protein in unicellular animals. In multicellular beings, multicellular eyespots evolved, physically similar to

10234-410: The gut and the body wall that accommodates the internal organs. The strong, segmented limbs of arthropods eliminate the need for one of the coelom's main ancestral functions, as a hydrostatic skeleton , which muscles compress in order to change the animal's shape and thus enable it to move. Hence the coelom of the arthropod is reduced to small areas around the reproductive and excretory systems. Its place

10353-432: The heart but prevent it from leaving before it reaches the front. Arthropods have a wide variety of respiratory systems. Small species often do not have any, since their high ratio of surface area to volume enables simple diffusion through the body surface to supply enough oxygen. Crustacea usually have gills that are modified appendages. Many arachnids have book lungs . Tracheae, systems of branching tunnels that run from

10472-449: The horseshoe crab, and there are suggestions that other chelicerates developed their simple eyes by reduction from a compound starting point. (Some caterpillars appear to have evolved compound eyes from simple eyes in the opposite fashion.) Apposition eyes work by gathering a number of images, one from each eye, and combining them in the brain, with each eye typically contributing a single point of information. The typical apposition eye has

10591-561: The hot vents, allowing the creatures to avoid being boiled alive. There are ten different eye layouts. Eye types can be categorised into "simple eyes", with one concave photoreceptive surface, and "compound eyes", which comprise a number of individual lenses laid out on a convex surface. "Simple" does not imply a reduced level of complexity or acuity. Indeed, any eye type can be adapted for almost any behaviour or environment. The only limitations specific to eye types are that of resolution—the physics of compound eyes prevents them from achieving

10710-425: The hyalocytes of Balazs of the surface of the vitreous, which reprocess the hyaluronic acid ), no blood vessels, and 98–99% of its volume is water (as opposed to 75% in the cornea) with salts, sugars, vitrosin (a type of collagen), a network of collagen type II fibres with the mucopolysaccharide hyaluronic acid, and also a wide array of proteins in micro amounts. Amazingly, with so little solid matter, it tautly holds

10829-479: The idea that scorpions were primitively aquatic and evolved air-breathing book lungs later on. However subsequent studies reveal most of them lacking reliable evidence for an aquatic lifestyle, while exceptional aquatic taxa (e.g. Waeringoscorpio ) most likely derived from terrestrial scorpion ancestors. The oldest fossil record of hexapod is obscure, as most of the candidates are poorly preserved and their hexapod affinities had been disputed. An iconic example

10948-417: The juvenile arthropods continue in their life cycle until they either pupate or moult again. In the initial phase of moulting, the animal stops feeding and its epidermis releases moulting fluid, a mixture of enzymes that digests the endocuticle and thus detaches the old cuticle. This phase begins when the epidermis has secreted a new epicuticle to protect it from the enzymes, and the epidermis secretes

11067-826: The last common ancestor of both arthropods and Priapulida shared the same specialized mouth apparatus: a circular mouth with rings of teeth used for capturing animal prey. It has been proposed that the Ediacaran animals Parvancorina and Spriggina , from around 555  million years ago , were arthropods, but later study shows that their affinities of being origin of arthropods are not reliable. Small arthropods with bivalve-like shells have been found in Early Cambrian fossil beds dating 541 to 539 million years ago in China and Australia. The earliest Cambrian trilobite fossils are about 520 million years old, but

11186-424: The lens tissue is corrected with inhomogeneous lens material (see Luneburg lens ), or with an aspheric shape. Flattening the lens has a disadvantage; the quality of vision is diminished away from the main line of focus. Thus, animals that have evolved with a wide field-of-view often have eyes that make use of an inhomogeneous lens. As mentioned above, a refractive cornea is only useful out of water. In water, there

11305-439: The main source of information, but the main eyes of spiders are ocelli that can form images and, in a few cases, can swivel to track prey. Arthropods also have a wide range of chemical and mechanical sensors, mostly based on modifications of the many bristles known as setae that project through their cuticles. Similarly, their reproduction and development are varied; all terrestrial species use internal fertilization , but this

11424-518: The name has been the subject of considerable confusion, with credit often given erroneously to Pierre André Latreille or Karl Theodor Ernst von Siebold instead, among various others. Terrestrial arthropods are often called bugs. The term is also occasionally extended to colloquial names for freshwater or marine crustaceans (e.g., Balmain bug , Moreton Bay bug , mudbug ) and used by physicians and bacteriologists for disease-causing germs (e.g., superbugs ), but entomologists reserve this term for

11543-430: The new cuticle has hardened, they are in danger both of being trapped in the old cuticle and of being attacked by predators . Moulting may be responsible for 80 to 90% of all arthropod deaths. Arthropod bodies are also segmented internally, and the nervous, muscular, circulatory, and excretory systems have repeated components. Arthropods come from a lineage of animals that have a coelom , a membrane-lined cavity between

11662-407: The new exocuticle while the old cuticle is detaching. When this stage is complete, the animal makes its body swell by taking in a large quantity of water or air, and this makes the old cuticle split along predefined weaknesses where the old exocuticle was thinnest. It commonly takes several minutes for the animal to struggle out of the old cuticle. At this point, the new one is wrinkled and so soft that

11781-469: The old exoskeleton, the exuviae , after growing a new one that is not yet hardened. Moulting cycles run nearly continuously until an arthropod reaches full size. The developmental stages between each moult (ecdysis) until sexual maturity is reached is called an instar . Differences between instars can often be seen in altered body proportions, colors, patterns, changes in the number of body segments or head width. After moulting, i.e. shedding their exoskeleton,

11900-594: The ommatidia of bees contain receptors for both green and ultra-violet . A few arthropods, such as barnacles , are hermaphroditic , that is, each can have the organs of both sexes . However, individuals of most species remain of one sex their entire lives. A few species of insects and crustaceans can reproduce by parthenogenesis , especially if conditions favor a "population explosion". However, most arthropods rely on sexual reproduction , and parthenogenetic species often revert to sexual reproduction when conditions become less favorable. The ability to undergo meiosis

12019-529: The openings in the body walls, deliver oxygen directly to individual cells in many insects, myriapods and arachnids . Living arthropods have paired main nerve cords running along their bodies below the gut, and in each segment the cords form a pair of ganglia from which sensory and motor nerves run to other parts of the segment. Although the pairs of ganglia in each segment often appear physically fused, they are connected by commissures (relatively large bundles of nerves), which give arthropod nervous systems

12138-462: The other is amniotes , whose living members are reptiles, birds and mammals. Both the smallest and largest arthropods are crustaceans . The smallest belong to the class Tantulocarida , some of which are less than 100 micrometres (0.0039 in) long. The largest are species in the class Malacostraca , with the legs of the Japanese spider crab potentially spanning up to 4 metres (13 ft) and

12257-438: The outside world, except that they are penetrated by many sensors or connections from sensors to the nervous system. In fact, arthropods have modified their cuticles into elaborate arrays of sensors. Various touch sensors, mostly setae , respond to different levels of force, from strong contact to very weak air currents. Chemical sensors provide equivalents of taste and smell , often by means of setae. Pressure sensors often take

12376-459: The parabolic superposition compound eye type, seen in arthropods such as mayflies , the parabolic surfaces of the inside of each facet focus light from a reflector to a sensor array. Long-bodied decapod crustaceans such as shrimp , prawns , crayfish and lobsters are alone in having reflecting superposition eyes, which also have a transparent gap but use corner mirrors instead of lenses. This eye type functions by refracting light, then using

12495-461: The possibility of damage under the intense light; shielding the receptors would block out some light and thus reduce their sensitivity. This fast response has led to suggestions that the ocelli of insects are used mainly in flight, because they can be used to detect sudden changes in which way is up (because light, especially UV light which is absorbed by vegetation, usually comes from above). Some marine organisms bear more than one lens; for instance

12614-439: The range of extremes. Some hatch as apparently miniature adults (direct development), and in some cases, such as silverfish , the hatchlings do not feed and may be helpless until after their first moult. Many insects hatch as grubs or caterpillars , which do not have segmented limbs or hardened cuticles, and metamorphose into adult forms by entering an inactive phase in which the larval tissues are broken down and re-used to build

12733-438: The receptor patches for taste and smell. These eyespots could only sense ambient brightness: they could distinguish light and dark, but not the direction of the light source. Through gradual change, the eye-spots of species living in well-lit environments depressed into a shallow "cup" shape. The ability to slightly discriminate directional brightness was achieved by using the angle at which the light hit certain cells to identify

12852-509: The refracting superposition type, in the rear behind this in each eye there is a single large facet that is three times in diameter the others in the eye and behind this is an enlarged crystalline cone. This projects an upright image on a specialised retina. The resulting eye is a mixture of a simple eye within a compound eye. Another version is a compound eye often referred to as "pseudofaceted", as seen in Scutigera . This type of eye consists of

12971-416: The same angle on the other side. The result is an image at half the radius of the eye, which is where the tips of the rhabdoms are. This type of compound eye, for which a minimal size exists below which effective superposition cannot occur, is normally found in nocturnal insects, because it can create images up to 1000 times brighter than equivalent apposition eyes, though at the cost of reduced resolution. In

13090-493: The single branch serves as a leg. includes Aysheaia and Peripatus   includes Hallucigenia and Microdictyon includes modern tardigrades as well as extinct animals like Kerygmachela and Opabinia Anomalocaris includes living groups and extinct forms such as trilobites Further analysis and discoveries in the 1990s reversed this view, and led to acceptance that arthropods are monophyletic , in other words they are inferred to share

13209-404: The source. The pit deepened over time, the opening diminished in size, and the number of photoreceptor cells increased, forming an effective pinhole camera that was capable of dimly distinguishing shapes. However, the ancestors of modern hagfish , thought to be the protovertebrate, were evidently pushed to very deep, dark waters, where they were less vulnerable to sighted predators, and where it

13328-627: The surrounding environment, regulates its intensity through a diaphragm , focuses it through an adjustable assembly of lenses to form an image , converts this image into a set of electrical signals, and transmits these signals to the brain through neural pathways that connect the eye via the optic nerve to the visual cortex and other areas of the brain. Eyes with resolving power have come in ten fundamentally different forms, classified into compound eyes and non-compound eyes. Compound eyes are made up of multiple small visual units, and are common on insects and crustaceans . Non-compound eyes have

13447-622: The surroundings are light or dark , which is sufficient for the entrainment of circadian rhythms . These are not considered eyes because they lack enough structure to be considered an organ, and do not produce an image. Every technological method of capturing an optical image that humans commonly use occurs in nature, with the exception of zoom and Fresnel lenses . Simple eyes are rather ubiquitous, and lens-bearing eyes have evolved at least seven times in vertebrates , cephalopods , annelids , crustaceans and Cubozoa . Pit eyes, also known as stemmata , are eye-spots which may be set into

13566-433: The three groups use different chemical means of hardening the cuticle; that there were significant differences in the construction of their compound eyes; that it is hard to see how such different configurations of segments and appendages in the head could have evolved from the same ancestor; and that crustaceans have biramous limbs with separate gill and leg branches, while the other two groups have uniramous limbs in which

13685-574: The time they can spend under water; heavy, rigid setae serve as defensive spines. Although all arthropods use muscles attached to the inside of the exoskeleton to flex their limbs, some still use hydraulic pressure to extend them, a system inherited from their pre-arthropod ancestors; for example, all spiders extend their legs hydraulically and can generate pressures up to eight times their resting level. The exoskeleton cannot stretch and thus restricts growth. Arthropods, therefore, replace their exoskeletons by undergoing ecdysis (moulting), or shedding

13804-479: The transparent crystallin protein. Arthropod Condylipoda Latreille, 1802 Arthropods ( / ˈ ɑːr θ r ə p ɒ d / ARTH -rə-pod ) are invertebrates in the phylum Arthropoda . They possess an exoskeleton with a cuticle made of chitin , often mineralised with calcium carbonate , a body with differentiated ( metameric ) segments , and paired jointed appendages . In order to keep growing, they must go through stages of moulting ,

13923-477: The two-part appearance of spiders is a result of this grouping. There are no external signs of segmentation in mites . Arthropods also have two body elements that are not part of this serially repeated pattern of segments, an ocular somite at the front, where the mouth and eyes originated, and a telson at the rear, behind the anus . Originally it seems that each appendage-bearing segment had two separate pairs of appendages: an upper, unsegmented exite and

14042-656: The underside of the feet report no pressure. However, many malacostracan crustaceans have statocysts , which provide the same sort of information as the balance and motion sensors of the vertebrate inner ear . The proprioceptors of arthropods, sensors that report the force exerted by muscles and the degree of bending in the body and joints, are well understood. However, little is known about what other internal sensors arthropods may have. Most arthropods have sophisticated visual systems that include one or more usually both of compound eyes and pigment-cup ocelli ("little eyes"). In most cases ocelli are only capable of detecting

14161-469: The vertebrates, that were only forced into the photopic environment at a late stage). Eyes in various animals show adaptation to their requirements. For example, the eye of a bird of prey has much greater visual acuity than a human eye , and in some cases can detect ultraviolet radiation. The different forms of eye in, for example, vertebrates and molluscs are examples of parallel evolution , despite their distant common ancestry. Phenotypic convergence of

#442557