Misplaced Pages

Tau Boötis

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Tau Boötis , Latinised from τ Boötis, is an F-type main-sequence star approximately 51 light-years away in the constellation of Boötes . It is a binary star system, with the secondary star being a red dwarf . In 1999, an extrasolar planet was detected orbiting the primary star.

#940059

121-426: The system is a binary . The primary component is a yellow-white dwarf ( spectral type F6V) and secondary is a dim red dwarf (spectral type M2). The system is relatively nearby, distance being about 51 light-years . The primary star should be easily visible to the unaided eye under dark skies. The primary star, Tau Boötis A is a yellow-white dwarf. It is 35 percent more massive and 42 percent larger than

242-406: A main-sequence star goes through an activity cycle, the outer layers of the star are subject to a magnetic torque changing the distribution of angular momentum, resulting in a change in the star's oblateness. The orbit of the stars in the binary pair is gravitationally coupled to their shape changes, so that the period shows modulations (typically on the order of ∆P/P ~ 10 ) on the same time scale as

363-493: A main-sequence star increases in size during its evolution , it may at some point exceed its Roche lobe , meaning that some of its matter ventures into a region where the gravitational pull of its companion star is larger than its own. The result is that matter will transfer from one star to another through a process known as Roche lobe overflow (RLOF), either being absorbed by direct impact or through an accretion disc . The mathematical point through which this transfer happens

484-747: A or i can be determined by other means, as in the case of eclipsing binaries, a complete solution for the orbit can be found. Binary stars that are both visual and spectroscopic binaries are rare and are a valuable source of information when found. About 40 are known. Visual binary stars often have large true separations, with periods measured in decades to centuries; consequently, they usually have orbital speeds too small to be measured spectroscopically. Conversely, spectroscopic binary stars move fast in their orbits because they are close together, usually too close to be detected as visual binaries. Binaries that are found to be both visual and spectroscopic thus must be relatively close to Earth. An eclipsing binary star

605-451: A supernova that destroys the entire star, another possible cause for runaways. An example of such an event is the supernova SN 1572 , which was observed by Tycho Brahe . The Hubble Space Telescope recently took a picture of the remnants of this event. Binaries provide the best method for astronomers to determine the mass of a distant star. The gravitational pull between them causes them to orbit around their common center of mass. From

726-406: A white dwarf has a close companion star that overflows its Roche lobe , the white dwarf will steadily accrete gases from the star's outer atmosphere. These are compacted on the white dwarf's surface by its intense gravity, compressed and heated to very high temperatures as additional material is drawn in. The white dwarf consists of degenerate matter and so is largely unresponsive to heat, while

847-463: A November 1783 letter to Henry Cavendish , and in the early 20th century, physicists used the term "gravitationally collapsed object". Science writer Marcia Bartusiak traces the term "black hole" to physicist Robert H. Dicke , who in the early 1960s reportedly compared the phenomenon to the Black Hole of Calcutta , notorious as a prison where people entered but never left alive. The term "black hole"

968-428: A Schwarzschild black hole (i.e., non-rotating and not charged) cannot avoid being carried into the singularity once they cross the event horizon. They can prolong the experience by accelerating away to slow their descent, but only up to a limit. When they reach the singularity, they are crushed to infinite density and their mass is added to the total of the black hole. Before that happens, they will have been torn apart by

1089-604: A binary star happens to orbit in a plane along our line of sight, its components will eclipse and transit each other; these pairs are called eclipsing binaries , or, together with other binaries that change brightness as they orbit, photometric binaries . If components in binary star systems are close enough, they can gravitationally distort each other's outer stellar atmospheres. In some cases, these close binary systems can exchange mass, which may bring their evolution to stages that single stars cannot attain. Examples of binaries are Sirius , and Cygnus X-1 (Cygnus X-1 being

1210-582: A binary star was computed in 1827, when Félix Savary computed the orbit of Xi Ursae Majoris . Over the years, many more double stars have been catalogued and measured. As of June 2017, the Washington Double Star Catalog , a database of visual double stars compiled by the United States Naval Observatory , contains over 100,000 pairs of double stars, including optical doubles as well as binary stars. Orbits are known for only

1331-507: A black hole acts like an ideal black body , as it reflects no light. Quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation , with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes , making it essentially impossible to observe directly. Objects whose gravitational fields are too strong for light to escape were first considered in

SECTION 10

#1732872231941

1452-506: A black hole appears to slow as it approaches the event horizon, taking an infinite amount of time to reach it. At the same time, all processes on this object slow down, from the viewpoint of a fixed outside observer, causing any light emitted by the object to appear redder and dimmer, an effect known as gravitational redshift . Eventually, the falling object fades away until it can no longer be seen. Typically this process happens very rapidly with an object disappearing from view within less than

1573-462: A black hole can be inferred through its interaction with other matter and with electromagnetic radiation such as visible light. Any matter that falls toward a black hole can form an external accretion disk heated by friction , forming quasars , some of the brightest objects in the universe. Stars passing too close to a supermassive black hole can be shredded into streamers that shine very brightly before being "swallowed." If other stars are orbiting

1694-489: A black hole is the appearance of an event horizon—a boundary in spacetime through which matter and light can pass only inward towards the mass of the black hole. Nothing, not even light, can escape from inside the event horizon. The event horizon is referred to as such because if an event occurs within the boundary, information from that event cannot reach an outside observer, making it impossible to determine whether such an event occurred. As predicted by general relativity,

1815-502: A black hole, as determined by the radius of the event horizon, or Schwarzschild radius, is proportional to the mass, M , through where r s is the Schwarzschild radius and M ☉ is the mass of the Sun . For a black hole with nonzero spin and/or electric charge, the radius is smaller, until an extremal black hole could have an event horizon close to The defining feature of

1936-519: A black hole, their orbits can be used to determine the black hole's mass and location. Such observations can be used to exclude possible alternatives such as neutron stars. In this way, astronomers have identified numerous stellar black hole candidates in binary systems and established that the radio source known as Sagittarius A* , at the core of the Milky Way galaxy, contains a supermassive black hole of about 4.3 million solar masses. The idea of

2057-450: A body so big that even light could not escape was briefly proposed by English astronomical pioneer and clergyman John Michell in a letter published in November 1784. Michell's simplistic calculations assumed such a body might have the same density as the Sun, and concluded that one would form when a star's diameter exceeds the Sun's by a factor of 500, and its surface escape velocity exceeds

2178-458: A central object. In general relativity, however, there exists an innermost stable circular orbit (often called the ISCO), for which any infinitesimal inward perturbations to a circular orbit will lead to spiraling into the black hole, and any outward perturbations will, depending on the energy, result in spiraling in, stably orbiting between apastron and periastron, or escaping to infinity. The location of

2299-404: A density as the Sun. Firstly, the force of gravitation would be so great that light would be unable to escape from it, the rays falling back to the star like a stone to the earth. Secondly, the red shift of the spectral lines would be so great that the spectrum would be shifted out of existence. Thirdly, the mass would produce so much curvature of the spacetime metric that space would close up around

2420-442: A deviation in a star's position caused by an unseen companion. Any binary star can belong to several of these classes; for example, several spectroscopic binaries are also eclipsing binaries. A visual binary star is a binary star for which the angular separation between the two components is great enough to permit them to be observed as a double star in a telescope , or even high-powered binoculars . The angular resolution of

2541-481: A few thousand of these double stars. The term binary was first used in this context by Sir William Herschel in 1802, when he wrote: If, on the contrary, two stars should really be situated very near each other, and at the same time so far insulated as not to be materially affected by the attractions of neighbouring stars, they will then compose a separate system, and remain united by the bond of their own mutual gravitation towards each other. This should be called

SECTION 20

#1732872231941

2662-454: A gas flow can actually be seen. It is also possible for widely separated binaries to lose gravitational contact with each other during their lifetime, as a result of external perturbations. The components will then move on to evolve as single stars. A close encounter between two binary systems can also result in the gravitational disruption of both systems, with some of the stars being ejected at high velocities, leading to runaway stars . If

2783-473: A mathematical curiosity; it was not until the 1960s that theoretical work showed they were a generic prediction of general relativity. The discovery of neutron stars by Jocelyn Bell Burnell in 1967 sparked interest in gravitationally collapsed compact objects as a possible astrophysical reality. The first black hole known was Cygnus X-1 , identified by several researchers independently in 1971. Black holes of stellar mass form when massive stars collapse at

2904-564: A near star paired with a distant star so he could measure the near star's changing position as the Earth orbited the Sun (measure its parallax ), allowing him to calculate the distance to the near star. He would soon publish catalogs of about 700 double stars. By 1803, he had observed changes in the relative positions in a number of double stars over the course of 25 years, and concluded that, instead of showing parallax changes, they seemed to be orbiting each other in binary systems. The first orbit of

3025-431: A non-rotating black hole, this region takes the shape of a single point; for a rotating black hole it is smeared out to form a ring singularity that lies in the plane of rotation. In both cases, the singular region has zero volume. It can also be shown that the singular region contains all the mass of the black hole solution. The singular region can thus be thought of as having infinite density . Observers falling into

3146-412: A period of 122 days—much shorter than the solar cycle . Tau Boötis B (with a capital B, as opposed to the planet) is a dim, 11 mag red dwarf with only about half the mass and radius of the Sun. It orbits the primary star at an average distance of about 220 AU (14 arcseconds ) but comes as close as about 28 AU to the primary, giving its orbit a very high eccentricity of about 0.87. One orbit around

3267-400: A real double star; and any two stars that are thus mutually connected, form the binary sidereal system which we are now to consider. By the modern definition, the term binary star is generally restricted to pairs of stars which revolve around a common center of mass. Binary stars which can be resolved with a telescope or interferometric methods are known as visual binaries . For most of

3388-495: A second. On the other hand, indestructible observers falling into a black hole do not notice any of these effects as they cross the event horizon. According to their own clocks, which appear to them to tick normally, they cross the event horizon after a finite time without noting any singular behaviour; in classical general relativity, it is impossible to determine the location of the event horizon from local observations, due to Einstein's equivalence principle . The topology of

3509-419: A situation where quantum effects should describe these actions, due to the extremely high density and therefore particle interactions. To date, it has not been possible to combine quantum and gravitational effects into a single theory, although there exist attempts to formulate such a theory of quantum gravity . It is generally expected that such a theory will not feature any singularities. The photon sphere

3630-542: A student of Hendrik Lorentz , independently gave the same solution for the point mass and wrote more extensively about its properties. This solution had a peculiar behaviour at what is now called the Schwarzschild radius , where it became singular , meaning that some of the terms in the Einstein equations became infinite. The nature of this surface was not quite understood at the time. In 1924, Arthur Eddington showed that

3751-416: A visual binary, even with telescopes of the highest existing resolving power . In some spectroscopic binaries, spectral lines from both stars are visible, and the lines are alternately double and single. Such a system is known as a double-lined spectroscopic binary (often denoted "SB2"). In other systems, the spectrum of only one of the stars is seen, and the lines in the spectrum shift periodically towards

Tau Boötis - Misplaced Pages Continue

3872-417: A wave rather than a particle, it was unclear what, if any, influence gravity would have on escaping light waves. The modern theory of gravity, general relativity, discredits Michell's notion of a light ray shooting directly from the surface of a supermassive star, being slowed down by the star's gravity, stopping, and then free-falling back to the star's surface. Instead, spacetime itself is curved such that

3993-598: A well-known black hole ). Binary stars are also common as the nuclei of many planetary nebulae , and are the progenitors of both novae and type Ia supernovae . Double stars , a pair of stars that appear close to each other, have been observed since the invention of the telescope . Early examples include Mizar and Acrux . Mizar, in the Big Dipper ( Ursa Major ), was observed to be double by Giovanni Battista Riccioli in 1650 (and probably earlier by Benedetto Castelli and Galileo ). The bright southern star Acrux , in

4114-456: A young, early-type , high-mass donor star which transfers mass by its stellar wind , while low-mass X-ray binaries are semidetached binaries in which gas from a late-type donor star or a white dwarf overflows the Roche lobe and falls towards the neutron star or black hole. Probably the best known example of an X-ray binary is the high-mass X-ray binary Cygnus X-1 . In Cygnus X-1, the mass of

4235-487: Is a sine curve. If the orbit is elliptical , the shape of the curve depends on the eccentricity of the ellipse and the orientation of the major axis with reference to the line of sight. It is impossible to determine individually the semi-major axis a and the inclination of the orbit plane i . However, the product of the semi-major axis and the sine of the inclination (i.e. a  sin  i ) may be determined directly in linear units (e.g. kilometres). If either

4356-574: Is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved as separate stars using a telescope , in which case they are called visual binaries . Many visual binaries have long orbital periods of several centuries or millennia and therefore have orbits which are uncertain or poorly known. They may also be detected by indirect techniques, such as spectroscopy ( spectroscopic binaries ) or astrometry ( astrometric binaries ). If

4477-492: Is a binary star system in which the orbital plane of the two stars lies so nearly in the line of sight of the observer that the components undergo mutual eclipses . In the case where the binary is also a spectroscopic binary and the parallax of the system is known, the binary is quite valuable for stellar analysis. Algol , a triple star system in the constellation Perseus , contains the best-known example of an eclipsing binary. Eclipsing binaries are variable stars, not because

4598-508: Is a region of spacetime wherein gravity is so strong that no matter or electromagnetic energy (e.g. light ) can escape it. Albert Einstein 's theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon . A black hole has a great effect on the fate and circumstances of an object crossing it, but it has no locally detectable features according to general relativity. In many ways,

4719-432: Is a spherical boundary where photons that move on tangents to that sphere would be trapped in a non-stable but circular orbit around the black hole. For non-rotating black holes, the photon sphere has a radius 1.5 times the Schwarzschild radius. Their orbits would be dynamically unstable , hence any small perturbation, such as a particle of infalling matter, would cause an instability that would grow over time, either setting

4840-493: Is also used to locate extrasolar planets orbiting a star. However, the requirements to perform this measurement are very exacting, due to the great difference in the mass ratio, and the typically long period of the planet's orbit. Detection of position shifts of a star is a very exacting science, and it is difficult to achieve the necessary precision. Space telescopes can avoid the blurring effect of Earth's atmosphere , resulting in more precise resolution. Another classification

4961-471: Is based on the distance between the stars, relative to their sizes: Detached binaries are binary stars where each component is within its Roche lobe , i.e. the area where the gravitational pull of the star itself is larger than that of the other component. While on the main sequence the stars have no major effect on each other, and essentially evolve separately. Most binaries belong to this class. Semidetached binary stars are binary stars where one of

Tau Boötis - Misplaced Pages Continue

5082-444: Is called the first Lagrangian point . It is not uncommon that the accretion disc is the brightest (and thus sometimes the only visible) element of a binary star. If a star grows outside of its Roche lobe too fast for all abundant matter to be transferred to the other component, it is also possible that matter will leave the system through other Lagrange points or as stellar wind , thus being effectively lost to both components. Since

5203-409: Is designated RHD 1 . These discoverer codes can be found in the Washington Double Star Catalog . The secondary star in a binary star system may be designated as the hot companion or cool companion , depending on its temperature relative to the primary star. Examples: While it is not impossible that some binaries might be created through gravitational capture between two single stars, given

5324-590: Is identical to that of any other body of the same mass. Solutions describing more general black holes also exist. Non-rotating charged black holes are described by the Reissner–Nordström metric , while the Kerr metric describes a non-charged rotating black hole. The most general stationary black hole solution known is the Kerr–Newman metric, which describes a black hole with both charge and angular momentum. While

5445-543: Is taken from the rotational energy of the black hole. Thereby the rotation of the black hole slows down. A variation of the Penrose process in the presence of strong magnetic fields, the Blandford–Znajek process is considered a likely mechanism for the enormous luminosity and relativistic jets of quasars and other active galactic nuclei . In Newtonian gravity , test particles can stably orbit at arbitrary distances from

5566-418: Is the primary star, and the dimmer is considered the secondary. In some publications (especially older ones), a faint secondary is called the comes (plural comites ; companion). If the stars are the same brightness, the discoverer designation for the primary is customarily accepted. The position angle of the secondary with respect to the primary is measured, together with the angular distance between

5687-409: Is the only vacuum solution that is spherically symmetric . This means there is no observable difference at a distance between the gravitational field of such a black hole and that of any other spherical object of the same mass. The popular notion of a black hole "sucking in everything" in its surroundings is therefore correct only near a black hole's horizon; far away, the external gravitational field

5808-414: Is the result of a process known as frame-dragging ; general relativity predicts that any rotating mass will tend to slightly "drag" along the spacetime immediately surrounding it. Any object near the rotating mass will tend to start moving in the direction of rotation. For a rotating black hole, this effect is so strong near the event horizon that an object would have to move faster than the speed of light in

5929-549: Is thought to have generated a black hole shortly afterward, have refined the TOV limit estimate to ~2.17  M ☉ . Oppenheimer and his co-authors interpreted the singularity at the boundary of the Schwarzschild radius as indicating that this was the boundary of a bubble in which time stopped. This is a valid point of view for external observers, but not for infalling observers. The hypothetical collapsed stars were called "frozen stars", because an outside observer would see

6050-669: The LIGO Scientific Collaboration and the Virgo collaboration announced the first direct detection of gravitational waves , representing the first observation of a black hole merger. On 10 April 2019, the first direct image of a black hole and its vicinity was published, following observations made by the Event Horizon Telescope (EHT) in 2017 of the supermassive black hole in Messier 87's galactic centre . As of 2023 ,

6171-522: The LMC , SMC , Andromeda Galaxy , and Triangulum Galaxy . Eclipsing binaries offer a direct method to gauge the distance to galaxies to an improved 5% level of accuracy. Nearby non-eclipsing binaries can also be photometrically detected by observing how the stars affect each other in three ways. The first is by observing extra light which the stars reflect from their companion. Second is by observing ellipsoidal light variations which are caused by deformation of

SECTION 50

#1732872231941

6292-483: The Oppenheimer–Snyder model in their paper "On Continued Gravitational Contraction", which predicted the existence of black holes. In the paper, which made no reference to Einstein's recent publication, Oppenheimer and Snyder used Einstein's own theory of general relativity to show the conditions on how a black hole could develop, for the first time in contemporary physics. In 1958, David Finkelstein identified

6413-467: The Pleiades cluster, and calculated that the likelihood of finding such a close grouping of stars was about one in half a million. He concluded that the stars in these double or multiple star systems might be drawn to one another by gravitational pull, thus providing the first evidence for the existence of binary stars and star clusters. William Herschel began observing double stars in 1779, hoping to find

6534-549: The Southern Cross , was discovered to be double by Father Fontenay in 1685. Evidence that stars in pairs were more than just optical alignments came in 1767 when English natural philosopher and clergyman John Michell became the first person to apply the mathematics of statistics to the study of the stars, demonstrating in a paper that many more stars occur in pairs or groups than a perfectly random distribution and chance alignment could account for. He focused his investigation on

6655-471: The Sun and thus is somewhat brighter and hotter. It is about 1.3 billion years old, making it younger than the Sun as well. Since it is more massive than the Sun, its lifespan is shorter—less than 6 billion years. Tau Boötis is the first star apart from the Sun to be observed changing the polarity of its magnetic field . It is also listed as a suspected variable star . The magnetic activity cycle for this star shows

6776-514: The geodesic that light travels on never leaves the surface of the "star" (black hole). In 1915, Albert Einstein developed his theory of general relativity , having earlier shown that gravity does influence light's motion. Only a few months later, Karl Schwarzschild found a solution to the Einstein field equations that describes the gravitational field of a point mass and a spherical mass. A few months after Schwarzschild, Johannes Droste ,

6897-401: The mass of the missing companion. The companion could be very dim, so that it is currently undetectable or masked by the glare of its primary, or it could be an object that emits little or no electromagnetic radiation , for example a neutron star . The visible star's position is carefully measured and detected to vary, due to the gravitational influence from its counterpart. The position of

7018-419: The molecular cloud during the formation of protostars is an acceptable explanation for the formation of a binary or multiple star system. The outcome of the three-body problem , in which the three stars are of comparable mass, is that eventually one of the three stars will be ejected from the system and, assuming no significant further perturbations, the remaining two will form a stable binary system. As

7139-431: The 18th century by John Michell and Pierre-Simon Laplace . In 1916, Karl Schwarzschild found the first modern solution of general relativity that would characterise a black hole. Due to his influential research, the Schwarzschild metric is named after him. David Finkelstein , in 1958, first published the interpretation of "black hole" as a region of space from which nothing can escape. Black holes were long considered

7260-535: The 2020 Nobel Prize in Physics , Hawking having died in 2018. Based on observations in Greenwich and Toronto in the early 1970s, Cygnus X-1 , a galactic X-ray source discovered in 1964, became the first astronomical object commonly accepted to be a black hole. Work by James Bardeen , Jacob Bekenstein , Carter, and Hawking in the early 1970s led to the formulation of black hole thermodynamics . These laws describe

7381-401: The Kerr singularity, which leads to problems with causality like the grandfather paradox . It is expected that none of these peculiar effects would survive in a proper quantum treatment of rotating and charged black holes. The appearance of singularities in general relativity is commonly perceived as signalling the breakdown of the theory. This breakdown, however, is expected; it occurs in

SECTION 60

#1732872231941

7502-500: The Schwarzschild surface as an event horizon, "a perfect unidirectional membrane: causal influences can cross it in only one direction". This did not strictly contradict Oppenheimer's results, but extended them to include the point of view of infalling observers. Finkelstein's solution extended the Schwarzschild solution for the future of observers falling into a black hole. A complete extension had already been found by Martin Kruskal , who

7623-522: The accreted hydrogen is not. Hydrogen fusion can occur in a stable manner on the surface through the CNO cycle , causing the enormous amount of energy liberated by this process to blow the remaining gases away from the white dwarf's surface. The result is an extremely bright outburst of light, known as a nova . In extreme cases this event can cause the white dwarf to exceed the Chandrasekhar limit and trigger

7744-460: The activity cycles (typically on the order of decades). Another phenomenon observed in some Algol binaries has been monotonic period increases. This is quite distinct from the far more common observations of alternating period increases and decreases explained by the Applegate mechanism. Monotonic period increases have been attributed to mass transfer, usually (but not always) from the less massive to

7865-491: The actual elliptical orbit of the secondary with respect to the primary on the plane of the sky. From this projected ellipse the complete elements of the orbit may be computed, where the semi-major axis can only be expressed in angular units unless the stellar parallax , and hence the distance, of the system is known. Sometimes, the only evidence of a binary star comes from the Doppler effect on its emitted light. In these cases,

7986-463: The behaviour of a black hole in close analogy to the laws of thermodynamics by relating mass to energy, area to entropy , and surface gravity to temperature . The analogy was completed when Hawking, in 1974, showed that quantum field theory implies that black holes should radiate like a black body with a temperature proportional to the surface gravity of the black hole, predicting the effect now known as Hawking radiation . On 11 February 2016,

8107-422: The binary consists of a pair of stars where the spectral lines in the light emitted from each star shifts first towards the blue, then towards the red, as each moves first towards us, and then away from us, during its motion about their common center of mass , with the period of their common orbit. In these systems, the separation between the stars is usually very small, and the orbital velocity very high. Unless

8228-425: The binary fill their Roche lobes . The uppermost part of the stellar atmospheres forms a common envelope that surrounds both stars. As the friction of the envelope brakes the orbital motion , the stars may eventually merge . W Ursae Majoris is an example. When a binary system contains a compact object such as a white dwarf , neutron star or black hole , gas from the other (donor) star can accrete onto

8349-420: The binary star has a Bayer designation and is widely separated, it is possible that the members of the pair will be designated with superscripts; an example is Zeta Reticuli , whose components are ζ Reticuli and ζ Reticuli. Double stars are also designated by an abbreviation giving the discoverer together with an index number. α Centauri, for example, was found to be double by Father Richaud in 1689, and so

8470-498: The black hole horizon, including approximately conserved quantum numbers such as the total baryon number and lepton number . This behaviour is so puzzling that it has been called the black hole information loss paradox . The simplest static black holes have mass but neither electric charge nor angular momentum. These black holes are often referred to as Schwarzschild black holes after Karl Schwarzschild who discovered this solution in 1916. According to Birkhoff's theorem , it

8591-406: The blue, then towards red and back again. Such stars are known as single-lined spectroscopic binaries ("SB1"). The orbit of a spectroscopic binary is determined by making a long series of observations of the radial velocity of one or both components of the system. The observations are plotted against time, and from the resulting curve a period is determined. If the orbit is circular , then the curve

8712-530: The collapse. They were partly correct: a white dwarf slightly more massive than the Chandrasekhar limit will collapse into a neutron star , which is itself stable. In 1939, Robert Oppenheimer and others predicted that neutron stars above another limit, the Tolman–Oppenheimer–Volkoff limit , would collapse further for the reasons presented by Chandrasekhar, and concluded that no law of physics

8833-447: The compact object. This releases gravitational potential energy , causing the gas to become hotter and emit radiation. Cataclysmic variable stars , where the compact object is a white dwarf, are examples of such systems. In X-ray binaries , the compact object can be either a neutron star or a black hole . These binaries are classified as low-mass or high-mass according to the mass of the donor star. High-mass X-ray binaries contain

8954-494: The components fills the binary star's Roche lobe and the other does not. In this interacting binary star , gas from the surface of the Roche-lobe-filling component (donor) is transferred to the other, accreting star. The mass transfer dominates the evolution of the system. In many cases, the inflowing gas forms an accretion disc around the accretor. A contact binary is a type of binary star in which both components of

9075-448: The discovery of pulsars showed their physical relevance and spurred a further interest in all types of compact objects that might be formed by gravitational collapse. In this period more general black hole solutions were found. In 1963, Roy Kerr found the exact solution for a rotating black hole . Two years later, Ezra Newman found the axisymmetric solution for a black hole that is both rotating and electrically charged . Through

9196-407: The end of their life cycle. After a black hole has formed, it can grow by absorbing mass from its surroundings. Supermassive black holes of millions of solar masses ( M ☉ ) may form by absorbing other stars and merging with other black holes, or via direct collapse of gas clouds . There is consensus that supermassive black holes exist in the centres of most galaxies . The presence of

9317-400: The event horizon of a black hole at equilibrium is always spherical. For non-rotating (static) black holes the geometry of the event horizon is precisely spherical, while for rotating black holes the event horizon is oblate. At the centre of a black hole, as described by general relativity, may lie a gravitational singularity , a region where the spacetime curvature becomes infinite. For

9438-454: The evolution of a star is determined by its mass, the process influences the evolution of both companions, and creates stages that cannot be attained by single stars. Studies of the eclipsing ternary Algol led to the Algol paradox in the theory of stellar evolution : although components of a binary star form at the same time, and massive stars evolve much faster than the less massive ones, it

9559-648: The growing tidal forces in a process sometimes referred to as spaghettification or the "noodle effect". In the case of a charged (Reissner–Nordström) or rotating (Kerr) black hole, it is possible to avoid the singularity. Extending these solutions as far as possible reveals the hypothetical possibility of exiting the black hole into a different spacetime with the black hole acting as a wormhole . The possibility of travelling to another universe is, however, only theoretical since any perturbation would destroy this possibility. It also appears to be possible to follow closed timelike curves (returning to one's own past) around

9680-449: The hotter star causes the primary eclipse. An eclipsing binary's period of orbit may be determined from a study of its light curve , and the relative sizes of the individual stars can be determined in terms of the radius of the orbit, by observing how quickly the brightness changes as the disc of the nearest star slides over the disc of the other star. If it is also a spectroscopic binary, the orbital elements can also be determined, and

9801-442: The known visual binary stars one whole revolution has not been observed yet; rather, they are observed to have travelled along a curved path or a partial arc. The more general term double star is used for pairs of stars which are seen to be close together in the sky. This distinction is rarely made in languages other than English. Double stars may be binary systems or may be merely two stars that appear to be close together in

9922-426: The light of the individual components vary but because of the eclipses. The light curve of an eclipsing binary is characterized by periods of practically constant light, with periodic drops in intensity when one star passes in front of the other. The brightness may drop twice during the orbit, once when the secondary passes in front of the primary and once when the primary passes in front of the secondary. The deeper of

10043-544: The mass of a black hole can take any positive value, the charge and angular momentum are constrained by the mass. The total electric charge  Q and the total angular momentum  J are expected to satisfy the inequality for a black hole of mass M . Black holes with the minimum possible mass satisfying this inequality are called extremal . Solutions of Einstein's equations that violate this inequality exist, but they do not possess an event horizon. These solutions have so-called naked singularities that can be observed from

10164-507: The mass of the stars can be determined relatively easily, which means that the relative densities of the stars can be determined in this case. Since about 1995, measurement of extragalactic eclipsing binaries' fundamental parameters has become possible with 8-meter class telescopes. This makes it feasible to use them to directly measure the distances to external galaxies, a process that is more accurate than using standard candles . By 2006, they had been used to give direct distance estimates to

10285-414: The microscopic level, because they are time-reversible . Because a black hole eventually achieves a stable state with only three parameters, there is no way to avoid losing information about the initial conditions: the gravitational and electric fields of a black hole give very little information about what went in. The information that is lost includes every quantity that cannot be measured far away from

10406-436: The more massive star The components of binary stars are denoted by the suffixes A and B appended to the system's designation, A denoting the primary and B the secondary. The suffix AB may be used to denote the pair (for example, the binary star α Centauri AB consists of the stars α Centauri A and α Centauri B.) Additional letters, such as C , D , etc., may be used for systems with more than two stars. In cases where

10527-474: The nearest known body thought to be a black hole, Gaia BH1 , is around 1,560 light-years (480 parsecs ) away. Though only a couple dozen black holes have been found so far in the Milky Way, there are thought to be hundreds of millions, most of which are solitary and do not cause emission of radiation. Therefore, they would only be detectable by gravitational lensing . John Michell used the term "dark star" in

10648-503: The opposite direction to just stand still. The ergosphere of a black hole is a volume bounded by the black hole's event horizon and the ergosurface , which coincides with the event horizon at the poles but is at a much greater distance around the equator. Objects and radiation can escape normally from the ergosphere. Through the Penrose process , objects can emerge from the ergosphere with more energy than they entered with. The extra energy

10769-399: The orbital pattern of a visual binary, or the time variation of the spectrum of a spectroscopic binary, the mass of its stars can be determined, for example with the binary mass function . In this way, the relation between a star's appearance (temperature and radius) and its mass can be found, which allows for the determination of the mass of non-binaries. Black hole A black hole

10890-425: The outside, and hence are deemed unphysical . The cosmic censorship hypothesis rules out the formation of such singularities, when they are created through the gravitational collapse of realistic matter . This is supported by numerical simulations. Due to the relatively large strength of the electromagnetic force , black holes forming from the collapse of stars are expected to retain the nearly neutral charge of

11011-418: The photon on an outward trajectory causing it to escape the black hole, or on an inward spiral where it would eventually cross the event horizon. While light can still escape from the photon sphere, any light that crosses the photon sphere on an inbound trajectory will be captured by the black hole. Hence any light that reaches an outside observer from the photon sphere must have been emitted by objects between

11132-399: The photon sphere and the event horizon. For a Kerr black hole the radius of the photon sphere depends on the spin parameter and on the details of the photon orbit, which can be prograde (the photon rotates in the same sense of the black hole spin) or retrograde. Rotating black holes are surrounded by a region of spacetime in which it is impossible to stand still, called the ergosphere. This

11253-442: The plane of the orbit happens to be perpendicular to the line of sight, the orbital velocities have components in the line of sight, and the observed radial velocity of the system varies periodically. Since radial velocity can be measured with a spectrometer by observing the Doppler shift of the stars' spectral lines , the binaries detected in this manner are known as spectroscopic binaries . Most of these cannot be resolved as

11374-458: The presence of a mass deforms spacetime in such a way that the paths taken by particles bend towards the mass. At the event horizon of a black hole, this deformation becomes so strong that there are no paths that lead away from the black hole. To a distant observer, clocks near a black hole would appear to tick more slowly than those farther away from the black hole. Due to this effect, known as gravitational time dilation , an object falling into

11495-487: The primary would take approximately 2400 years to complete. In 1996 the planet Tau Boötis b was discovered orbiting the primary star by a team of astronomers led by R. Paul Butler . There are also some indications of another planet orbiting the star with a period of roughly 5,000 days; however, this could be due to an instrumental effect or a stellar magnetic activity cycle. Tau Boötis and its planet appear to be tidally locked to each other. The planet and its host star

11616-414: The same values for these properties, or parameters, are indistinguishable from one another. The degree to which the conjecture is true for real black holes under the laws of modern physics is currently an unsolved problem. These properties are special because they are visible from outside a black hole. For example, a charged black hole repels other like charges just like any other charged object. Similarly,

11737-478: The shape of the object or distribution of charge on it is evenly distributed along the horizon of the black hole, and is lost to outside observers. The behaviour of the horizon in this situation is a dissipative system that is closely analogous to that of a conductive stretchy membrane with friction and electrical resistance —the membrane paradigm . This is different from other field theories such as electromagnetism, which do not have any friction or resistivity at

11858-406: The singularities would not appear in generic situations. This view was held in particular by Vladimir Belinsky , Isaak Khalatnikov , and Evgeny Lifshitz , who tried to prove that no singularities appear in generic solutions. However, in the late 1960s Roger Penrose and Stephen Hawking used global techniques to prove that singularities appear generically. For this work, Penrose received half of

11979-506: The singularity disappeared after a change of coordinates. In 1933, Georges Lemaître realised that this meant the singularity at the Schwarzschild radius was a non-physical coordinate singularity . Arthur Eddington commented on the possibility of a star with mass compressed to the Schwarzschild radius in a 1926 book, noting that Einstein's theory allows us to rule out overly large densities for visible stars like Betelgeuse because "a star of 250 million km radius could not possibly have so high

12100-407: The sky but have vastly different true distances from the Sun. The latter are termed optical doubles or optical pairs . Binary stars are classified into four types according to the way in which they are observed: visually, by observation; spectroscopically , by periodic changes in spectral lines ; photometrically , by changes in brightness caused by an eclipse; or astrometrically , by measuring

12221-451: The star is repeatedly measured relative to more distant stars, and then checked for periodic shifts in position. Typically this type of measurement can only be performed on nearby stars, such as those within 10  parsecs . Nearby stars often have a relatively high proper motion , so astrometric binaries will appear to follow a wobbly path across the sky. If the companion is sufficiently massive to cause an observable shift in position of

12342-502: The star's shape by their companions. The third method is by looking at how relativistic beaming affects the apparent magnitude of the stars. Detecting binaries with these methods requires accurate photometry . Astronomers have discovered some stars that seemingly orbit around an empty space. Astrometric binaries are relatively nearby stars which can be seen to wobble around a point in space, with no visible companion. The same mathematics used for ordinary binaries can be applied to infer

12463-452: The star, leaving us outside (i.e., nowhere)." In 1931, Subrahmanyan Chandrasekhar calculated, using special relativity, that a non-rotating body of electron-degenerate matter above a certain limiting mass (now called the Chandrasekhar limit at 1.4  M ☉ ) has no stable solutions. His arguments were opposed by many of his contemporaries like Eddington and Lev Landau , who argued that some yet unknown mechanism would stop

12584-425: The star, then its presence can be deduced. From precise astrometric measurements of the movement of the visible star over a sufficiently long period of time, information about the mass of the companion and its orbital period can be determined. Even though the companion is not visible, the characteristics of the system can be determined from the observations using Kepler 's laws . This method of detecting binaries

12705-436: The star. Rotation, however, is expected to be a universal feature of compact astrophysical objects. The black-hole candidate binary X-ray source GRS 1915+105 appears to have an angular momentum near the maximum allowed value. That uncharged limit is allowing definition of a dimensionless spin parameter such that Black holes are commonly classified according to their mass, independent of angular momentum, J . The size of

12826-428: The surface of the star frozen in time at the instant where its collapse takes it to the Schwarzschild radius. Also in 1939, Einstein attempted to prove that black holes were impossible in his publication "On a Stationary System with Spherical Symmetry Consisting of Many Gravitating Masses", using his theory of general relativity to defend his argument. Months later, Oppenheimer and his student Hartland Snyder provided

12947-412: The telescope is an important factor in the detection of visual binaries, and as better angular resolutions are applied to binary star observations, an increasing number of visual binaries will be detected. The relative brightness of the two stars is also an important factor, as glare from a bright star may make it difficult to detect the presence of a fainter component. The brighter star of a visual binary

13068-432: The term for its brevity and "advertising value", and it quickly caught on, leading some to credit Wheeler with coining the phrase. The no-hair theorem postulates that, once it achieves a stable condition after formation, a black hole has only three independent physical properties: mass, electric charge, and angular momentum; the black hole is otherwise featureless. If the conjecture is true, any two black holes that share

13189-518: The total mass inside a sphere containing a black hole can be found by using the gravitational analogue of Gauss's law (through the ADM mass ), far away from the black hole. Likewise, the angular momentum (or spin) can be measured from far away using frame dragging by the gravitomagnetic field , through for example the Lense–Thirring effect . When an object falls into a black hole, any information about

13310-403: The two eclipses is called the primary regardless of which star is being occulted, and if a shallow second eclipse also occurs it is called the secondary eclipse. The size of the brightness drops depends on the relative brightness of the two stars, the proportion of the occulted star that is hidden, and the surface brightness (i.e. effective temperature ) of the stars. Typically the occultation of

13431-451: The two stars. The time of observation is also recorded. After a sufficient number of observations are recorded over a period of time, they are plotted in polar coordinates with the primary star at the origin, and the most probable ellipse is drawn through these points such that the Keplerian law of areas is satisfied. This ellipse is known as the apparent ellipse , and is the projection of

13552-595: The unseen companion is estimated to be about nine times that of the Sun, far exceeding the Tolman–Oppenheimer–Volkoff limit for the maximum theoretical mass of a neutron star. It is therefore believed to be a black hole; it was the first object for which this was widely believed. Orbital periods can be less than an hour (for AM CVn stars ), or a few days (components of Beta Lyrae ), but also hundreds of thousands of years ( Proxima Centauri around Alpha Centauri AB). The Applegate mechanism explains long term orbital period variations seen in certain eclipsing binaries. As

13673-436: The usual speed of light. Michell correctly noted that such supermassive but non-radiating bodies might be detectable through their gravitational effects on nearby visible bodies. Scholars of the time were initially excited by the proposal that giant but invisible 'dark stars' might be hiding in plain view, but enthusiasm dampened when the wavelike nature of light became apparent in the early nineteenth century, as if light were

13794-428: The very low likelihood of such an event (three objects being actually required, as conservation of energy rules out a single gravitating body capturing another) and the high number of binaries currently in existence, this cannot be the primary formation process. The observation of binaries consisting of stars not yet on the main sequence supports the theory that binaries develop during star formation . Fragmentation of

13915-477: The winning names (" Shri Ram Matt " for the star and " Bhagavatidevi " for the planet) were judged not to conform with the IAU rules for naming exoplanets due to the political activities of the namesake people. The names garnered the majority of the votes cast for the system, and also making up a significant proportion of all votes cast as part of the contest. Binary star A binary star or binary star system

14036-484: The work of Werner Israel , Brandon Carter , and David Robinson the no-hair theorem emerged, stating that a stationary black hole solution is completely described by the three parameters of the Kerr–Newman metric : mass , angular momentum , and electric charge. At first, it was suspected that the strange features of the black hole solutions were pathological artefacts from the symmetry conditions imposed, and that

14157-479: Was likely to intervene and stop at least some stars from collapsing to black holes. Their original calculations, based on the Pauli exclusion principle , gave it as 0.7  M ☉ . Subsequent consideration of neutron-neutron repulsion mediated by the strong force raised the estimate to approximately 1.5  M ☉ to 3.0  M ☉ . Observations of the neutron star merger GW170817 , which

14278-411: Was observed that the more massive component Algol A is still in the main sequence , while the less massive Algol B is a subgiant at a later evolutionary stage. The paradox can be solved by mass transfer : when the more massive star became a subgiant, it filled its Roche lobe , and most of the mass was transferred to the other star, which is still in the main sequence. In some binaries similar to Algol,

14399-484: Was one of the planetary systems selected by the International Astronomical Union as part of NameExoWorlds , their public process for giving proper names to exoplanets and their host star (where no proper name already exists). The process involved public nomination and voting for the new names, and the IAU announced the new names in mid-December 2015. However, the IAU annulled the vote for the system, as

14520-461: Was urged to publish it. These results came at the beginning of the golden age of general relativity , which was marked by general relativity and black holes becoming mainstream subjects of research. This process was helped by the discovery of pulsars by Jocelyn Bell Burnell in 1967, which, by 1969, were shown to be rapidly rotating neutron stars. Until that time, neutron stars, like black holes, were regarded as just theoretical curiosities; but

14641-632: Was used in print by Life and Science News magazines in 1963, and by science journalist Ann Ewing in her article " 'Black Holes' in Space", dated 18 January 1964, which was a report on a meeting of the American Association for the Advancement of Science held in Cleveland, Ohio. In December 1967, a student reportedly suggested the phrase "black hole" at a lecture by John Wheeler ; Wheeler adopted

#940059