Misplaced Pages

Taepodong-2

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Taepodong-2 (TD-2, also spelled as Taep'o-dong 2 ) ( Korean : 대포동 2호 ) is a designation used to indicate what was initially believed to be a North Korean two- or three-stage ballistic missile design that is the successor to the Taepodong-1 technology demonstrator. In 2012, the U.S. Department of Defense assessed that the Taepodong-2 had not been deployed as a missile. The Taepodong-2 is the technology base for the Unha space launch vehicle, and was likely not intended as ICBM technology.

#148851

70-459: As there is no publicly available imagery of the only Taepodong-2 launch in 2006, all estimates of technical parameters are approximate. Based on the size of the missile, the fuel composition, and the likely fuel capacity, it is estimated that a two-stage variant would have a range of around 4,000 km (2,500 statute miles) and a three-stage variant would be capable of reaching as far away as 4,500 km (2,800 statute miles), giving it potentially

140-473: A liquid propellant (TM-185 fuel and AK-27I oxidizer) driven engine and the second stage likely utilises the Rodong short-range missile. Depending on the range, the estimated payload capacity could be as high as 700–1,000 kg (~1,550 - 2,200 lbs) at short range, making it potentially suitable for conventional weapons payloads, NBC payloads as well as Earth orbit satellite delivery. At maximum range,

210-607: A rocket engine burning liquid propellants . (Alternate approaches use gaseous or solid propellants .) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse ( I sp ) . This allows the volume of the propellant tanks to be relatively low. Liquid rockets can be monopropellant rockets using a single type of propellant, or bipropellant rockets using two types of propellant. Tripropellant rockets using three types of propellant are rare. Liquid oxidizer propellants are also used in hybrid rockets , with some of

280-612: A German translation of a book by Tsiolkovsky of which "almost every page...was embellished by von Braun's comments and notes." Leading Soviet rocket-engine designer Valentin Glushko and rocket designer Sergey Korolev studied Tsiolkovsky's works as youths and both sought to turn Tsiolkovsky's theories into reality. From 1929 to 1930 in Leningrad Glushko pursued rocket research at the Gas Dynamics Laboratory (GDL), where

350-631: A book in 1923 suggesting the use of liquid propellants. In Germany, engineers and scientists became enthralled with liquid propulsion, building and testing them in the late 1920s within Opel RAK , the world's first rocket program, in Rüsselsheim. According to Max Valier 's account, Opel RAK rocket designer, Friedrich Wilhelm Sander launched two liquid-fuel rockets at Opel Rennbahn in Rüsselsheim on April 10 and April 12, 1929. These Opel RAK rockets have been

420-502: A former worker in the publications department of one of North Korea's top research centres, who defected to South Korea, North Korea began development of the missile in 1987. Very few details concerning the technical specifications of the rocket are public information; even the name "Taepodong-2" is a designation applied by agencies outside North Korea to what is presumed to be a successor to the Taepodong-1. The TD-2 first stage likely uses

490-407: A fuel-rich layer is created at the combustion chamber wall. This reduces the temperature there, and downstream to the throat and even into the nozzle and permits the combustion chamber to be run at higher pressure, which permits a higher expansion ratio nozzle to be used which gives a higher I SP and better system performance. A liquid rocket engine often employs regenerative cooling , which uses

560-682: A higher mass ratio, but are usually more reliable, and are therefore used widely in satellites for orbit maintenance. Thousands of combinations of fuels and oxidizers have been tried over the years. Some of the more common and practical ones are: One of the most efficient mixtures, oxygen and hydrogen , suffers from the extremely low temperatures required for storing liquid hydrogen (around 20 K or −253.2 °C or −423.7 °F) and very low fuel density (70 kg/m or 4.4 lb/cu ft, compared to RP-1 at 820 kg/m or 51 lb/cu ft), necessitating large tanks that must also be lightweight and insulating. Lightweight foam insulation on

630-588: A letter to El Comercio in Lima in 1927, claiming he had experimented with a liquid rocket engine while he was a student in Paris three decades earlier. Historians of early rocketry experiments, among them Max Valier , Willy Ley , and John D. Clark , have given differing amounts of credence to Paulet's report. Valier applauded Paulet's liquid-propelled rocket design in the Verein für Raumschiffahrt publication Die Rakete , saying

700-764: A liquid-fueled rocket as understood in the modern context first appeared in 1903 in the book Exploration of the Universe with Rocket-Propelled Vehicles by the Russian rocket scientist Konstantin Tsiolkovsky . The magnitude of his contribution to astronautics is astounding, including the Tsiolkovsky rocket equation , multi-staged rockets, and using liquid oxygen and liquid hydrogen in liquid propellant rockets. Tsiolkovsky influenced later rocket scientists throughout Europe, like Wernher von Braun . Soviet search teams at Peenemünde found

770-462: A new research section was set up for the study of liquid-propellant and electric rocket engines . This resulted in the creation of ORM (from "Experimental Rocket Motor" in Russian) engines ORM-1  [ ru ] to ORM-52  [ ru ] . A total of 100 bench tests of liquid-propellant rockets were conducted using various types of fuel, both low and high-boiling and thrust up to 300 kg

SECTION 10

#1733093466149

840-447: A number of small diameter holes arranged in carefully constructed patterns through which the fuel and oxidizer travel. The speed of the flow is determined by the square root of the pressure drop across the injectors, the shape of the hole and other details such as the density of the propellant. The first injectors used on the V-2 created parallel jets of fuel and oxidizer which then combusted in

910-465: A small amount of liquid hydrogen into a kerosene-burning engine can yield significant specific impulse improvements without compromising propellant density. This was demonstrated by the RD-701 achieving a specific impulse of 415 seconds in vacuum (higher than the pure LH2/LOX RS-68 ), where a pure kerosene engine with a similar expansion ratio would achieve 330–340 seconds. Although liquid hydrogen delivers

980-888: A straight LH2/LOX engine, with an extra fuel pump hanging onto it. The concept was first explored in the US by Robert Salkeld, who published the first study on the concept in Mixed-Mode Propulsion for the Space Shuttle , Astronautics & Aeronautics , which was published in August 1971. He studied a number of designs using such engines, both ground-based and a number that were air-launched from large jet aircraft . He concluded that tripropellant engines would produce gains of over 100% (essentially more than double) in payload fraction , reductions of over 65% in propellant volume and better than 20% in dry weight. A second design series studied

1050-399: A variety of engine cycles . Liquid propellants are often pumped into the combustion chamber with a lightweight centrifugal turbopump . Recently, some aerospace companies have used electric pumps with batteries. In simpler, small engines, an inert gas stored in a tank at a high pressure is sometimes used instead of pumps to force propellants into the combustion chamber. These engines may have

1120-428: A vehicle using liquid oxygen and gasoline as propellants. The rocket, which was dubbed "Nell", rose just 41 feet during a 2.5-second flight that ended in a cabbage field, but it was an important demonstration that rockets using liquid propulsion were possible. Goddard proposed liquid propellants about fifteen years earlier and began to seriously experiment with them in 1921. The German-Romanian Hermann Oberth published

1190-401: A very high mass fraction and so has razor-thin margins for extra weight. At liftoff the engine typically burns both fuels, gradually changing the mixture over altitude in order to keep the exhaust plume "tuned" (a strategy similar in concept to the plug nozzle but using a normal bell ), eventually switching entirely to LH2 once the kerosene is burned off. At that point the engine is largely

1260-624: A wide range of flow rates. The pintle injector was used in the Apollo Lunar Module engines ( Descent Propulsion System ) and the Kestrel engine, it is currently used in the Merlin engine on Falcon 9 and Falcon Heavy rockets. The RS-25 engine designed for the Space Shuttle uses a system of fluted posts, which use heated hydrogen from the preburner to vaporize the liquid oxygen flowing through

1330-423: Is liquid hydrogen which has a much lower density, while requiring only relatively modest pressure to prevent vaporization . The density and low pressure of liquid propellants permit lightweight tankage: approximately 1% of the contents for dense propellants and around 10% for liquid hydrogen. The increased tank mass is due to liquid hydrogen's low density and the mass of the required insulation. For injection into

1400-442: Is a rocket engine which mixes three separate streams of propellants, burning all three propellants simultaneously. The other kind of tripropellant rocket is one that uses one oxidizer but two fuels , burning the two fuels in sequence during the flight. Simultaneous tripropellant systems often involve the use of a high energy density metal additive, like beryllium or lithium , with existing bipropellant systems. In these motors,

1470-472: Is a relatively low speed oscillation, the engine must be designed with enough pressure drop across the injectors to render the flow largely independent of the chamber pressure. This pressure drop is normally achieved by using at least 20% of the chamber pressure across the injectors. Nevertheless, particularly in larger engines, a high speed combustion oscillation is easily triggered, and these are not well understood. These high speed oscillations tend to disrupt

SECTION 20

#1733093466149

1540-514: Is applied to the liquid (and sometimes the two propellants are mixed), then it is expelled through a small hole, where it forms a cone-shaped sheet that rapidly atomizes. Goddard's first liquid engine used a single impinging injector. German scientists in WWII experimented with impinging injectors on flat plates, used successfully in the Wasserfall missile. To avoid instabilities such as chugging, which

1610-516: Is important for takeoff, reducing gravity drag . So in general terms there is a "sweet spot" in altitude where one type of fuel becomes more practical than the other. Traditional rocket designs use this sweet spot to their advantage via staging. For instance the Saturn Vs used a lower stage powered by RP-1 (kerosene) and upper stages powered by LH2. Some of the early Space Shuttle design efforts used similar designs, with one stage using kerosene into

1680-680: Is less explosive than LH 2 . Many non-cryogenic bipropellants are hypergolic (self igniting). For storable ICBMs and most spacecraft, including crewed vehicles, planetary probes, and satellites, storing cryogenic propellants over extended periods is unfeasible. Because of this, mixtures of hydrazine or its derivatives in combination with nitrogen oxides are generally used for such applications, but are toxic and carcinogenic . Consequently, to improve handling, some crew vehicles such as Dream Chaser and Space Ship Two plan to use hybrid rockets with non-toxic fuel and oxidizer combinations. The injector implementation in liquid rockets determines

1750-399: Is not as high as that of RP1. This makes it specially attractive for reusable launch systems because higher density allows for smaller motors, propellant tanks and associated systems. LNG also burns with less or no soot (less or no coking) than RP1, which eases reusability when compared with it, and LNG and RP1 burn cooler than LH 2 so LNG and RP1 do not deform the interior structures of

1820-445: Is one of the few substances sufficiently pyrophoric to ignite on contact with cryogenic liquid oxygen . The enthalpy of combustion , Δ c H°, is −5,105.70 ± 2.90 kJ/mol (−1,220.29 ± 0.69 kcal/mol). Its easy ignition makes it particularly desirable as a rocket engine ignitor . May be used in conjunction with triethylborane to create triethylaluminum-triethylborane, better known as TEA-TEB. The idea of

1890-743: The Me 163 Komet in 1944-45, also used a Walter-designed liquid rocket engine, the Walter HWK 109-509 , which produced up to 1,700 kgf (16.7 kN) thrust at full power. After World War II the American government and military finally seriously considered liquid-propellant rockets as weapons and began to fund work on them. The Soviet Union did likewise, and thus began the Space Race . In 2010s 3D printed engines started being used for spaceflight. Examples of such engines include SuperDraco used in launch escape system of

1960-498: The Opel RAK.1 , on liquid-fuel rockets. By May 1929, the engine produced a thrust of 200 kg (440 lb.) "for longer than fifteen minutes and in July 1929, the Opel RAK collaborators were able to attain powered phases of more than thirty minutes for thrusts of 300 kg (660-lb.) at Opel's works in Rüsselsheim," again according to Max Valier's account. The Great Depression brought an end to

2030-572: The Space Shuttle external tank led to the Space Shuttle Columbia 's destruction , as a piece broke loose, damaged its wing and caused it to break up on atmospheric reentry . Liquid methane/LNG has several advantages over LH 2 . Its performance (max. specific impulse ) is lower than that of LH 2 but higher than that of RP1 (kerosene) and solid propellants, and its higher density, similarly to other hydrocarbon fuels, provides higher thrust to volume ratios than LH 2 , although its density

2100-778: The SpaceX Dragon 2 and also engines used for first or second stages in launch vehicles from Astra , Orbex , Relativity Space , Skyrora , or Launcher. Tripropellant rocket A tripropellant rocket is a rocket that uses three propellants , as opposed to the more common bipropellant rocket or monopropellant rocket designs, which use two or one propellants, respectively. Tripropellant systems can be designed to have high specific impulse and have been investigated for single-stage-to-orbit designs. While tripropellant engines have been tested by Rocketdyne and NPO Energomash , no tripropellant rocket has been flown. There are two different kinds of tripropellant rockets. One

2170-706: The ORM engines, including the engine for the rocket powered interceptor, the Bereznyak-Isayev BI-1 . At RNII Tikhonravov worked on developing oxygen/alcohol liquid-propellant rocket engines. Ultimately liquid propellant rocket engines were given a low priority during the late 1930s at RNII, however the research was productive and very important for later achievements of the Soviet rocket program. Peruvian Pedro Paulet , who had experimented with rockets throughout his life in Peru , wrote

Taepodong-2 - Misplaced Pages Continue

2240-520: The Opel RAK activities. After working for the German military in the early 1930s, Sander was arrested by Gestapo in 1935, when private rocket-engineering became forbidden in Germany. He was convicted of treason to 5 years in prison and forced to sell his company, he died in 1938. Max Valier's (via Arthur Rudolph and Heylandt), who died while experimenting in 1930, and Friedrich Sander's work on liquid-fuel rockets

2310-472: The RS-25 injector design instead went to a lot of effort to vaporize the propellant prior to injection into the combustion chamber. Although many other features were used to ensure that instabilities could not occur, later research showed that these other features were unnecessary, and the gas phase combustion worked reliably. Testing for stability often involves the use of small explosives. These are detonated within

2380-467: The Taepodong-2 is estimated to have a payload capacity of less than 500 kg (~1,100 lbs). North Korea has yet to demonstrate the ability to produce a re-entry vehicle, without which North Korea cannot deliver a weapon from an ICBM. In 2015, aerospace engineer and North Korea missile program analyst John Schilling stated that North Korea did not seem to be planning to create an operational ICBM from

2450-477: The Taepodong-2 technology, and that the Taepodong-2 had been mistakenly identified as an ICBM development, whereas in reality it was a space launch development vehicle. Taepodong-2's first stage consists of four Rodong motors. Little is known about the Taepodong-2 design beyond the first stage. Most likely the second stage is one of the Scud -derived North Korean ballistic missiles (either Rodong-1 or Hwasong-6 ), and

2520-614: The advantage of self igniting, reliably and with less chance of hard starts. In the 1940s, the Russians began to start engines with hypergols, to then switch over to the primary propellants after ignition. This was also used on the American F-1 rocket engine on the Apollo program . Ignition with a pyrophoric agent: Triethylaluminium ignites on contact with air and will ignite and/or decompose on contact with water, and with any other oxidizer—it

2590-450: The advantages of a solid rocket . Bipropellant liquid rockets use a liquid fuel such as liquid hydrogen or RP-1 , and a liquid oxidizer such as liquid oxygen . The engine may be a cryogenic rocket engine , where the fuel and oxidizer, such as hydrogen and oxygen, are gases which have been liquefied at very low temperatures. Most designs of liquid rocket engines are throttleable for variable thrust operation. Some allow control of

2660-540: The army research station that designed the V-2 rocket weapon for the Nazis. By the late 1930s, use of rocket propulsion for crewed flight began to be seriously experimented with, as Germany's Heinkel He 176 made the first crewed rocket-powered flight using a liquid rocket engine, designed by German aeronautics engineer Hellmuth Walter on June 20, 1939. The only production rocket-powered combat aircraft ever to see military service,

2730-444: The burning of the fuel with the oxidizer provides activation energy needed for a more energetic reaction between the oxidizer and the metal. While theoretical modeling of these systems suggests an advantage over bipropellant motors, several factors limit their practical implementation, including the difficulty of injecting solid metal into the thrust chamber ; heat , mass , and momentum transport limitations across phases ; and

2800-502: The center of the posts and this improves the rate and stability of the combustion process; previous engines such as the F-1 used for the Apollo program had significant issues with oscillations that led to destruction of the engines, but this was not a problem in the RS-25 due to this design detail. Valentin Glushko invented the centripetal injector in the early 1930s, and it has been almost universally used in Russian engines. Rotational motion

2870-443: The chamber during operation, and causes an impulsive excitation. By examining the pressure trace of the chamber to determine how quickly the effects of the disturbance die away, it is possible to estimate the stability and redesign features of the chamber if required. For liquid-propellant rockets, four different ways of powering the injection of the propellant into the chamber are in common use. Fuel and oxidizer must be pumped into

Taepodong-2 - Misplaced Pages Continue

2940-420: The chamber. This gave quite poor efficiency. Injectors today classically consist of a number of small holes which aim jets of fuel and oxidizer so that they collide at a point in space a short distance away from the injector plate. This helps to break the flow up into small droplets that burn more easily. The main types of injectors are The pintle injector permits good mixture control of fuel and oxidizer over

3010-553: The combustion chamber against the pressure of the hot gasses being burned, and engine power is limited by the rate at which propellant can be pumped into the combustion chamber. For atmospheric or launcher use, high pressure, and thus high power, engine cycles are desirable to minimize gravity drag . For orbital use, lower power cycles are usually fine. Selecting an engine cycle is one of the earlier steps to rocket engine design. A number of tradeoffs arise from this selection, some of which include: Injectors are commonly laid out so that

3080-416: The combustion chamber, the propellant pressure at the injectors needs to be greater than the chamber pressure. This is often achieved with a pump. Suitable pumps usually use centrifugal turbopumps due to their high power and light weight, although reciprocating pumps have been employed in the past. Turbopumps are usually lightweight and can give excellent performance; with an on-Earth weight well under 1% of

3150-421: The difficulty of achieving and sustaining combustion of the metal. In the 1960s, Rocketdyne test-fired an engine using a mixture of liquid lithium, gaseous hydrogen , and liquid fluorine to produce a specific impulse of 542 seconds, likely the highest measured such value for a chemical rocket motor. Despite the high specific impulse, the technical difficulties of the combination and the hazardous nature of

3220-474: The engine as much. This means that engines that burn LNG can be reused more than those that burn RP1 or LH 2 . Unlike engines that burn LH 2 , both RP1 and LNG engines can be designed with a shared shaft with a single turbine and two turbopumps, one each for LOX and LNG/RP1. In space, LNG does not need heaters to keep it liquid, unlike RP1. LNG is less expensive, being readily available in large quantities. It can be stored for more prolonged periods of time, and

3290-628: The engine had "amazing power" and that his plans were necessary for future rocket development. Hermann Oberth would name Paulet as a pioneer in rocketry in 1965. Wernher von Braun would also describe Paulet as "the pioneer of the liquid fuel propulsion motor" and stated that "Paulet helped man reach the Moon ". Paulet was later approached by Nazi Germany , being invited to join the Astronomische Gesellschaft to help develop rocket technology, though he refused to assist after discovering that

3360-430: The first European, and after Goddard the world's second, liquid-fuel rockets in history. In his book "Raketenfahrt" Valier describes the size of the rockets as of 21 cm in diameter and with a length of 74 cm, weighing 7 kg empty and 16 kg with fuel. The maximum thrust was 45 to 50 kp, with a total burning time of 132 seconds. These properties indicate a gas pressure pumping. The main purpose of these tests

3430-482: The fuel or less commonly the oxidizer to cool the chamber and nozzle. Ignition can be performed in many ways, but perhaps more so with liquid propellants than other rockets a consistent and significant ignitions source is required; a delay of ignition (in some cases as small as a few tens of milliseconds) can cause overpressure of the chamber due to excess propellant. A hard start can even cause an engine to explode. Generally, ignition systems try to apply flames across

3500-550: The gas side boundary layer of the engine, and this can cause the cooling system to rapidly fail, destroying the engine. These kinds of oscillations are much more common on large engines, and plagued the development of the Saturn V , but were finally overcome. Some combustion chambers, such as those of the RS-25 engine, use Helmholtz resonators as damping mechanisms to stop particular resonant frequencies from growing. To prevent these issues

3570-534: The head of GIRD. On 17 August 1933, Mikhail Tikhonravov launched the first Soviet liquid-propelled rocket (the GIRD-9), fueled by liquid oxygen and jellied gasoline. It reached an altitude of 400 metres (1,300 ft). In January 1933 Tsander began development of the GIRD-X rocket. This design burned liquid oxygen and gasoline and was one of the first engines to be regeneratively cooled by the liquid oxygen, which flowed around

SECTION 50

#1733093466149

3640-479: The injector surface, with a mass flow of approximately 1% of the full mass flow of the chamber. Safety interlocks are sometimes used to ensure the presence of an ignition source before the main valves open; however reliability of the interlocks can in some cases be lower than the ignition system. Thus it depends on whether the system must fail safe, or whether overall mission success is more important. Interlocks are rarely used for upper, uncrewed stages where failure of

3710-443: The inner wall of the combustion chamber before entering it. Problems with burn-through during testing prompted a switch from gasoline to less energetic alcohol. The final missile, 2.2 metres (7.2 ft) long by 140 millimetres (5.5 in) in diameter, had a mass of 30 kilograms (66 lb), and it was anticipated that it could carry a 2 kilograms (4.4 lb) payload to an altitude of 5.5 kilometres (3.4 mi). The GIRD X rocket

3780-451: The interlock would cause loss of mission, but are present on the RS-25 engine, to shut the engines down prior to liftoff of the Space Shuttle. In addition, detection of successful ignition of the igniter is surprisingly difficult, some systems use thin wires that are cut by the flames, pressure sensors have also seen some use. Methods of ignition include pyrotechnic , electrical (spark or hot wire), and chemical. Hypergolic propellants have

3850-530: The largest specific impulse of the plausible rocket fuels, it also requires huge structures to hold it due to its low density. These structures can weigh a lot, offsetting the light weight of the fuel itself to some degree, and also result in higher drag while in the atmosphere. While kerosene has lower specific impulse, its higher density results in smaller structures, which reduces stage mass, and furthermore reduces losses to atmospheric drag . In addition, kerosene-based engines generally provide higher thrust , which

3920-425: The launch of the second version of Kwangmyŏngsŏng-3 satellite. This successful flight was repeated on 7 February 2016 (UTC) with the successful launch of Kwangmyŏngsŏng-4 using a similar rocket as Unha-3 even though the rocket is officially named as Kwangmyŏngsŏng (not to be confused with the satellite with the same name). Liquid-propellant rocket A liquid-propellant rocket or liquid rocket uses

3990-472: The longest range in the North Korean missile arsenal. The burn time of each stage is a little over 100 seconds, thus allowing the missile to burn for 5 or 6 minutes. Speculative variants of the missile could be capable of a range of approximately 9,000 km (5,600 statute miles). At maximum range, the Taepodong-2 is estimated to have a payload capacity of less than 500 kg (~1,100 lbs). According to

4060-434: The percentage of the theoretical performance of the nozzle that can be achieved. A poor injector performance causes unburnt propellant to leave the engine, giving poor efficiency. Additionally, injectors are also usually key in reducing thermal loads on the nozzle; by increasing the proportion of fuel around the edge of the chamber, this gives much lower temperatures on the walls of the nozzle. Injectors can be as simple as

4130-571: The project was destined for weaponization and never shared the formula for his propellant. According to filmmaker and researcher Álvaro Mejía, Frederick I. Ordway III would later attempt to discredit Paulet's discoveries in the context of the Cold War and in an effort to shift the public image of von Braun away from his history with Nazi Germany. The first flight of a liquid-propellant rocket took place on March 16, 1926 at Auburn, Massachusetts , when American professor Dr. Robert H. Goddard launched

4200-702: The propellant mixture ratio (ratio at which oxidizer and fuel are mixed). Some can be shut down and, with a suitable ignition system or self-igniting propellant, restarted. Hybrid rockets apply a liquid or gaseous oxidizer to a solid fuel. The use of liquid propellants has a number of advantages: Use of liquid propellants can also be associated with a number of issues: Liquid rocket engines have tankage and pipes to store and transfer propellant, an injector system and one or more combustion chambers with associated nozzles . Typical liquid propellants have densities roughly similar to water, approximately 0.7 to 1.4 g/cm (0.025 to 0.051 lb/cu in). An exception

4270-425: The propellants ensured the engine has not been developed further. In sequential tripropellant rockets, the fuel is changed during flight, so the motor can combine the high thrust of a dense fuel like kerosene early in flight with the high specific impulse of a lighter fuel like liquid hydrogen (LH2) later in flight. The result is a single engine providing some of the benefits of staging . For example, injecting

SECTION 60

#1733093466149

4340-630: The replacement of the Shuttle's SRBs with tripropellant based boosters , in which case the engine almost halved the overall weight of the designs. His last full study was on the Orbital Rocket Airplane which used both tripropellant and (in some versions) a plug nozzle, resulting in a spaceship only slightly larger than a Lockheed SR-71 , able to operate from traditional runways. Tripropellant engines were built in Russia . Kosberg and Glushko developed

4410-403: The tankage mass can be acceptable. The major components of a rocket engine are therefore the combustion chamber (thrust chamber), pyrotechnic igniter , propellant feed system, valves, regulators, propellant tanks and the rocket engine nozzle . For feeding propellants to the combustion chamber, liquid-propellant engines are either pressure-fed or pump-fed , with pump-fed engines working in

4480-657: The third stage most likely uses Chinese solid-fuel engines. A Taepodong-2 was test fired on 5 July 2006 from the Tonghae test facility . According to reports, the missile failed in mid-flight about 40 seconds after launch. Subsequent launches were intended to launch satellites, using a Taepodong-2 development called the Unha rocket. After two failures in April 2009 and April 2012, its first successful flight, Unha-3 , occurred in December 2012 with

4550-516: The thrust. Indeed, overall thrust to weight ratios including a turbopump have been as high as 155:1 with the SpaceX Merlin 1D rocket engine and up to 180:1 with the vacuum version. Instead of a pump, some designs use a tank of a high-pressure inert gas such as helium to pressurize the propellants. These rockets often provide lower delta-v because the mass of the pressurant tankage reduces performance. In some designs for high altitude or vacuum use

4620-435: The upper atmosphere, where an LH2 powered upper stage would light and go on from there. The later Shuttle design is somewhat similar, although it used solid rockets for its lower stages. SSTO rockets could simply carry two sets of engines, but this would mean the spacecraft would be carrying one or the other set "turned off" for most of the flight. With light enough engines this might be reasonable, but an SSTO design requires

4690-608: Was achieved. During this period in Moscow , Fredrich Tsander – a scientist and inventor – was designing and building liquid rocket engines which ran on compressed air and gasoline. Tsander investigated high-energy fuels including powdered metals mixed with gasoline. In September 1931 Tsander formed the Moscow based ' Group for the Study of Reactive Motion ', better known by its Russian acronym "GIRD". In May 1932, Sergey Korolev replaced Tsander as

4760-542: Was confiscated by the German military, the Heereswaffenamt and integrated into the activities under General Walter Dornberger in the early and mid-1930s in a field near Berlin. Max Valier was a co-founder of an amateur research group, the VfR , working on liquid rockets in the early 1930s, and many of whose members eventually became important rocket technology pioneers, including Wernher von Braun . Von Braun served as head of

4830-542: Was launched on 25 November 1933 and flew to a height of 80 meters. In 1933 GDL and GIRD merged and became the Reactive Scientific Research Institute (RNII). At RNII Gushko continued the development of liquid propellant rocket engines ОРМ-53 to ОРМ-102, with ORM-65  [ ru ] powering the RP-318 rocket-powered aircraft . In 1938 Leonid Dushkin replaced Glushko and continued development of

4900-577: Was to develop the liquid rocket-propulsion system for a Gebrüder-Müller-Griessheim aircraft under construction for a planned flight across the English channel. Also spaceflight historian Frank H. Winter , curator at National Air and Space Museum in Washington, DC, confirms the Opel group was working, in addition to their solid-fuel rockets used for land-speed records and the world's first crewed rocket-plane flights with

#148851