119-549: Transcription factor TF II A is a nuclear protein involved in the RNA polymerase II -dependent transcription of DNA . TF II A is one of several general (basal) transcription factors ( GTFs ) that are required for all transcription events that use RNA polymerase II. Other GTFs include TF II D , a complex composed of the TATA binding protein TBP and TBP-associated factors (TAFs), as well as
238-555: A blood bank for blood transfusion . The vast majority of vertebrates, including mammals and humans, have red blood cells. Red blood cells are cells present in blood to transport oxygen. The only known vertebrates without red blood cells are the crocodile icefish (family Channichthyidae ); they live in very oxygen-rich cold water and transport oxygen freely dissolved in their blood. While they no longer use hemoglobin, remnants of hemoglobin genes can be found in their genome . Vertebrate red blood cells consist mainly of hemoglobin ,
357-455: A cell nucleus . In comparison, the red blood cells of other vertebrates have nuclei; the only known exceptions are salamanders of the family Plethodontidae , where five different clades has evolved various degrees of enucleated red blood cells (most evolved in some species of the genus Batrachoseps ), and fish of the genus Maurolicus . The elimination of the nucleus in vertebrate red blood cells has been offered as an explanation for
476-492: A channel through which larger molecules must be actively transported by carrier proteins while allowing free movement of small molecules and ions . Movement of large molecules such as proteins and RNA through the pores is required for both gene expression and the maintenance of chromosomes. Although the interior of the nucleus does not contain any membrane-bound subcompartments, a number of nuclear bodies exist, made up of unique proteins, RNA molecules, and particular parts of
595-401: A tetramer called a protofilament . Eight of these protofilaments form a lateral arrangement that is twisted to form a ropelike filament . These filaments can be assembled or disassembled in a dynamic manner, meaning that changes in the length of the filament depend on the competing rates of filament addition and removal. Mutations in lamin genes leading to defects in filament assembly cause
714-691: A torus -shaped rim on the edge of the disk. This shape allows for a high surface-area-to-volume (SA/V) ratio to facilitate diffusion of gases. However, there are some exceptions concerning shape in the artiodactyl order (even-toed ungulates including cattle, deer, and their relatives), which displays a wide variety of bizarre red blood cell morphologies: small and highly ovaloid cells in llamas and camels (family Camelidae ), tiny spherical cells in mouse deer (family Tragulidae ), and cells which assume fusiform, lanceolate, crescentic, and irregularly polygonal and other angular forms in red deer and wapiti (family Cervidae ). Members of this order have clearly evolved
833-401: A GTF and/or a loosely associated TAF-like coactivator. Genetic analysis in yeast has shown that TF II A is essential for viability. TF II A is a heterodimer with two subunits : one large unprocessed (subunit 1, or alpha/beta; gene name GTF2A1 ) and one small (subunit 2, or gamma; gene name GTF2A2 ). It was originally believed to be a heterotrimer of an alpha (p35), a beta (p19) and
952-407: A TF II A-like regulatory role for gene expression only in germ cells . Cell nucleus The cell nucleus (from Latin nucleus or nuculeus 'kernel, seed'; pl. : nuclei ) is a membrane-bound organelle found in eukaryotic cells . Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells , have no nuclei , and
1071-553: A cell's changing requirements, the composition and location of these bodies changes according to mRNA transcription and regulation via phosphorylation of specific proteins. The splicing speckles are also known as nuclear speckles (nuclear specks), splicing factor compartments (SF compartments), interchromatin granule clusters (IGCs), and B snurposomes . B snurposomes are found in the amphibian oocyte nuclei and in Drosophila melanogaster embryos. B snurposomes appear alone or attached to
1190-418: A cellular pathway for breaking down glucose to produce energy. Hexokinase is an enzyme responsible for the first step of glycolysis, forming glucose-6-phosphate from glucose. At high concentrations of fructose-6-phosphate , a molecule made later from glucose-6-phosphate, a regulator protein removes hexokinase to the nucleus, where it forms a transcriptional repressor complex with nuclear proteins to reduce
1309-508: A certain point during the cell cycle in open mitosis, the cell divides to form two cells. In order for this process to be possible, each of the new daughter cells must have a full set of genes, a process requiring replication of the chromosomes as well as segregation of the separate sets. This occurs by the replicated chromosomes, the sister chromatids , attaching to microtubules , which in turn are attached to different centrosomes . The sister chromatids can then be pulled to separate locations in
SECTION 10
#17328764467521428-420: A complex metalloprotein containing heme groups whose iron atoms temporarily bind to oxygen molecules (O 2 ) in the lungs or gills and release them throughout the body. Oxygen can easily diffuse through the red blood cell's cell membrane . Hemoglobin in the red blood cells also carries some of the waste product carbon dioxide back from the tissues; most waste carbon dioxide, however, is transported back to
1547-579: A few hundred up to a million copies per red blood cell. Approximately 25 of these membrane proteins carry the various blood group antigens, such as the A, B and Rh antigens, among many others. These membrane proteins can perform a wide diversity of functions, such as transporting ions and molecules across the red cell membrane, adhesion and interaction with other cells such as endothelial cells, as signaling receptors, as well as other currently unknown functions. The blood types of humans are due to variations in surface glycoproteins of red blood cells. Disorders of
1666-540: A few others including osteoclasts have many . The main structures making up the nucleus are the nuclear envelope , a double membrane that encloses the entire organelle and isolates its contents from the cellular cytoplasm ; and the nuclear matrix , a network within the nucleus that adds mechanical support. The cell nucleus contains nearly all of the cell's genome . Nuclear DNA is often organized into multiple chromosomes – long strands of DNA dotted with various proteins , such as histones , that protect and organize
1785-469: A gamma subunit (p12). In humans, the sizes of the encoded proteins are approximately 55 kD and 12 kD. Both genes are present in species ranging from humans to yeast, and their protein products interact to form a complex composed of a beta barrel domain and an alpha helical bundle domain. It is the N-terminal and C-terminal regions of the large subunit that participate in interactions with
1904-465: A group of rare genetic disorders known as laminopathies . The most notable laminopathy is the family of diseases known as progeria , which causes the appearance of premature aging in those with the condition. The exact mechanism by which the associated biochemical changes give rise to the aged phenotype is not well understood. The nucleolus is the largest of the discrete densely stained, membraneless structures known as nuclear bodies found in
2023-601: A key role in the CO 2 transport process, for two reasons. First, because, besides hemoglobin, they contain a large number of copies of the enzyme carbonic anhydrase on the inside of their cell membrane. Carbonic anhydrase, as its name suggests, acts as a catalyst of the exchange between carbonic acid and carbon dioxide (which is the anhydride of carbonic acid). Because it is a catalyst, it can affect many CO 2 molecules, so it performs its essential role without needing as many copies as are needed for O 2 transport by hemoglobin. In
2142-422: A large variety of proteins from a limited amount of DNA. The entry and exit of large molecules from the nucleus is tightly controlled by the nuclear pore complexes. Although small molecules can enter the nucleus without regulation, macromolecules such as RNA and proteins require association karyopherins called importins to enter the nucleus and exportins to exit. "Cargo" proteins that must be translocated from
2261-474: A large variety of transcription factors that regulate expression. Newly synthesized mRNA molecules are known as primary transcripts or pre-mRNA. They must undergo post-transcriptional modification in the nucleus before being exported to the cytoplasm; mRNA that appears in the cytoplasm without these modifications is degraded rather than used for protein translation. The three main modifications are 5' capping , 3' polyadenylation , and RNA splicing . While in
2380-660: A minimum thickness in the centre of 0.8–1 μm, being much smaller than most other human cells . These cells have an average volume of about 90 fL with a surface area of about 136 μm , and can swell up to a sphere shape containing 150 fL, without membrane distension. Adult humans have roughly 20–30 trillion red blood cells at any given time, constituting approximately 70% of all cells by number. Women have about 4–5 million red blood cells per microliter (cubic millimeter) of blood and men about 5–6 million; people living at high altitudes with low oxygen tension will have more. Red blood cells are thus much more common than
2499-795: A mode of red blood cell development substantially different from the mammalian norm. Overall, mammalian red blood cells are remarkably flexible and deformable so as to squeeze through tiny capillaries , as well as to maximize their apposing surface by assuming a cigar shape, where they efficiently release their oxygen load. Red blood cells in mammals are unique amongst vertebrates as they do not have nuclei when mature. They do have nuclei during early phases of erythropoiesis , but extrude them during development as they mature; this provides more space for hemoglobin. The red blood cells without nuclei, called reticulocytes , subsequently lose all other cellular organelles such as their mitochondria , Golgi apparatus and endoplasmic reticulum . The spleen acts as
SECTION 20
#17328764467522618-435: A molecular sponge that is involved in the regulation of gene expression. Furthermore, paraspeckles are dynamic structures that are altered in response to changes in cellular metabolic activity. They are transcription dependent and in the absence of RNA Pol II transcription, the paraspeckle disappears and all of its associated protein components (PSP1, p54nrb, PSP2, CFI(m)68, and PSF) form a crescent shaped perinucleolar cap in
2737-468: A pH buffer. In summary, carbon dioxide produced by cellular respiration diffuses very rapidly to areas of lower concentration, specifically into nearby capillaries. When it diffuses into a RBC, CO 2 is rapidly converted by the carbonic anhydrase found on the inside of the RBC membrane into bicarbonate ion. The bicarbonate ions in turn leave the RBC in exchange for chloride ions from the plasma, facilitated by
2856-536: A process regulated by phosphorylation of the lamins by protein kinases such as the CDC2 protein kinase . Towards the end of the cell cycle, the nuclear membrane is reformed, and around the same time, the nuclear lamina are reassembled by dephosphorylating the lamins. However, in dinoflagellates , the nuclear envelope remains intact, the centrosomes are located in the cytoplasm, and the microtubules come in contact with chromosomes, whose centromeric regions are incorporated into
2975-420: A reservoir of red blood cells, but this effect is somewhat limited in humans. In some other mammals such as dogs and horses, the spleen sequesters large numbers of red blood cells, which are dumped into the blood during times of exertion stress, yielding a higher oxygen transport capacity. A typical human red blood cell has a disk diameter of approximately 6.2–8.2 μm and a maximum thickness of 2–2.5 μm and
3094-463: A result of not containing mitochondria , red blood cells use none of the oxygen they transport; instead they produce the energy carrier ATP by the glycolysis of glucose and lactic acid fermentation on the resulting pyruvate . Furthermore, the pentose phosphate pathway plays an important role in red blood cells; see glucose-6-phosphate dehydrogenase deficiency for more information. As red blood cells contain no nucleus, protein biosynthesis
3213-414: A role in initiating the events that lead to apoptotic degradation of the nucleus. Inhibition of lamin assembly itself is an inducer of apoptosis. The nuclear envelope acts as a barrier that prevents both DNA and RNA viruses from entering the nucleus. Some viruses require access to proteins inside the nucleus in order to replicate and/or assemble. DNA viruses, such as herpesvirus replicate and assemble in
3332-421: A signalling gas that acts to relax vessel walls. It is believed that the cardioprotective effects of garlic are due to red blood cells converting its sulfur compounds into hydrogen sulfide. Red blood cells also play a part in the body's immune response : when lysed by pathogens such as bacteria, their hemoglobin releases free radicals , which break down the pathogen's cell wall and membrane, killing it. As
3451-405: A site for genetic transcription that is segregated from the location of translation in the cytoplasm, allowing levels of gene regulation that are not available to prokaryotes . The main function of the cell nucleus is to control gene expression and mediate the replication of DNA during the cell cycle. The nuclear envelope allows control of the nuclear contents, and separates them from
3570-429: A third of the total cell volume. Hemoglobin is responsible for the transport of more than 98% of the oxygen in the body (the remaining oxygen is carried dissolved in the blood plasma ). The red blood cells of an average adult human male store collectively about 2.5 grams of iron, representing about 65% of the total iron contained in the body. Red blood cells in mammals are anucleate when mature, meaning that they lack
3689-405: A transport vessel to ferry oxygen from the lungs to the body's tissues. Erythrocytes mature through erythropoiesis in the bone marrow , where they lose their nuclei, organelles, and ribosomes. The nucleus is expelled during the process of differentiation from an erythroblast to a reticulocyte , which is the immediate precursor of the mature erythrocyte. The presence of mutagens may induce
Transcription factor II A - Misplaced Pages Continue
3808-412: A typical lipid bilayer , similar to what can be found in virtually all human cells. Simply put, this lipid bilayer is composed of cholesterol and phospholipids in equal proportions by weight. The lipid composition is important as it defines many physical properties such as membrane permeability and fluidity. Additionally, the activity of many membrane proteins is regulated by interactions with lipids in
3927-406: Is Ran , which is bound to either GTP or GDP (guanosine diphosphate), depending on whether it is located in the nucleus or the cytoplasm. Whereas importins depend on RanGTP to dissociate from their cargo, exportins require RanGTP in order to bind to their cargo. Nuclear import depends on the importin binding its cargo in the cytoplasm and carrying it through the nuclear pore into the nucleus. Inside
4046-461: Is a very bright red in color. Flushed, confused patients with a saturation reading of 100% on pulse oximetry are sometimes found to be suffering from carbon monoxide poisoning. Having oxygen-carrying proteins inside specialized cells (as opposed to oxygen carriers being dissolved in body fluid) was an important step in the evolution of vertebrates as it allows for less viscous blood, higher concentrations of oxygen, and better diffusion of oxygen from
4165-445: Is complete. This quality-control mechanism is important due to these molecules' central role in protein translation. Mis-expression of a protein due to incomplete excision of exons or mis-incorporation of amino acids could have negative consequences for the cell; thus, incompletely modified RNA that reaches the cytoplasm is degraded rather than used in translation. During its lifetime, a nucleus may be broken down or destroyed, either in
4284-634: Is currently assumed to be absent in these cells. Because of the lack of nuclei and organelles, mature red blood cells do not contain DNA and cannot synthesize any RNA (although it does contain RNAs), and consequently cannot divide and have limited repair capabilities. The inability to carry out protein synthesis means that no virus can evolve to target mammalian red blood cells. However, infection with parvoviruses (such as human parvovirus B19 ) can affect erythroid precursors while they still have DNA, as recognized by
4403-607: Is derived from the Gemini constellation in reference to their close "twin" relationship with CBs. Gems are similar in size and shape to CBs, and in fact are virtually indistinguishable under the microscope. Unlike CBs, gems do not contain small nuclear ribonucleoproteins (snRNPs), but do contain a protein called survival of motor neuron (SMN) whose function relates to snRNP biogenesis. Gems are believed to assist CBs in snRNP biogenesis, though it has also been suggested from microscopy evidence that CBs and gems are different manifestations of
4522-465: Is induced in response to a signal pathway such as that initiated by the signaling molecule TNF-α , binds to a cell membrane receptor, resulting in the recruitment of signalling proteins, and eventually activating the transcription factor NF-κB. A nuclear localisation signal on the NF-κB protein allows it to be transported through the nuclear pore and into the nucleus, where it stimulates the transcription of
4641-516: Is infrequently transcribed. This structure is further categorized into facultative heterochromatin , consisting of genes that are organized as heterochromatin only in certain cell types or at certain stages of development, and constitutive heterochromatin that consists of chromosome structural components such as telomeres and centromeres . During interphase the chromatin organizes itself into discrete individual patches, called chromosome territories . Active genes, which are generally found in
4760-430: Is known about a number of these domains, they are significant in that they show that the nucleoplasm is not a uniform mixture, but rather contains organized functional subdomains. Other subnuclear structures appear as part of abnormal disease processes. For example, the presence of small intranuclear rods has been reported in some cases of nemaline myopathy . This condition typically results from mutations in actin , and
4879-399: Is only about 9 nm wide, due to the presence of regulatory systems within the center of the pore. This size selectively allows the passage of small water-soluble molecules while preventing larger molecules, such as nucleic acids and larger proteins, from inappropriately entering or exiting the nucleus. These large molecules must be actively transported into the nucleus instead. Attached to
Transcription factor II A - Misplaced Pages Continue
4998-452: Is provided on the cytosolic face of the envelope. Both systems provide structural support for the nuclear envelope and anchoring sites for chromosomes and nuclear pores. The nuclear lamina is composed mostly of lamin proteins. Like all proteins, lamins are synthesized in the cytoplasm and later transported to the nucleus interior, where they are assembled before being incorporated into the existing network of nuclear lamina. Lamins found on
5117-407: Is responsible for the red color of the cells and the blood. Each human red blood cell contains approximately 270 million hemoglobin molecules. The cell membrane is composed of proteins and lipids , and this structure provides properties essential for physiological cell function such as deformability and stability of the blood cell while traversing the circulatory system and specifically
5236-430: Is supported by observations that inactivation of rDNA results in intermingling of nucleolar structures. In the first step of ribosome assembly, a protein called RNA polymerase I transcribes rDNA, which forms a large pre-rRNA precursor. This is cleaved into two large rRNA subunits – 5.8S , and 28S , and a small rRNA subunit 18S . The transcription, post-transcriptional processing, and assembly of rRNA occurs in
5355-407: Is −15.7 milli volts (mV). Much of this potential appears to be contributed by the exposed sialic acid residues in the membrane: their removal results in zeta potential of −6.06 mV. Recall that respiration , as illustrated schematically here with a unit of carbohydrate, produces about as many molecules of carbon dioxide, CO 2 , as it consumes of oxygen, O 2 . Thus, the function of
5474-441: The band 3 anion transport protein colocated in the RBC membrane. The bicarbonate ion does not diffuse back out of the capillary, but is carried to the lung. In the lung the lower partial pressure of carbon dioxide in the alveoli causes carbon dioxide to diffuse rapidly from the capillary into the alveoli. The carbonic anhydrase in the red cells keeps the bicarbonate ion in equilibrium with carbon dioxide. So as carbon dioxide leaves
5593-440: The bone marrow and circulate for about 100–120 days in the body before their components are recycled by macrophages . Each circulation takes about 60 seconds (one minute). Approximately 84% of the cells in the human body are the 20–30 trillion red blood cells. Nearly half of the blood's volume ( 40% to 45% ) is red blood cells. Packed red blood cells are red blood cells that have been donated, processed, and stored in
5712-415: The capillary network. In humans, mature red blood cells are flexible biconcave disks . They lack a cell nucleus (which is expelled during development ) and organelles , to accommodate maximum space for hemoglobin; they can be viewed as sacks of hemoglobin, with a plasma membrane as the sack. Approximately 2.4 million new erythrocytes are produced per second in human adults. The cells develop in
5831-399: The nucleoplasm and the cytosol . The nuclear pore complex is composed of approximately thirty different proteins known as nucleoporins . The pores are about 60–80 million daltons in molecular weight and consist of around 50 (in yeast ) to several hundred proteins (in vertebrates ). The pores are 100 nm in total diameter; however, the gap through which molecules freely diffuse
5950-458: The preinitiation complex . Interaction of TF II A with TBP also results in the exclusion of negative (repressive) factors that might otherwise bind to TBP and interfere with PIC formation. TF II A also acts as a coactivator for some transcriptional activators , assisting with their ability to increase, or activate, transcription. The requirement for TF II A in vitro transcription systems has been variable, and it can be considered either as
6069-411: The pulmonary capillaries of the lungs as bicarbonate (HCO 3 ) dissolved in the blood plasma . Myoglobin , a compound related to hemoglobin, acts to store oxygen in muscle cells. The color of red blood cells is due to the heme group of hemoglobin. The blood plasma alone is straw-colored, but the red blood cells change color depending on the state of the hemoglobin: when combined with oxygen
SECTION 50
#17328764467526188-611: The Cajal bodies in the electron micrographs of the amphibian nuclei. While nuclear speckles were originally thought to be storage sites for the splicing factors, a more recent study demonstrated that organizing genes and pre-mRNA substrates near speckles increases the kinetic efficiency of pre-mRNA splicing, ultimately boosting protein levels by modulation of splicing. A nucleus typically contains between one and ten compact structures called Cajal bodies or coiled bodies (CB), whose diameter measures between 0.2 μm and 2.0 μm depending on
6307-479: The DNA. The genes within these chromosomes are structured in such a way to promote cell function. The nucleus maintains the integrity of genes and controls the activities of the cell by regulating gene expression . Because the nuclear envelope is impermeable to large molecules , nuclear pores are required to regulate nuclear transport of molecules across the envelope. The pores cross both nuclear membranes, providing
6426-432: The activity of certain genes. Moreover, speckle-associating and non-associating p53 gene targets are functionally distinct. Studies on the composition, structure and behaviour of speckles have provided a model for understanding the functional compartmentalization of the nucleus and the organization of the gene-expression machinery splicing snRNPs and other splicing proteins necessary for pre-mRNA processing. Because of
6545-443: The bilayer. Unlike cholesterol, which is evenly distributed between the inner and outer leaflets, the 5 major phospholipids are asymmetrically disposed, as shown below: Outer monolayer Inner monolayer This asymmetric phospholipid distribution among the bilayer is the result of the function of several energy-dependent and energy-independent phospholipid transport proteins. Proteins called " Flippases " move phospholipids from
6664-433: The blood to the tissues. The size of red blood cells varies widely among vertebrate species; red blood cell width is on average about 25% larger than capillary diameter, and it has been hypothesized that this improves the oxygen transfer from red blood cells to tissues. The red blood cells of mammals are typically shaped as biconcave disks: flattened and depressed in the center, with a dumbbell -shaped cross section, and
6783-401: The body depleted of oxygen. Red blood cells can also synthesize nitric oxide enzymatically, using L-arginine as substrate, as do endothelial cells . Exposure of red blood cells to physiological levels of shear stress activates nitric oxide synthase and export of nitric oxide, which may contribute to the regulation of vascular tonus. Red blood cells can also produce hydrogen sulfide ,
6902-446: The capillary, act to reduce the oxygen binding affinity of hemoglobin, the Bohr effect . The second major contribution of RBC to carbon dioxide transport is that carbon dioxide directly reacts with globin protein components of hemoglobin to form carbaminohemoglobin compounds. As oxygen is released in the tissues, more CO 2 binds to hemoglobin, and as oxygen binds in the lung, it displaces
7021-510: The capillary, and CO 2 is displaced by O 2 on hemoglobin, sufficient bicarbonate ion converts rapidly to carbon dioxide to maintain the equilibrium. When red blood cells undergo shear stress in constricted vessels, they release ATP , which causes the vessel walls to relax and dilate so as to promote normal blood flow. When their hemoglobin molecules are deoxygenated, red blood cells release S-Nitrosothiols , which also act to dilate blood vessels, thus directing more blood to areas of
7140-494: The cell nucleus is to control gene expression and mediate the replication of DNA during the cell cycle. It has been found that replication happens in a localised way in the cell nucleus. In the S phase of interphase of the cell cycle; replication takes place. Contrary to the traditional view of moving replication forks along stagnant DNA, a concept of replication factories emerged, which means replication forks are concentrated towards some immobilised 'factory' regions through which
7259-414: The cell nucleus, and exit by budding through the inner nuclear membrane. This process is accompanied by disassembly of the lamina on the nuclear face of the inner membrane. Initially, it has been suspected that immunoglobulins in general and autoantibodies in particular do not enter the nucleus. Now there is a body of evidence that under pathological conditions (e.g. lupus erythematosus ) IgG can enter
SECTION 60
#17328764467527378-438: The cell type and species. When seen under an electron microscope, they resemble balls of tangled thread and are dense foci of distribution for the protein coilin . CBs are involved in a number of different roles relating to RNA processing, specifically small nucleolar RNA (snoRNA) and small nuclear RNA (snRNA) maturation, and histone mRNA modification. Similar to Cajal bodies are Gemini of Cajal bodies, or gems, whose name
7497-439: The cell's DNA , surrounded by a network of fibrous intermediate filaments called the nuclear matrix , and is enveloped in a double membrane called the nuclear envelope . The nuclear envelope separates the fluid inside the nucleus, called the nucleoplasm , from the rest of the cell. The size of the nucleus is correlated to the size of the cell, and this ratio is reported across a range of cell types and species. In eukaryotes
7616-406: The cell. In many cells, the centrosome is located in the cytoplasm, outside the nucleus; the microtubules would be unable to attach to the chromatids in the presence of the nuclear envelope. Therefore, the early stages in the cell cycle, beginning in prophase and until around prometaphase , the nuclear membrane is dismantled. Likewise, during the same period, the nuclear lamina is also disassembled,
7735-401: The chromatin can be seen to form the well-defined chromosomes familiar from a karyotype . A small fraction of the cell's genes are located instead in the mitochondria . There are two types of chromatin. Euchromatin is the less compact DNA form, and contains genes that are frequently expressed by the cell. The other type, heterochromatin , is the more compact form, and contains DNA that
7854-444: The chromosomes. The best-known of these is the nucleolus , involved in the assembly of ribosomes . The cell nucleus contains the majority of the cell's genetic material in the form of multiple linear DNA molecules organized into structures called chromosomes . Each human cell contains roughly two meters of DNA. During most of the cell cycle these are organized in a DNA-protein complex known as chromatin , and during cell division
7973-441: The circulatory system is as much about the transport of carbon dioxide as about the transport of oxygen. As stated elsewhere in this article, most of the carbon dioxide in the blood is in the form of bicarbonate ion. The bicarbonate provides a critical pH buffer . Thus, unlike hemoglobin for O 2 transport, there is a physiological advantage to not having a specific CO 2 transporter molecule. Red blood cells, nevertheless, play
8092-903: The cleavage and modification of rRNAs occurs in the DFC, while the latter steps involving protein assembly onto the ribosomal subunits occur in the GC. Speckles are subnuclear structures that are enriched in pre-messenger RNA splicing factors and are located in the interchromatin regions of the nucleoplasm of mammalian cells. At the fluorescence-microscope level they appear as irregular, punctate structures, which vary in size and shape, and when examined by electron microscopy they are seen as clusters of interchromatin granules . Speckles are dynamic structures, and both their protein and RNA-protein components can cycle continuously between speckles and other nuclear locations, including active transcription sites. Speckles can work with p53 as enhancers of gene activity to directly enhance
8211-456: The cytoplasm to the nucleus contain short amino acid sequences known as nuclear localization signals , which are bound by importins, while those transported from the nucleus to the cytoplasm carry nuclear export signals bound by exportins. The ability of importins and exportins to transport their cargo is regulated by GTPases , enzymes that hydrolyze the molecule guanosine triphosphate (GTP) to release energy. The key GTPase in nuclear transport
8330-453: The cytosolic face of the membrane, such as emerin and nesprin , bind to the cytoskeleton to provide structural support. Lamins are also found inside the nucleoplasm where they form another regular structure, known as the nucleoplasmic veil , that is visible using fluorescence microscopy . The actual function of the veil is not clear, although it is excluded from the nucleolus and is present during interphase . Lamin structures that make up
8449-503: The endoplasmic reticulum lumen . In a mammalian nuclear envelope there are between 3000 and 4000 nuclear pore complexes (NPCs) perforating the envelope. Each NPC contains an eightfold-symmetric ring-shaped structure at a position where the inner and outer membranes fuse. The number of NPCs can vary considerably across cell types; small glial cells only have about a few hundred, with large Purkinje cells having around 20,000. The NPC provides selective transport of molecules between
8568-495: The euchromatic region of the chromosome, tend to be located towards the chromosome's territory boundary. Antibodies to certain types of chromatin organization, in particular, nucleosomes , have been associated with a number of autoimmune diseases , such as systemic lupus erythematosus . These are known as anti-nuclear antibodies (ANA) and have also been observed in concert with multiple sclerosis as part of general immune system dysfunction. The nucleus contains nearly all of
8687-473: The expression of genes involved in glycolysis. In order to control which genes are being transcribed, the cell separates some transcription factor proteins responsible for regulating gene expression from physical access to the DNA until they are activated by other signaling pathways. This prevents even low levels of inappropriate gene expression. For example, in the case of NF-κB -controlled genes, which are involved in most inflammatory responses, transcription
8806-468: The factors TF II B , TF II E , TF II F , and TF II H . Together, these factors are responsible for promoter recognition and the formation of a transcription preinitiation complex (PIC) capable of initiating RNA synthesis from a DNA template. TF II A interacts with the TBP subunit of TF II D and aids in the binding of TBP to TATA-box containing promoter DNA. Interaction of TF II A with TBP facilitates formation of and stabilizes
8925-482: The hemoglobin bound CO 2 , this is called the Haldane effect . Despite the fact that only a small amount of the CO 2 in blood is bound to hemoglobin in venous blood, a greater proportion of the change in CO 2 content between venous and arterial blood comes from the change in this bound CO 2 . That is, there is always an abundance of bicarbonate in blood, both venous and arterial, because of its aforementioned role as
9044-511: The innermost fibrillar centers (FCs), surrounded by the dense fibrillar component (DFC) (that contains fibrillarin and nucleolin ), which in turn is bordered by the granular component (GC) (that contains the protein nucleophosmin ). Transcription of the rDNA occurs either in the FC or at the FC-DFC boundary, and, therefore, when rDNA transcription in the cell is increased, more FCs are detected. Most of
9163-555: The interchromatin space of the nucleus. First documented in HeLa cells, where there are generally 10–30 per nucleus, paraspeckles are now known to also exist in all human primary cells, transformed cell lines, and tissue sections. Their name is derived from their distribution in the nucleus; the "para" is short for parallel and the "speckles" refers to the splicing speckles to which they are always in close proximity. Paraspeckles sequester nuclear proteins and RNA and thus appear to function as
9282-415: The lipid bilayer and membrane skeleton, likely enabling the red cell to maintain its favorable membrane surface area by preventing the membrane from collapsing (vesiculating). The zeta potential is an electrochemical property of cell surfaces that is determined by the net electrical charge of molecules exposed at the surface of cell membranes of the cell. The normal zeta potential of the red blood cell
9401-557: The membrane composition. The red blood cell membrane is composed of 3 layers: the glycocalyx on the exterior, which is rich in carbohydrates ; the lipid bilayer which contains many transmembrane proteins , besides its lipidic main constituents; and the membrane skeleton, a structural network of proteins located on the inner surface of the lipid bilayer. Half of the membrane mass in human and most mammalian red blood cells are proteins. The other half are lipids, namely phospholipids and cholesterol . The red blood cell membrane comprises
9520-432: The membrane skeleton are responsible for the deformability, flexibility and durability of the red blood cell, enabling it to squeeze through capillaries less than half the diameter of the red blood cell (7–8 μm) and recovering the discoid shape as soon as these cells stop receiving compressive forces, in a similar fashion to an object made of rubber. There are currently more than 50 known membrane proteins, which can exist in
9639-456: The most common type of blood cell and the vertebrate 's principal means of delivering oxygen ( O 2 ) to the body tissues —via blood flow through the circulatory system . Erythrocytes take up oxygen in the lungs , or in fish the gills , and release it into tissues while squeezing through the body's capillaries . The cytoplasm of a red blood cell is rich in hemoglobin (Hb), an iron -containing biomolecule that can bind oxygen and
9758-430: The nuclear envelope (the so-called closed mitosis with extranuclear spindle). In many other protists (e.g., ciliates , sporozoans ) and fungi, the centrosomes are intranuclear, and their nuclear envelope also does not disassemble during cell division. Apoptosis is a controlled process in which the cell's structural components are destroyed, resulting in death of the cell. Changes associated with apoptosis directly affect
9877-409: The nuclear envelope remains intact. In closed mitosis, the daughter chromosomes migrate to opposite poles of the nucleus, which then divides in two. The cells of higher eukaryotes, however, usually undergo open mitosis , which is characterized by breakdown of the nuclear envelope. The daughter chromosomes then migrate to opposite poles of the mitotic spindle, and new nuclei reassemble around them. At
9996-400: The nucleolus, aided by small nucleolar RNA (snoRNA) molecules, some of which are derived from spliced introns from messenger RNAs encoding genes related to ribosomal function. The assembled ribosomal subunits are the largest structures passed through the nuclear pores . When observed under the electron microscope , the nucleolus can be seen to consist of three distinguishable regions:
10115-441: The nucleolus. This phenomenon is demonstrated during the cell cycle. In the cell cycle , paraspeckles are present during interphase and during all of mitosis except for telophase . During telophase, when the two daughter nuclei are formed, there is no RNA Pol II transcription so the protein components instead form a perinucleolar cap. Perichromatin fibrils are visible only under electron microscope. They are located next to
10234-482: The nucleus and degrade once there is a decrease in activity or if cells are treated with proteasome inhibitors . The scarcity of clastosomes in cells indicates that they are not required for proteasome function. Osmotic stress has also been shown to cause the formation of clastosomes. These nuclear bodies contain catalytic and regulatory subunits of the proteasome and its substrates, indicating that clastosomes are sites for degrading proteins. The nucleus provides
10353-584: The nucleus and its contents, for example, in the condensation of chromatin and the disintegration of the nuclear envelope and lamina. The destruction of the lamin networks is controlled by specialized apoptotic proteases called caspases , which cleave the lamin proteins and, thus, degrade the nucleus' structural integrity. Lamin cleavage is sometimes used as a laboratory indicator of caspase activity in assays for early apoptotic activity. Cells that express mutant caspase-resistant lamins are deficient in nuclear changes related to apoptosis, suggesting that lamins play
10472-482: The nucleus are also called importins, whereas those that mediate movement out of the nucleus are called exportins. Most karyopherins interact directly with their cargo, although some use adaptor proteins . Steroid hormones such as cortisol and aldosterone , as well as other small lipid-soluble molecules involved in intercellular signaling , can diffuse through the cell membrane and into the cytoplasm, where they bind nuclear receptor proteins that are trafficked into
10591-424: The nucleus in many cells typically occupies 10% of the cell volume. The nucleus is the largest organelle in animal cells. In human cells, the diameter of the nucleus is approximately six micrometres (μm). The nuclear envelope consists of two membranes , an inner and an outer nuclear membrane , perforated by nuclear pores . Together, these membranes serve to separate the cell's genetic material from
10710-473: The nucleus is the site of transcription, it also contains a variety of proteins that either directly mediate transcription or are involved in regulating the process. These proteins include helicases , which unwind the double-stranded DNA molecule to facilitate access to it, RNA polymerases , which bind to the DNA promoter to synthesize the growing RNA molecule, topoisomerases , which change the amount of supercoiling in DNA, helping it wind and unwind, as well as
10829-400: The nucleus its structure. The outer membrane encloses the inner membrane, and is continuous with the adjacent endoplasmic reticulum membrane. As part of the endoplasmic reticulum membrane, the outer nuclear membrane is studded with ribosomes that are actively translating proteins across membrane. The space between the two membranes is called the perinuclear space, and is continuous with
10948-451: The nucleus, RanGTP acts to separate the cargo from the importin, allowing the importin to exit the nucleus and be reused. Nuclear export is similar, as the exportin binds the cargo inside the nucleus in a process facilitated by RanGTP, exits through the nuclear pore, and separates from its cargo in the cytoplasm. Specialized export proteins exist for translocation of mature mRNA and tRNA to the cytoplasm after post-transcriptional modification
11067-490: The nucleus, pre-mRNA is associated with a variety of proteins in complexes known as heterogeneous ribonucleoprotein particles (hnRNPs). Addition of the 5' cap occurs co-transcriptionally and is the first step in post-transcriptional modification. The 3' poly- adenine tail is only added after transcription is complete. RNA splicing, carried out by a complex called the spliceosome , is the process by which introns, or regions of DNA that do not code for protein, are removed from
11186-523: The nucleus. Most eukaryotic cell types usually have a single nucleus, but some have no nuclei, while others have several. This can result from normal development, as in the maturation of mammalian red blood cells , or from faulty cell division. An anucleated cell contains no nucleus and is, therefore, incapable of dividing to produce daughter cells. The best-known anucleated cell is the mammalian red blood cell, or erythrocyte , which also lacks other organelles such as mitochondria, and serves primarily as
11305-488: The nucleus. It forms around tandem repeats of rDNA , DNA coding for ribosomal RNA (rRNA). These regions are called nucleolar organizer regions (NOR). The main roles of the nucleolus are to synthesize rRNA and assemble ribosomes . The structural cohesion of the nucleolus depends on its activity, as ribosomal assembly in the nucleolus results in the transient association of nucleolar components, facilitating further ribosomal assembly, and hence further association. This model
11424-422: The nucleus. There they serve as transcription factors when bound to their ligand ; in the absence of a ligand, many such receptors function as histone deacetylases that repress gene expression. In animal cells, two networks of intermediate filaments provide the nucleus with mechanical support: The nuclear lamina forms an organized meshwork on the internal face of the envelope, while less organized support
11543-403: The other blood particles: there are about 4,000–11,000 white blood cells and about 150,000–400,000 platelets per microliter. Human red blood cells take on average 60 seconds to complete one cycle of circulation. The blood's red color is due to the spectral properties of the hemic iron ions in hemoglobin . Each hemoglobin molecule carries four heme groups; hemoglobin constitutes about
11662-448: The outer to the inner monolayer, while others called " floppases " do the opposite operation, against a concentration gradient in an energy-dependent manner. Additionally, there are also " scramblase " proteins that move phospholipids in both directions at the same time, down their concentration gradients in an energy-independent manner. There is still considerable debate ongoing regarding the identity of these membrane maintenance proteins in
11781-433: The pre-mRNA and the remaining exons connected to re-form a single continuous molecule. This process normally occurs after 5' capping and 3' polyadenylation but can begin before synthesis is complete in transcripts with many exons. Many pre-mRNAs can be spliced in multiple ways to produce different mature mRNAs that encode different protein sequences . This process is known as alternative splicing , and allows production of
11900-445: The presence of giant pronormoblasts with viral particles and inclusion bodies , thus temporarily depleting the blood of reticulocytes and causing anemia . Human red blood cells are produced through a process named erythropoiesis , developing from committed stem cells to mature red blood cells in about 7 days. When matured, in a healthy individual these cells live in blood circulation for about 100 to 120 days (and 80 to 90 days in
12019-440: The presence of this catalyst carbon dioxide and carbonic acid reach an equilibrium very rapidly, while the red cells are still moving through the capillary. Thus it is the RBC that ensures that most of the CO 2 is transported as bicarbonate. At physiological pH the equilibrium strongly favors carbonic acid, which is mostly dissociated into bicarbonate ion. The H+ ions released by this rapid reaction within RBC, while still in
12138-538: The process of cell division or as a consequence of apoptosis (the process of programmed cell death ). During these events, the structural components of the nucleus — the envelope and lamina — can be systematically degraded. In most cells, the disassembly of the nuclear envelope marks the end of the prophase of mitosis. However, this disassembly of the nucleus is not a universal feature of mitosis and does not occur in all cells. Some unicellular eukaryotes (e.g., yeasts) undergo so-called closed mitosis , in which
12257-416: The promyelocytic leukemia protein (PML). They are often seen in the nucleus in association with Cajal bodies and cleavage bodies. Pml-/- mice, which are unable to create PML-nuclear bodies, develop normally without obvious ill effects, showing that PML-nuclear bodies are not required for most essential biological processes. Discovered by Fox et al. in 2002, paraspeckles are irregularly shaped compartments in
12376-474: The proteins in these membranes are associated with many disorders, such as hereditary spherocytosis , hereditary elliptocytosis , hereditary stomatocytosis , and paroxysmal nocturnal hemoglobinuria . The red blood cell membrane proteins organized according to their function: Transport Cell adhesion Structural role – The following membrane proteins establish linkages with skeletal proteins and may play an important role in regulating cohesion between
12495-862: The red cell membrane. The maintenance of an asymmetric phospholipid distribution in the bilayer (such as an exclusive localization of PS and PIs in the inner monolayer) is critical for the cell integrity and function due to several reasons: The presence of specialized structures named " lipid rafts " in the red blood cell membrane have been described by recent studies. These are structures enriched in cholesterol and sphingolipids associated with specific membrane proteins, namely flotillins , STOMatins (band 7), G-proteins , and β-adrenergic receptors . Lipid rafts that have been implicated in cell signaling events in nonerythroid cells have been shown in erythroid cells to mediate β2-adregenic receptor signaling and increase cAMP levels, and thus regulating entry of malarial parasites into normal red cells. The proteins of
12614-550: The release of some immature "micronucleated" erythrocytes into the bloodstream. Anucleated cells can also arise from flawed cell division in which one daughter lacks a nucleus and the other has two nuclei. Red blood cell Red blood cells ( RBCs ), referred to as erythrocytes (from Ancient Greek erythros 'red' and kytos 'hollow vessel', with - cyte translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells , erythroid cells , and rarely haematids , are
12733-412: The rest of the cell contents, and allow the nucleus to maintain an environment distinct from the rest of the cell. Despite their close apposition around much of the nucleus, the two membranes differ substantially in shape and contents. The inner membrane surrounds the nuclear content, providing its defining edge. Embedded within the inner membrane, various proteins bind the intermediate filaments that give
12852-411: The rest of the cytoplasm where necessary. This is important for controlling processes on either side of the nuclear membrane: In most cases where a cytoplasmic process needs to be restricted, a key participant is removed to the nucleus, where it interacts with transcription factors to downregulate the production of certain enzymes in the pathway. This regulatory mechanism occurs in the case of glycolysis ,
12971-468: The resulting oxyhemoglobin is scarlet, and when oxygen has been released the resulting deoxyhemoglobin is of a dark red burgundy color. However, blood can appear bluish when seen through the vessel wall and skin. Pulse oximetry takes advantage of the hemoglobin color change to directly measure the arterial blood oxygen saturation using colorimetric techniques. Hemoglobin also has a very high affinity for carbon monoxide , forming carboxyhemoglobin which
13090-450: The ring is a structure called the nuclear basket that extends into the nucleoplasm, and a series of filamentous extensions that reach into the cytoplasm. Both structures serve to mediate binding to nuclear transport proteins. Most proteins, ribosomal subunits, and some RNAs are transported through the pore complexes in a process mediated by a family of transport factors known as karyopherins . Those karyopherins that mediate movement into
13209-440: The rods themselves consist of mutant actin as well as other cytoskeletal proteins. PIKA domains, or polymorphic interphase karyosomal associations, were first described in microscopy studies in 1991. Their function remains unclear, though they were not thought to be associated with active DNA replication, transcription, or RNA processing. They have been found to often associate with discrete domains defined by dense localization of
13328-569: The same structure. Later ultrastructural studies have shown gems to be twins of Cajal bodies with the difference being in the coilin component; Cajal bodies are SMN positive and coilin positive, and gems are SMN positive and coilin negative. Beyond the nuclear bodies first described by Santiago Ramón y Cajal above (e.g., nucleolus, nuclear speckles, Cajal bodies) the nucleus contains a number of other nuclear bodies. These include polymorphic interphase karyosomal association (PIKA), promyelocytic leukaemia (PML) bodies, and paraspeckles . Although little
13447-413: The small subunit. These regions are separated by another domain whose sequence is always present in large subunits from various species but whose size varies and whose sequence is poorly conserved . A second gene encoding a large TF II A subunit has been found in some higher eukaryotes . This gene, ALF/TFIIAtau (gene name GTF2A1LF ) is expressed only in oocytes and spermatocytes , suggesting it has
13566-827: The subsequent accumulation of non-coding DNA in the genome . The argument runs as follows: Efficient gas transport requires red blood cells to pass through very narrow capillaries, and this constrains their size. In the absence of nuclear elimination, the accumulation of repeat sequences is constrained by the volume occupied by the nucleus, which increases with genome size. Nucleated red blood cells in mammals consist of two forms: normoblasts, which are normal erythropoietic precursors to mature red blood cells, and megaloblasts, which are abnormally large precursors that occur in megaloblastic anemias . Red blood cells are deformable, flexible, are able to adhere to other cells, and are able to interface with immune cells. Their membrane plays many roles in this. These functions are highly dependent on
13685-477: The target genes. The compartmentalization allows the cell to prevent translation of unspliced mRNA. Eukaryotic mRNA contains introns that must be removed before being translated to produce functional proteins. The splicing is done inside the nucleus before the mRNA can be accessed by ribosomes for translation. Without the nucleus, ribosomes would translate newly transcribed (unprocessed) mRNA, resulting in malformed and nonfunctional proteins. The main function of
13804-408: The template DNA strands pass like conveyor belts. Gene expression first involves transcription, in which DNA is used as a template to produce RNA. In the case of genes encoding proteins, that RNA produced from this process is messenger RNA (mRNA), which then needs to be translated by ribosomes to form a protein. As ribosomes are located outside the nucleus, mRNA produced needs to be exported. Since
13923-434: The transcription factor PTF, which promotes transcription of small nuclear RNA (snRNA). Promyelocytic leukemia protein (PML-nuclear bodies) are spherical bodies found scattered throughout the nucleoplasm, measuring around 0.1–1.0 μm. They are known by a number of other names, including nuclear domain 10 (ND10), Kremer bodies, and PML oncogenic domains. PML-nuclear bodies are named after one of their major components,
14042-514: The transcriptionally active chromatin and are hypothesized to be the sites of active pre-mRNA processing. Clastosomes are small nuclear bodies (0.2–0.5 μm) described as having a thick ring-shape due to the peripheral capsule around these bodies. This name is derived from the Greek klastos , broken and soma , body. Clastosomes are not typically present in normal cells, making them hard to detect. They form under high proteolytic conditions within
14161-426: The veil, such as LEM3 , bind chromatin and disrupting their structure inhibits transcription of protein-coding genes. Like the components of other intermediate filaments, the lamin monomer contains an alpha-helical domain used by two monomers to coil around each other, forming a dimer structure called a coiled coil . Two of these dimer structures then join side by side, in an antiparallel arrangement, to form
#751248