Misplaced Pages

Storage Management Initiative – Specification

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#967032

67-796: The Storage Management Initiative Specification , commonly called SMI-S , is a computer data storage management standard developed and maintained by the Storage Networking Industry Association (SNIA). It has also been ratified as an ISO standard. SMI-S is based upon the Common Information Model and the Web-Based Enterprise Management standards defined by the Distributed Management Task Force , which define management functionality via HTTP. The most recent approved version of SMI-S

134-409: A byte or word , is referred to, it is usually specified by a number from 0 upwards corresponding to its position within the byte or word. However, 0 can refer to either the most or least significant bit depending on the context. Similar to torque and energy in physics; information-theoretic information and data storage size have the same dimensionality of units of measurement , but there

201-637: A storage hierarchy , which puts fast but expensive and small storage options close to the CPU and slower but less expensive and larger options further away. Generally, the fast technologies are referred to as "memory", while slower persistent technologies are referred to as "storage". Even the first computer designs, Charles Babbage 's Analytical Engine and Percy Ludgate 's Analytical Machine, clearly distinguished between processing and memory (Babbage stored numbers as rotations of gears, while Ludgate stored numbers as displacements of rods in shuttles). This distinction

268-502: A unit of information , the bit is also known as a shannon , named after Claude E. Shannon . The symbol for the binary digit is either "bit", per the IEC 80000-13 :2008 standard, or the lowercase character "b", per the IEEE 1541-2002 standard. Use of the latter may create confusion with the capital "B" which is the international standard symbol for the byte. The encoding of data by discrete bits

335-482: A Bell Labs memo on 9 January 1947 in which he contracted "binary information digit" to simply "bit". A bit can be stored by a digital device or other physical system that exists in either of two possible distinct states . These may be the two stable states of a flip-flop , two positions of an electrical switch , two distinct voltage or current levels allowed by a circuit , two distinct levels of light intensity , two directions of magnetization or polarization ,

402-475: A bit pattern to each character , digit , or multimedia object. Many standards exist for encoding (e.g. character encodings like ASCII , image encodings like JPEG , and video encodings like MPEG-4 ). By adding bits to each encoded unit, redundancy allows the computer to detect errors in coded data and correct them based on mathematical algorithms. Errors generally occur in low probabilities due to random bit value flipping, or "physical bit fatigue", loss of

469-429: A bit was represented by the polarity of magnetization of a certain area of a ferromagnetic film, or by a change in polarity from one direction to the other. The same principle was later used in the magnetic bubble memory developed in the 1980s, and is still found in various magnetic strip items such as metro tickets and some credit cards . In modern semiconductor memory , such as dynamic random-access memory ,

536-493: A computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix , have integrated batteries that maintain volatile storage for several minutes. Utilities such as hdparm and sar can be used to measure IO performance in Linux. Full disk encryption , volume and virtual disk encryption, andor file/folder encryption

603-424: A database) to represent a string of bits by a shorter bit string ("compress") and reconstruct the original string ("decompress") when needed. This utilizes substantially less storage (tens of percent) for many types of data at the cost of more computation (compress and decompress when needed). Analysis of the trade-off between storage cost saving and costs of related computations and possible delays in data availability

670-702: A drive. When the computer has finished reading the information, the robotic arm will return the medium to its place in the library. Tertiary storage is also known as nearline storage because it is "near to online". The formal distinction between online, nearline, and offline storage is: For example, always-on spinning hard disk drives are online storage, while spinning drives that spin down automatically, such as in massive arrays of idle disks ( MAID ), are nearline storage. Removable media such as tape cartridges that can be automatically loaded, as in tape libraries , are nearline storage, while tape cartridges that must be manually loaded are offline storage. Off-line storage

737-400: A relatively simple processor may keep state between successive computations to build up complex procedural results. Most modern computers are von Neumann machines. A modern digital computer represents data using the binary numeral system . Text, numbers, pictures, audio, and nearly any other form of information can be converted into a string of bits , or binary digits, each of which has

SECTION 10

#1733085893968

804-574: A source to read instructions from, in order to start the computer. Hence, non-volatile primary storage containing a small startup program ( BIOS ) is used to bootstrap the computer, that is, to read a larger program from non-volatile secondary storage to RAM and start to execute it. A non-volatile technology used for this purpose is called ROM, for read-only memory (the terminology may be somewhat confusing as most ROM types are also capable of random access ). Many types of "ROM" are not literally read only , as updates to them are possible; however it

871-404: A time in serial transmission , and by a multiple number of bits in parallel transmission . A bitwise operation optionally processes bits one at a time. Data transfer rates are usually measured in decimal SI multiples of the unit bit per second (bit/s), such as kbit/s. In the earliest non-electronic information processing devices, such as Jacquard's loom or Babbage's Analytical Engine , a bit

938-490: A value of 0 or 1. The most common unit of storage is the byte , equal to 8 bits. A piece of information can be handled by any computer or device whose storage space is large enough to accommodate the binary representation of the piece of information , or simply data . For example, the complete works of Shakespeare , about 1250 pages in print, can be stored in about five megabytes (40 million bits) with one byte per character. Data are encoded by assigning

1005-472: A very basic level, SMI-S entities are divided into two categories: Computer data storage Computer data storage or digital data storage is a technology consisting of computer components and recording media that are used to retain digital data . It is a core function and fundamental component of computers. The central processing unit (CPU) of a computer is what manipulates data by performing computations. In practice, almost all computers use

1072-427: Is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed , otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost. An uninterruptible power supply (UPS) can be used to give

1139-425: Is a level below secondary storage. Typically, it involves a robotic mechanism which will mount (insert) and dismount removable mass storage media into a storage device according to the system's demands; such data are often copied to secondary storage before use. It is primarily used for archiving rarely accessed information since it is much slower than secondary storage (e.g. 5–60 seconds vs. 1–10 milliseconds). This

1206-577: Is also used for secondary storage in various advanced electronic devices and specialized computers that are designed for them. Bit The bit is the most basic unit of information in computing and digital communication . The name is a portmanteau of binary digit . The bit represents a logical state with one of two possible values . These values are most commonly represented as either " 1 " or " 0 " , but other representations such as true / false , yes / no , on / off , or + / − are also widely used. The relation between these values and

1273-460: Is available on the SNIA website. The main objective of SMI-S is to enable broad interoperable management of heterogeneous storage vendor systems. The current version is SMI-S 1.8.0 Rev 5. Over 1,350 storage products are certified as conformant to SMI-S. SMI-S defines CIM management profiles for storage systems. The entire SMI Specification is categorized in profiles and subprofiles. A profile describes

1340-410: Is computer data storage on a medium or a device that is not under the control of a processing unit . The medium is recorded, usually in a secondary or tertiary storage device, and then physically removed or disconnected. It must be inserted or connected by a human operator before a computer can access it again. Unlike tertiary storage, it cannot be accessed without human interaction. Off-line storage

1407-408: Is done before deciding whether to keep certain data compressed or not. For security reasons , certain types of data (e.g. credit card information) may be kept encrypted in storage to prevent the possibility of unauthorized information reconstruction from chunks of storage snapshots. Generally, the lower a storage is in the hierarchy, the lesser its bandwidth and the greater its access latency

SECTION 20

#1733085893968

1474-609: Is estimable using S.M.A.R.T. diagnostic data that includes the hours of operation and the count of spin-ups, though its reliability is disputed. Flash storage may experience downspiking transfer rates as a result of accumulating errors, which the flash memory controller attempts to correct. The health of optical media can be determined by measuring correctable minor errors , of which high counts signify deteriorating and/or low-quality media. Too many consecutive minor errors can lead to data corruption. Not all vendors and models of optical drives support error scanning. As of 2011 ,

1541-1063: Is from the CPU. This traditional division of storage to primary, secondary, tertiary, and off-line storage is also guided by cost per bit. In contemporary usage, memory is usually fast but temporary semiconductor read-write memory , typically DRAM (dynamic RAM) or other such devices. Storage consists of storage devices and their media not directly accessible by the CPU ( secondary or tertiary storage ), typically hard disk drives , optical disc drives, and other devices slower than RAM but non-volatile (retaining contents when powered down). Historically, memory has, depending on technology, been called central memory , core memory , core storage , drum , main memory , real storage , or internal memory . Meanwhile, slower persistent storage devices have been referred to as secondary storage , external memory , or auxiliary/peripheral storage . Primary storage (also known as main memory , internal memory , or prime memory ), often referred to simply as memory ,

1608-486: Is in general no meaning to adding, subtracting or otherwise combining the units mathematically, although one may act as a bound on the other. Units of information used in information theory include the shannon (Sh), the natural unit of information (nat) and the hartley (Hart). One shannon is the maximum amount of information needed to specify the state of one bit of storage. These are related by 1 Sh ≈ 0.693 nat ≈ 0.301 Hart. Some authors also define

1675-554: Is more compressed—the same bucket can hold more. For example, it is estimated that the combined technological capacity of the world to store information provides 1,300 exabytes of hardware digits. However, when this storage space is filled and the corresponding content is optimally compressed, this only represents 295 exabytes of information. When optimally compressed, the resulting carrying capacity approaches Shannon information or information entropy . Certain bitwise computer processor instructions (such as bit set ) operate at

1742-416: Is primarily useful for extraordinarily large data stores, accessed without human operators. Typical examples include tape libraries and optical jukeboxes . When a computer needs to read information from the tertiary storage, it will first consult a catalog database to determine which tape or disc contains the information. Next, the computer will instruct a robotic arm to fetch the medium and place it in

1809-700: Is readily available for most storage devices. Hardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME). and in SPARC M7 generation since October 2015. Distinct types of data storage have different points of failure and various methods of predictive failure analysis . Vulnerabilities that can instantly lead to total loss are head crashing on mechanical hard drives and failure of electronic components on flash storage. Impending failure on hard disk drives

1876-488: Is slow and memory must be erased in large portions before it can be re-written. Some embedded systems run programs directly from ROM (or similar), because such programs are rarely changed. Standard computers do not store non-rudimentary programs in ROM, and rather, use large capacities of secondary storage, which is non-volatile as well, and not as costly. Recently, primary storage and secondary storage in some uses refer to what

1943-442: Is the only one directly accessible to the CPU. The CPU continuously reads instructions stored there and executes them as required. Any data actively operated on is also stored there in a uniform manner. Historically, early computers used delay lines , Williams tubes , or rotating magnetic drums as primary storage. By 1954, those unreliable methods were mostly replaced by magnetic-core memory . Core memory remained dominant until

2010-405: Is typically automatically fenced out, taken out of use by the device, and replaced with another functioning equivalent group in the device, where the corrected bit values are restored (if possible). The cyclic redundancy check (CRC) method is typically used in communications and storage for error detection . A detected error is then retried. Data compression methods allow in many cases (such as

2077-505: Is typically measured in milliseconds (thousandths of a second), while the access time per byte for primary storage is measured in nanoseconds (billionths of a second). Thus, secondary storage is significantly slower than primary storage. Rotating optical storage devices, such as CD and DVD drives, have even longer access times. Other examples of secondary storage technologies include USB flash drives , floppy disks , magnetic tape , paper tape , punched cards , and RAM disks . Once

Storage Management Initiative – Specification - Misplaced Pages Continue

2144-496: Is used to transfer information since the detached medium can easily be physically transported. Additionally, it is useful for cases of disaster, where, for example, a fire destroys the original data, a medium in a remote location will be unaffected, enabling disaster recovery . Off-line storage increases general information security since it is physically inaccessible from a computer, and data confidentiality or integrity cannot be affected by computer-based attack techniques. Also, if

2211-476: The disk read/write head on HDDs reaches the proper placement and the data, subsequent data on the track are very fast to access. To reduce the seek time and rotational latency, data are transferred to and from disks in large contiguous blocks. Sequential or block access on disks is orders of magnitude faster than random access, and many sophisticated paradigms have been developed to design efficient algorithms based on sequential and block access. Another way to reduce

2278-410: The yottabit (Ybit). When the information capacity of a storage system or a communication channel is presented in bits or bits per second , this often refers to binary digits, which is a computer hardware capacity to store binary data ( 0 or 1 , up or down, current or not, etc.). Information capacity of a storage system is only an upper bound to the quantity of information stored therein. If

2345-449: The 1940s, computer builders experimented with a variety of storage methods, such as pressure pulses traveling down a mercury delay line , charges stored on the inside surface of a cathode-ray tube , or opaque spots printed on glass discs by photolithographic techniques. In the 1950s and 1960s, these methods were largely supplanted by magnetic storage devices such as magnetic-core memory , magnetic tapes , drums , and disks , where

2412-690: The 1970s, when advances in integrated circuit technology allowed semiconductor memory to become economically competitive. This led to modern random-access memory (RAM). It is small-sized, light, but quite expensive at the same time. The particular types of RAM used for primary storage are volatile , meaning that they lose the information when not powered. Besides storing opened programs, it serves as disk cache and write buffer to improve both reading and writing performance. Operating systems borrow RAM capacity for caching so long as it's not needed by running software. Spare memory can be utilized as RAM drive for temporary high-speed data storage. As shown in

2479-508: The I/O bottleneck is to use multiple disks in parallel to increase the bandwidth between primary and secondary memory. Secondary storage is often formatted according to a file system format, which provides the abstraction necessary to organize data into files and directories , while also providing metadata describing the owner of a certain file, the access time, the access permissions, and other information. Most computer operating systems use

2546-409: The ambiguity of relying on the underlying hardware design, the unit octet was defined to explicitly denote a sequence of eight bits. Computers usually manipulate bits in groups of a fixed size, conventionally named " words ". Like the byte, the number of bits in a word also varies with the hardware design, and is typically between 8 and 80 bits, or even more in some specialized computers. In

2613-424: The average. This principle is the basis of data compression technology. Using an analogy, the hardware binary digits refer to the amount of storage space available (like the number of buckets available to store things), and the information content the filling, which comes in different levels of granularity (fine or coarse, that is, compressed or uncompressed information). When the granularity is finer—when information

2680-412: The behavioral aspects of an autonomous, self-contained management domain. SMI-S includes profiles for Arrays , Switches , Storage Virtualizers, Volume Management and several other management domains. In DMTF parlance, an SMI-S provider is an implementation for a specific profile or set of profiles. A subprofile describes a part of a management domain, and can be a common part in more than one profile. At

2747-524: The concept of virtual memory , allowing the utilization of more primary storage capacity than is physically available in the system. As the primary memory fills up, the system moves the least-used chunks ( pages ) to a swap file or page file on secondary storage, retrieving them later when needed. If a lot of pages are moved to slower secondary storage, the system performance is degraded. The secondary storage, including HDD , ODD and SSD , are usually block-addressable. Tertiary storage or tertiary memory

Storage Management Initiative – Specification - Misplaced Pages Continue

2814-430: The desired data to primary storage. Secondary storage is non-volatile (retaining data when its power is shut off). Modern computer systems typically have two orders of magnitude more secondary storage than primary storage because secondary storage is less expensive. In modern computers, hard disk drives (HDDs) or solid-state drives (SSDs) are usually used as secondary storage. The access time per byte for HDDs or SSDs

2881-491: The desired location of data. Then it reads or writes the data in the memory cells using the data bus. Additionally, a memory management unit (MMU) is a small device between CPU and RAM recalculating the actual memory address, for example to provide an abstraction of virtual memory or other tasks. As the RAM types used for primary storage are volatile (uninitialized at start up), a computer containing only such storage would not have

2948-400: The diagram, traditionally there are two more sub-layers of the primary storage, besides main large-capacity RAM: Main memory is directly or indirectly connected to the central processing unit via a memory bus . It is actually two buses (not on the diagram): an address bus and a data bus . The CPU firstly sends a number through an address bus, a number called memory address , that indicates

3015-415: The early 21st century, retail personal or server computers have a word size of 32 or 64 bits. The International System of Units defines a series of decimal prefixes for multiples of standardized units which are commonly also used with the bit and the byte. The prefixes kilo (10 ) through yotta (10 ) increment by multiples of one thousand, and the corresponding units are the kilobit (kbit) through

3082-477: The former using standard MOSFETs and the latter using floating-gate MOSFETs . In modern computers, primary storage almost exclusively consists of dynamic volatile semiconductor random-access memory (RAM), particularly dynamic random-access memory (DRAM). Since the turn of the century, a type of non-volatile floating-gate semiconductor memory known as flash memory has steadily gained share as off-line storage for home computers. Non-volatile semiconductor memory

3149-568: The information stored for archival purposes is rarely accessed, off-line storage is less expensive than tertiary storage. In modern personal computers, most secondary and tertiary storage media are also used for off-line storage. Optical discs and flash memory devices are the most popular, and to a much lesser extent removable hard disk drives; older examples include floppy disks and Zip disks. In enterprise uses, magnetic tape cartridges are predominant; older examples include open-reel magnetic tape and punched cards. Storage technologies at all levels of

3216-409: The level of manipulating bits rather than manipulating data interpreted as an aggregate of bits. In the 1980s, when bitmapped computer displays became popular, some computers provided specialized bit block transfer instructions to set or copy the bits that corresponded to a given rectangular area on the screen. In most computers and programming languages, when a bit within a group of bits, such as

3283-641: The most commonly used data storage media are semiconductor, magnetic, and optical, while paper still sees some limited usage. Some other fundamental storage technologies, such as all-flash arrays (AFAs) are proposed for development. Semiconductor memory uses semiconductor -based integrated circuit (IC) chips to store information. Data are typically stored in metal–oxide–semiconductor (MOS) memory cells . A semiconductor memory chip may contain millions of memory cells, consisting of tiny MOS field-effect transistors (MOSFETs) and/or MOS capacitors . Both volatile and non-volatile forms of semiconductor memory exist,

3350-408: The orientation of reversible double stranded DNA , etc. Bits can be implemented in several forms. In most modern computing devices, a bit is usually represented by an electrical voltage or current pulse, or by the electrical state of a flip-flop circuit. For devices using positive logic , a digit value of 1 (or a logical value of true) is represented by a more positive voltage relative to

3417-408: The physical bit in the storage of its ability to maintain a distinguishable value (0 or 1), or due to errors in inter or intra-computer communication. A random bit flip (e.g. due to random radiation ) is typically corrected upon detection. A bit or a group of malfunctioning physical bits (the specific defective bit is not always known; group definition depends on the specific storage device)

SECTION 50

#1733085893968

3484-443: The physical states of the underlying storage or device is a matter of convention, and different assignments may be used even within the same device or program . It may be physically implemented with a two-state device. A contiguous group of binary digits is commonly called a bit string , a bit vector, or a single-dimensional (or multi-dimensional) bit array . A group of eight bits is called one  byte , but historically

3551-517: The representation of 0 . Different logic families require different voltages, and variations are allowed to account for component aging and noise immunity. For example, in transistor–transistor logic (TTL) and compatible circuits, digit values 0 and 1 at the output of a device are represented by no higher than 0.4 V and no lower than 2.6 V, respectively; while TTL inputs are specified to recognize 0.8 V or below as 0 and 2.2 V or above as 1 . Bits are transmitted one at

3618-530: The result. It would have to be reconfigured to change its behavior. This is acceptable for devices such as desk calculators , digital signal processors , and other specialized devices. Von Neumann machines differ in having a memory in which they store their operating instructions and data. Such computers are more versatile in that they do not need to have their hardware reconfigured for each new program, but can simply be reprogrammed with new in-memory instructions; they also tend to be simpler to design, in that

3685-424: The size of the byte is not strictly defined. Frequently, half, full, double and quadruple words consist of a number of bytes which is a low power of two. A string of four bits is usually a nibble . In information theory , one bit is the information entropy of a random binary variable that is 0 or 1 with equal probability, or the information that is gained when the value of such a variable becomes known. As

3752-413: The storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance. Non-volatile memory retains

3819-422: The stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory. Dynamic random-access memory

3886-552: The thickness of alternating black and white lines. The bit is not defined in the International System of Units (SI). However, the International Electrotechnical Commission issued standard IEC 60027 , which specifies that the symbol for binary digit should be 'bit', and this should be used in all multiples, such as 'kbit', for kilobit. However, the lower-case letter 'b' is widely used as well and

3953-556: The two possible values of one bit of storage are not equally likely, that bit of storage contains less than one bit of information. If the value is completely predictable, then the reading of that value provides no information at all (zero entropic bits, because no resolution of uncertainty occurs and therefore no information is available). If a computer file that uses n  bits of storage contains only m  <  n  bits of information, then that information can in principle be encoded in about m  bits, at least on

4020-444: The two values of a bit may be represented by two levels of electric charge stored in a capacitor . In certain types of programmable logic arrays and read-only memory , a bit may be represented by the presence or absence of a conducting path at a certain point of a circuit. In optical discs , a bit is encoded as the presence or absence of a microscopic pit on a reflective surface. In one-dimensional bar codes , bits are encoded as

4087-447: Was also used in Morse code (1844) and early digital communications machines such as teletypes and stock ticker machines (1870). Ralph Hartley suggested the use of a logarithmic measure of information in 1928. Claude E. Shannon first used the word "bit" in his seminal 1948 paper " A Mathematical Theory of Communication ". He attributed its origin to John W. Tukey , who had written

SECTION 60

#1733085893968

4154-461: Was extended in the Von Neumann architecture , where the CPU consists of two main parts: The control unit and the arithmetic logic unit (ALU). The former controls the flow of data between the CPU and memory, while the latter performs arithmetic and logical operations on data. Without a significant amount of memory, a computer would merely be able to perform fixed operations and immediately output

4221-441: Was historically called, respectively, secondary storage and tertiary storage . The primary storage, including ROM , EEPROM , NOR flash , and RAM , are usually byte-addressable . Secondary storage (also known as external memory or auxiliary storage ) differs from primary storage in that it is not directly accessible by the CPU. The computer usually uses its input/output channels to access secondary storage and transfer

4288-460: Was often stored as the position of a mechanical lever or gear, or the presence or absence of a hole at a specific point of a paper card or tape . The first electrical devices for discrete logic (such as elevator and traffic light control circuits , telephone switches , and Konrad Zuse's computer) represented bits as the states of electrical relays which could be either "open" or "closed". When relays were replaced by vacuum tubes , starting in

4355-503: Was recommended by the IEEE 1541 Standard (2002) . In contrast, the upper case letter 'B' is the standard and customary symbol for byte. Multiple bits may be expressed and represented in several ways. For convenience of representing commonly reoccurring groups of bits in information technology, several units of information have traditionally been used. The most common is the unit byte , coined by Werner Buchholz in June 1956, which historically

4422-541: Was used in the punched cards invented by Basile Bouchon and Jean-Baptiste Falcon (1732), developed by Joseph Marie Jacquard (1804), and later adopted by Semyon Korsakov , Charles Babbage , Herman Hollerith , and early computer manufacturers like IBM . A variant of that idea was the perforated paper tape . In all those systems, the medium (card or tape) conceptually carried an array of hole positions; each position could be either punched through or not, thus carrying one bit of information. The encoding of text by bits

4489-405: Was used to represent the group of bits used to encode a single character of text (until UTF-8 multibyte encoding took over) in a computer and for this reason it was used as the basic addressable element in many computer architectures . The trend in hardware design converged on the most common implementation of using eight bits per byte, as it is widely used today. However, because of

#967032