The HMZ-T1 is a visor style head mounted display manufactured by Sony Corporation in 2011. It allows the user to view stereoscopic 3D imagery. Also known as the Sony Personal HD & 3D Viewer , the HMZ-T1 is composed of two different hardware devices, the Visor and the External Processor Unit .
82-518: The visor consists of 2 miniature OLED displays providing video and headphones providing stereo sound. The two displays can be driven independently and offer stereoscopic video when used with a compatible video format. The following specifications apply to the Visor portion of the HMZ-T1. The visor is worn on the head and kept in place using a combination of a headband and a forehead cushion. Sony has produced
164-405: A rare-earth - doped material when illuminated by intersecting infrared laser beams of the appropriate frequencies. Recent advances have focused on non-tangible (free-space) implementations of the static-volume category, which might eventually allow direct interaction with the display. For instance, a fog display using multiple projectors can render a 3D image in a volume of space, resulting in
246-436: A raster image (like a television picture) directly onto the retina of the eye. The user sees what appears to be a conventional display floating in space in front of them. For true stereoscopy, each eye must be provided with its own discrete display. To produce a virtual display that occupies a usefully large visual angle but does not involve the use of relatively large lenses or mirrors, the light source must be very close to
328-421: A "time parallax" for anything side-moving: for instance, someone walking at 3.4 mph will be seen 20% too close or 25% too remote in the most current case of a 2x60 Hz projection. To present stereoscopic pictures, two images are projected superimposed onto the same screen through polarizing filters or presented on a display with polarized filters. For projection, a silver screen is used so that polarization
410-448: A 360-degree field of view by oblique projection onto a vertical diffuser; another projects 24 views onto a rotating controlled-diffusion surface; and another provides 12-view images utilizing a vertically oriented louver. So far, the ability to reconstruct scenes with occlusion and other position-dependent effects have been at the expense of vertical parallax, in that the 3D scene appears distorted if viewed from locations other than those
492-403: A 3D illusion starting from a pair of 2D images, a stereogram. The easiest way to enhance depth perception in the brain is to provide the eyes of the viewer with two different images, representing two perspectives of the same object, with a minor deviation equal or nearly equal to the perspectives that both eyes naturally receive in binocular vision . To avoid eyestrain and distortion, each of
574-409: A 3D volumetric display would require two to three orders of magnitude more CPU and/or GPU power beyond that necessary for 2D imagery of equivalent quality, due at least in part to the sheer amount of data that must be created and sent to the display hardware. However, if only the outer surface of the volume is visible, the number of voxels required would be of the same order as the number of pixels on
656-575: A computer by correlating the pixels in the left and right images. Solving the Correspondence problem in the field of Computer Vision aims to create meaningful depth information from two images. Anatomically, there are 3 levels of binocular vision required to view stereo images: These functions develop in early childhood. Some people who have strabismus disrupt the development of stereopsis, however orthoptics treatment can be used to improve binocular vision . A person's stereoacuity determines
738-492: A display. Passive viewers filter constant streams of binocular input to the appropriate eye. A shutter system works by openly presenting the image intended for the left eye while blocking the right eye's view, then presenting the right-eye image while blocking the left eye, and repeating this so rapidly that the interruptions do not interfere with the perceived fusion of the two images into a single 3D image. It generally uses liquid crystal shutter glasses. Each eye's glass contains
820-441: A liquid crystal layer which has the property of becoming dark when voltage is applied, being otherwise transparent. The glasses are controlled by a timing signal that allows the glasses to alternately darken over one eye, and then the other, in synchronization with the refresh rate of the screen. The main drawback of active shutters is that most 3D videos and movies were shot with simultaneous left and right views, so that it introduces
902-559: A pair of two-dimensional images to the viewer. The left image is presented to the left eye and the right image is presented to the right eye. When viewed, the human brain perceives the images as a single 3D view, giving the viewer the perception of 3D depth. However, the 3D effect lacks proper focal depth, which gives rise to the Vergence-accommodation conflict . Stereoscopy is distinguished from other types of 3D displays that display an image in three full dimensions , allowing
SECTION 10
#1733085978542984-485: A popping sound, so the device crackles as it runs. Currently it can generate dots anywhere within a cubic metre. It is thought that the device could be scaled up to any size, allowing 3D images to be generated in the sky. Later modifications such as the use of a neon/argon/xenon/helium gas mix similar to a plasma globe and a rapid gas recycling system employing a hood and vacuum pumps could allow this technology to achieve two-colour (R/W) and possibly RGB imagery by changing
1066-487: A series of patterns from a high-frame-rate 2D image source, such as a vector display, to a corresponding set of depth surfaces. An example of a commercially available Swept-volume display is the Voxon VX1 from Voxon Photonics. This display has a volume area that is 18 cm × 18 cm × 8 cm (7.1 in × 7.1 in × 3.1 in) deep and can render up to 500 million voxels per second. Content for
1148-527: A short video detailing the method for getting an accurate fit when using the HMZ-T1: How to use Sony Personal 3D Viewer Headset The following specifications apply to the External Processor portion of the HMZ-T1. It has been reviewed by CNET , CNN , PC Mag , and Time . Stereoscopy Stereoscopy (also called stereoscopics , or stereo imaging ) is a technique for creating or enhancing
1230-409: A side-by-side image pair without using a viewing device. Two methods are available to freeview: Prismatic, self-masking glasses are now being used by some cross-eyed-view advocates. These reduce the degree of convergence required and allow large images to be displayed. However, any viewing aid that uses prisms, mirrors or lenses to assist fusion or focus is simply a type of stereoscope, excluded by
1312-437: A single 3D image. A variety of swept-volume displays have been created. For example, the 3D scene is computationally decomposed into a series of "slices", which can be rectangular, disc-shaped, or helically cross-sectioned, whereupon they are projected onto or from a display surface undergoing motion. The image on the 2D surface (created by projection onto the surface, LEDs embedded in the surface, or other techniques) changes as
1394-447: A staple of science fiction , volumetric displays are not widely used in everyday life. There are numerous potential markets for volumetric displays with use cases including medical imaging, mining, education, advertising, simulation, video games, communication and geophysical visualisation. When compared to other 3D visualisation tools such as virtual reality , volumetric displays offer an inherently different mode of interaction, providing
1476-422: A static-volume volumetric display. A technique presented in 2006 does away with the display medium altogether, using a focused pulsed infrared laser (about 100 pulses per second; each lasting a nanosecond ) to create balls of glowing plasma at the focal point in normal air. The focal point is directed by two moving mirrors and a sliding lens , allowing it to draw shapes in the air. Each pulse creates
1558-647: A type of autostereoscopic display, in that they provide a different view to each eye, thus creating three-dimensional imagery that can be viewed by unaided eyes. However, they have the advantage over most flat-screen autostereoscopic displays, that they are able to provide realistic focal depth in addition to providing motion parallax and vergence , thus avoiding vergence-accommodation conflict . Volumetric displays are one of several kinds of 3D displays. Other types are stereoscopes , view-sequential displays, electro-holographic displays, "two view" displays, and panoramagrams . Although first postulated in 1912, and
1640-460: A volume, it is not an addressable display and capable of only lissajous figures , such at those generated by bouncing a laser off a galvo or speaker cone. Known volumetric display technologies also have several drawbacks that are exhibited depending on trade-offs chosen by the system designer. It is often claimed that volumetric displays are incapable of reconstructing scenes with viewer-position-dependent effects, such as occlusion and opacity. This
1722-457: A volume. Such displays use voxels instead of pixels . Volumetric displays include multiplanar displays, which have multiple display planes stacked up, and rotating panel displays, where a rotating panel sweeps out a volume. Other technologies have been developed to project light dots in the air above a device. An infrared laser is focused on the destination in space, generating a small bubble of plasma which emits visible light. Integral imaging
SECTION 20
#17330859785421804-416: A volumetric display can either reach the eye directly from the source or via an intermediate surface such as a mirror or glass; likewise, this surface, which need not be tangible, can undergo motion such as oscillation or rotation. One categorization is as follows: Swept-surface (or "swept-volume") volumetric 3D displays rely on the human persistence of vision to fuse a series of slices of the 3D object into
1886-650: A window. Unfortunately, this "pure" form requires the subject to be laser-lit and completely motionless—to within a minor fraction of the wavelength of light—during the photographic exposure, and laser light must be used to properly view the results. Most people have never seen a laser-lit transmission hologram. The types of holograms commonly encountered have seriously compromised image quality so that ordinary white light can be used for viewing, and non-holographic intermediate imaging processes are almost always resorted to, as an alternative to using powerful and hazardous pulsed lasers, when living subjects are photographed. Although
1968-457: Is a display device that forms a visual representation of an object in three physical dimensions , as opposed to the planar image of traditional screens that simulate depth through a number of different visual effects. One definition offered by pioneers in the field is that volumetric displays create 3D imagery via the emission, scattering, or relaying of illumination from well-defined regions in (x,y,z) space. A true volumetric display produces in
2050-575: Is a misconception; a display whose voxels have non-isotropic radiation profiles are indeed able to depict position-dependent effects. To-date, occlusion-capable volumetric displays require two conditions: (1) the imagery is rendered and projected as a series of "views", rather than "slices", and (2) the time-varying image surface is not a uniform diffuser. For example, researchers have demonstrated spinning-screen volumetric displays with reflective and/or vertically diffuse screens whose imagery exhibits occlusion and opacity. One system created HPO 3D imagery with
2132-404: Is a single-image stereogram (SIS), designed to create the visual illusion of a three- dimensional ( 3D ) scene within the human brain from an external two-dimensional image. In order to perceive 3D shapes in these autostereograms, one must overcome the normally automatic coordination between focusing and vergence . The stereoscope is essentially an instrument in which two photographs of
2214-452: Is a technique for producing 3D displays which are both autostereoscopic and multiscopic , meaning that the 3D image is viewed without the use of special glasses and different aspects are seen when it is viewed from positions that differ either horizontally or vertically. This is achieved by using an array of microlenses (akin to a lenticular lens , but an X–Y or "fly's eye" array in which each lenslet typically forms its own image of
2296-513: Is achieved. This technique uses specific wavelengths of red, green, and blue for the right eye, and different wavelengths of red, green, and blue for the left eye. Eyeglasses which filter out the very specific wavelengths allow the wearer to see a full color 3D image. It is also known as spectral comb filtering or wavelength multiplex visualization or super-anaglyph . Dolby 3D uses this principle. The Omega 3D/ Panavision 3D system has also used an improved version of this technology In June 2012
2378-449: Is based on the fact that with a prism, colors are separated by varying degrees. The ChromaDepth eyeglasses contain special view foils, which consist of microscopically small prisms. This causes the image to be translated a certain amount that depends on its color. If one uses a prism foil now with one eye but not on the other eye, then the two seen pictures – depending upon color – are more or less widely separated. The brain produces
2460-687: Is based on the phenomenon of the human eye processing images more slowly when there is less light, as when looking through a dark lens. Because the Pulfrich effect depends on motion in a particular direction to instigate the illusion of depth, it is not useful as a general stereoscopic technique. For example, it cannot be used to show a stationary object apparently extending into or out of the screen; similarly, objects moving vertically will not be seen as moving in depth. Incidental movement of objects will create spurious artifacts, and these incidental effects will be seen as artificial depth not related to actual depth in
2542-409: Is limited by the lesser of the display medium or human eye. This is because as the dimensions of an image are increased, either the viewing apparatus or viewer themselves must move proportionately further away from it in order to view it comfortably. Moving closer to an image in order to see more detail would only be possible with viewing equipment that adjusted to the difference. Freeviewing is viewing
HMZ-T1 - Misplaced Pages Continue
2624-439: Is not possible to recreate a full 3-dimensional sound field with just two stereophonic speakers, it is an overstatement to call dual 2D images "3D". The accurate term "stereoscopic" is more cumbersome than the common misnomer "3D", which has been entrenched by many decades of unquestioned misuse. Although most stereoscopic displays do not qualify as real 3D display, all real 3D displays are also stereoscopic displays because they meet
2706-402: Is preserved. On most passive displays every other row of pixels is polarized for one eye or the other. This method is also known as being interlaced. The viewer wears low-cost eyeglasses which also contain a pair of opposite polarizing filters. As each filter only passes light which is similarly polarized and blocks the opposite polarized light, each eye only sees one of the images, and the effect
2788-514: Is recent work investigating the speed and accuracy benefits of volumetric displays, new graphical user interfaces, and medical applications enhanced by volumetric displays. Also, software platforms exist that deliver native and legacy 2D and 3D content to volumetric displays. An artform called Hologlyphics has been explored since 1994, combining elements of holography , music , video synthesis , visionary film, sculpture and improvisation . Whilst this type of display may render visual data in
2870-409: Is the production of the impression of depth in a photograph , movie , or other two-dimensional image by the presentation of a slightly different image to each eye , which adds the first of these cues ( stereopsis ). The two images are then combined in the brain to give the perception of depth. Because all points in the image produced by stereoscopy focus at the same plane regardless of their depth in
2952-577: Is undesirable, this is called a "window violation." This can best be understood by returning to the analogy of an actual physical window. Therefore, there is a contradiction between two different depth cues: some elements of the image are hidden by the window, so that the window appears closer than these elements, and the same elements of the image appear closer than the window. As such, the stereo window must always be adjusted to avoid window violations to prevent viewer discomfort from conflicting depth cues. Volumetric display A volumetric display device
3034-435: Is visible from a different range of positions in front of the display. This allows the viewer to move left-right in front of the display and see the correct view from any position. The technology includes two broad classes of displays: those that use head-tracking to ensure that each of the viewer's two eyes sees a different image on the screen, and those that display multiple views so that the display does not need to know where
3116-404: Is visually indistinguishable from the original, given the original lighting conditions. It creates a light field identical to that which emanated from the original scene, with parallax about all axes and a very wide viewing angle. The eye differentially focuses objects at different distances and subject detail is preserved down to the microscopic level. The effect is exactly like looking through
3198-460: The Stereo Realist format, introduced in 1947, is by far the most common. The user typically wears a helmet or glasses with two small LCD or OLED displays with magnifying lenses, one for each eye. The technology can be used to show stereo films, images or games, but it can also be used to create a virtual display. Head-mounted displays may also be coupled with head-tracking devices, allowing
3280-427: The illusion of depth in an image by means of stereopsis for binocular vision . The word stereoscopy derives from Greek στερεός (stereos) 'firm, solid' and σκοπέω (skopeō) 'to look, to see'. Any stereoscopic image is called a stereogram . Originally, stereogram referred to a pair of stereo images which could be viewed using a stereoscope . Most stereoscopic methods present
3362-565: The Omega 3D/Panavision 3D system was discontinued by DPVO Theatrical, who marketed it on behalf of Panavision, citing "challenging global economic and 3D market conditions". Anaglyph 3D is the name given to the stereoscopic 3D effect achieved by means of encoding each eye's image using filters of different (usually chromatically opposite) colors, typically red and cyan . Red-cyan filters can be used because our vision processing systems use red and cyan comparisons, as well as blue and yellow, to determine
HMZ-T1 - Misplaced Pages Continue
3444-480: The VX1 can be created using Unity or using standard 3D file types such as OBJ , STL and DICOM for medical imaging. So-called "static-volume" volumetric 3D displays create imagery without any macroscopic moving parts in the image volume. It is unclear whether the rest of the system must remain stationary for membership in this display class to be viable. This is probably the most "direct" form of volumetric display. In
3526-504: The brain, as it strives to make sense of the raw information. One of the functions that occur within the brain as it interprets what the eyes see is assessing the relative distances of objects from the viewer, and the depth dimension of those objects. The cues that the brain uses to gauge relative distances and depth in a perceived scene include: (All but the first two of the above cues exist in traditional two-dimensional images, such as paintings, photographs, and television.) Stereoscopy
3608-421: The color and contours of objects. Anaglyph 3D images contain two differently filtered colored images, one for each eye. When viewed through the "color-coded" "anaglyph glasses", each of the two images reaches one eye, revealing an integrated stereoscopic image. The visual cortex of the brain fuses this into perception of a three dimensional scene or composition. The ChromaDepth procedure of American Paper Optics
3690-404: The continuing miniaturization of video and other equipment these devices are beginning to become available at more reasonable cost. Head-mounted or wearable glasses may be used to view a see-through image imposed upon the real world view, creating what is called augmented reality . This is done by reflecting the video images through partially reflective mirrors. The real world view is seen through
3772-612: The customary definition of freeviewing. Stereoscopically fusing two separate images without the aid of mirrors or prisms while simultaneously keeping them in sharp focus without the aid of suitable viewing lenses inevitably requires an unnatural combination of eye vergence and accommodation . Simple freeviewing therefore cannot accurately reproduce the physiological depth cues of the real-world viewing experience. Different individuals may experience differing degrees of ease and comfort in achieving fusion and good focus, as well as differing tendencies to eye fatigue or strain. An autostereogram
3854-405: The development of a realistic imaging method: For the purposes of illustration I have employed only outline figures, for had either shading or colouring been introduced it might be supposed that the effect was wholly or in part due to these circumstances, whereas by leaving them out of consideration no room is left to doubt that the entire effect of relief is owing to the simultaneous perception of
3936-403: The display hardware to sustain 60 volumes per second. As with regular 2D video, one could reduce the bandwidth needed by simply sending fewer volumes per second and letting the display hardware repeat frames in the interim, or by sending only enough data to affect those areas of the display that need to be updated, as is the case in modern lossy-compression video formats such as MPEG . Furthermore,
4018-433: The display, rather than worn by the user, to enable each eye to see a different image. Because headgear is not required, it is also called "glasses-free 3D". The optics split the images directionally into the viewer's eyes, so the display viewing geometry requires limited head positions that will achieve the stereoscopic effect. Automultiscopic displays provide multiple views of the same scene, rather than just two. Each view
4100-511: The earliest stereoscope views, issued in the 1850s, were on glass. In the early 20th century, 45x107 mm and 6x13 cm glass slides were common formats for amateur stereo photography, especially in Europe. In later years, several film-based formats were in use. The best-known formats for commercially issued stereo views on film are Tru-Vue , introduced in 1931, and View-Master , introduced in 1939 and still in production. For amateur stereo slides,
4182-521: The eye. A contact lens incorporating one or more semiconductor light sources is the form most commonly proposed. As of 2013, the inclusion of suitable light-beam-scanning means in a contact lens is still very problematic, as is the alternative of embedding a reasonably transparent array of hundreds of thousands (or millions, for HD resolution) of accurately aligned sources of collimated light. There are two categories of 3D viewer technology, active and passive. Active viewers have electronics which interact with
SECTION 50
#17330859785424264-514: The eyes, caused by imperfect image separation in some methods of stereoscopy. Although the term "3D" is ubiquitously used, the presentation of dual 2D images is distinctly different from displaying an image in three full dimensions . The most notable difference is that, in the case of "3D" displays, the observer's head and eye movement do not change the information received about the 3-dimensional objects being viewed. Holographic displays and volumetric display do not have this limitation. Just as it
4346-651: The generation of plasma, which alleviates concerns for safety and dramatically improves the accessibility of the three-dimensional displays. UV-light and green-light patterns are aimed at the dye solution, which initiates photoactivation and thus creates the "on" voxel. The device is capable of displaying a minimal voxel size of 0.68 mm , with 200 μm resolution, and good stability over hundreds of on–off cycles. The unique properties of volumetric displays, which may include 360-degree viewing, agreement of vergence and accommodation cues, and their inherent "three-dimensionality", enable new user interface techniques . There
4428-551: The generation of two images. Wiggle stereoscopy is an image display technique achieved by quickly alternating display of left and right sides of a stereogram. Found in animated GIF format on the web, online examples are visible in the New-York Public Library stereogram collection Archived 25 May 2022 at the Wayback Machine . The technique is also known as "Piku-Piku". For general-purpose stereo photography, where
4510-432: The goal is to duplicate natural human vision and give a visual impression as close as possible to actually being there, the correct baseline (distance between where the right and left images are taken) would be the same as the distance between the eyes. When images taken with such a baseline are viewed using a viewing method that duplicates the conditions under which the picture is taken, then the result would be an image much
4592-491: The huge bandwidth required to transmit a stream of them, have confined this technology to the research laboratory. In 2013, a Silicon Valley company, LEIA Inc , started manufacturing holographic displays well suited for mobile devices (watches, smartphones or tablets) using a multi-directional backlight and allowing a wide full- parallax angle view to see 3D content without the need of glasses. Volumetric displays use some physical mechanism to display points of light within
4674-405: The lower criteria also. Most 3D displays use this stereoscopic method to convey images. It was first invented by Sir Charles Wheatstone in 1838, and improved by Sir David Brewster who made the first portable 3D viewing device. Wheatstone originally used his stereoscope (a rather bulky device) with drawings because photography was not yet available, yet his original paper seems to foresee
4756-463: The minimum image disparity they can perceive as depth. It is believed that approximately 12% of people are unable to properly see 3D images, due to a variety of medical conditions. According to another experiment up to 30% of people have very weak stereoscopic vision preventing them from depth perception based on stereo disparity. This nullifies or greatly decreases immersion effects of stereo to them. Stereoscopic viewing may be artificially created by
4838-518: The mirrors' reflective surface. Experimental systems have been used for gaming, where virtual opponents may peek from real windows as a player moves about. This type of system is expected to have wide application in the maintenance of complex systems, as it can give a technician what is effectively "x-ray vision" by combining computer graphics rendering of hidden elements with the technician's natural vision. Additionally, technical data and schematic diagrams may be delivered to this same equipment, eliminating
4920-428: The need to obtain and carry bulky paper documents. Augmented stereoscopic vision is also expected to have applications in surgery, as it allows the combination of radiographic data ( CAT scans and MRI imaging) with the surgeon's vision. A virtual retinal display (VRD), also known as a retinal scan display (RSD) or retinal projector (RP), not to be confused with a " Retina Display ", is a display technology that draws
5002-451: The observer a visual experience of a material object in three-dimensional space, even though no such object is present. The perceived object displays characteristics similar to an actual material object by allowing the observer to view it from any direction, to focus a camera on a specific detail, and to see perspective – meaning that the parts of the image closer to the viewer appear larger than those further away. Volumetric 3D displays are
SECTION 60
#17330859785425084-406: The observer to increase information about the 3-dimensional objects being displayed by head and eye movements . Stereoscopy creates the impression of three-dimensional depth from a pair of two-dimensional images. Human vision, including the perception of depth, is a complex process, which only begins with the acquisition of visual information taken in through the eyes; much processing ensues within
5166-433: The opportunity for a group of people to gather around the display and interact in a natural manner without having to don 3D glasses or other head gear. Many different attempts have been made to produce volumetric imaging devices. There is no officially accepted " taxonomy " of the variety of volumetric displays, an issue which is complicated by the many permutations of their characteristics. For example, illumination within
5248-420: The original photographic processes have proven impractical for general use, the combination of computer-generated holograms (CGH) and optoelectronic holographic displays, both under development for many years, has the potential to transform the half-century-old pipe dream of holographic 3D television into a reality; so far, however, the large amount of calculation required to generate just one detailed hologram, and
5330-431: The original scene, the second cue, focus, is not duplicated and therefore the illusion of depth is incomplete. There are also mainly two effects of stereoscopy that are unnatural for human vision: (1) the mismatch between convergence and accommodation, caused by the difference between an object's perceived position in front of or behind the display or screen and the real origin of that light; and (2) possible crosstalk between
5412-403: The point of view chosen rather than actual physical separation of cameras or lenses. The concept of the stereo window is always important, since the window is the stereoscopic image of the external boundaries of left and right views constituting the stereoscopic image. If any object, which is cut off by lateral sides of the window, is placed in front of it, an effect results that is unnatural and
5494-415: The presentation of images at very high resolution and in full spectrum color, simplicity in creation, and little or no additional image processing is required. Under some circumstances, such as when a pair of images is presented for freeviewing, no device or additional optical equipment is needed. The principal disadvantage of side-by-side viewers is that large image displays are not practical and resolution
5576-425: The pulse width and intensity of each pulse to tune the emission spectra of the luminous plasma body. In 2017, a new display known as the "3D Light PAD" was published. The display's medium consists of a class of photoactivatable molecules (known as spirhodamines) and digital light-processing (DLP) technology to generate structured light in three dimensions. The technique bypasses the need to use high-powered lasers and
5658-477: The real objects themselves. Stereoscopy is used in photogrammetry and also for entertainment through the production of stereograms. Stereoscopy is useful in viewing images rendered from large multi- dimensional data sets such as are produced by experimental data. Modern industrial three-dimensional photography may use 3D scanners to detect and record three-dimensional information. The three-dimensional depth information can be reconstructed from two images using
5740-462: The same as that which would be seen at the site the photo was taken. This could be described as "ortho stereo." However, there are situations in which it might be desirable to use a longer or shorter baseline. The factors to consider include the viewing method to be used and the goal in taking the picture. The concept of baseline also applies to other branches of stereography, such as stereo drawings and computer generated stereo images , but it involves
5822-604: The same object, taken from slightly different angles, are simultaneously presented, one to each eye. A simple stereoscope is limited in the size of the image that may be used. A more complex stereoscope uses a pair of horizontal periscope -like devices, allowing the use of larger images that can present more detailed information in a wider field of view. One can buy historical stereoscopes such as Holmes stereoscopes as antiques. Some stereoscopes are designed for viewing transparent photographs on film or glass, known as transparencies or diapositives and commonly called slides . Some of
5904-492: The scene was generated for. One other consideration is the very large amount of bandwidth required to feed imagery to a volumetric display. For example, a standard 24 bits per pixel , 1024×768 resolution, flat/2D display requires about 135 MB/s to be sent to the display hardware to sustain 60 frames per second, whereas a 24 bits per voxel , 1024×768×1024 (1024 "pixel layers" in the Z axis) volumetric display would need to send about three orders of magnitude more (135 GB/s ) to
5986-401: The scene without assistance from a larger objective lens ) or pinholes to capture and display the scene as a 4D light field , producing stereoscopic images that exhibit realistic alterations of parallax and perspective when the viewer moves left, right, up, down, closer, or farther away. Integral imaging may not technically be a type of autostereoscopy, as autostereoscopy still refers to
6068-547: The scene. Stereoscopic viewing is achieved by placing an image pair one above one another. Special viewers are made for over/under format that tilt the right eyesight slightly up and the left eyesight slightly down. The most common one with mirrors is the View Magic. Another with prismatic glasses is the KMQ viewer . A recent usage of this technique is the openKMQ project. Autostereoscopic display technologies use optical components in
6150-484: The simplest case, an addressable volume of space is created out of active elements that are transparent in the off state but are either opaque or luminous in the on state. When the elements (called voxels ) are activated, they show a solid pattern within the space of the display. Several static-volume volumetric 3D displays use laser light to encourage visible radiation in a solid, liquid, or gas. For example, some researchers have relied on two-step upconversion within
6232-461: The spatial impression from this difference. The advantage of this technology consists above all of the fact that one can regard ChromaDepth pictures also without eyeglasses (thus two-dimensional) problem-free (unlike with two-color anaglyph). However the colors are only limitedly selectable, since they contain the depth information of the picture. If one changes the color of an object, then its observed distance will also be changed. The Pulfrich effect
6314-436: The surface moves or rotates. Due to the persistence of vision, humans perceive a continuous volume of light. The display surface can be reflective, transmissive, or a combination of both. Another type of 3D display that is a candidate member of the class of swept-volume 3D displays is the varifocal mirror architecture. One of the first references to this type of system is from 1966, in which a vibrating mirrored drumhead reflects
6396-437: The two 2D images should be presented to the viewer so that any object at infinite distance is perceived by the eye as being straight ahead, the viewer's eyes being neither crossed nor diverging. When the picture contains no object at infinite distance, such as a horizon or a cloud, the pictures should be spaced correspondingly closer together. The advantages of side-by-side viewers is the lack of diminution of brightness, allowing
6478-554: The two monocular projections, one on each retina. But if it be required to obtain the most faithful resemblances of real objects, shadowing and colouring may properly be employed to heighten the effects. Careful attention would enable an artist to draw and paint the two component pictures, so as to present to the mind of the observer, in the resultant perception, perfect identity with the object represented. Flowers, crystals, busts, vases, instruments of various kinds, &c., might thus be represented so as not to be distinguished by sight from
6560-430: The user to "look around" the virtual world by moving their head, eliminating the need for a separate controller. Performing this update quickly enough to avoid inducing nausea in the user requires a great amount of computer image processing. If six axis position sensing (direction and position) is used then wearer may move about within the limitations of the equipment used. Owing to rapid advancements in computer graphics and
6642-474: The viewer's brain, as demonstrated with the Van Hare Effect , where the brain perceives stereo images even when the paired photographs are identical. This "false dimensionality" results from the developed stereoacuity in the brain, allowing the viewer to fill in depth information even when few if any 3D cues are actually available in the paired images. Traditional stereoscopic photography consists of creating
6724-408: The viewers' eyes are directed. Examples of autostereoscopic displays technology include lenticular lens , parallax barrier , volumetric display , holography and light field displays. Laser holography, in its original "pure" form of the photographic transmission hologram , is the only technology yet created which can reproduce an object or scene with such complete realism that the reproduction
#541458