Misplaced Pages

SmY RNA

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

SmY ribonucleic acids ( SmY RNAs ) are a family of small nuclear RNAs found in some species of nematode worms. They are thought to be involved in mRNA trans-splicing .

#859140

47-413: SmY RNAs are about 70–90 nucleotides long and share a common secondary structure , with two stem-loops flanking a consensus binding site for Sm protein . Sm protein is a shared component of spliceosomal snRNPs . SmY RNAs have been found in nematodes of class Chromadorea , which includes the most commonly studied nematodes (such as Caenorhabditis , Pristionchus , and Ascaris ), but not in

94-461: A fused-ring skeletal structure derived of purine , hence they are called purine bases . The purine nitrogenous bases are characterized by their single amino group ( −NH 2 ), at the C6 carbon in adenine and C2 in guanine. Similarly, the simple-ring structure of cytosine, uracil, and thymine is derived of pyrimidine , so those three bases are called the pyrimidine bases . Each of the base pairs in

141-465: A (d5SICS–dNaM) complex or base pair in DNA. E. coli have been induced to replicate a plasmid containing UBPs through multiple generations. This is the first known example of a living organism passing along an expanded genetic code to subsequent generations. The applications of synthetic nucleotides vary widely and include disease diagnosis, treatment, or precision medicine. Nucleotide (abbreviated "nt")

188-413: A central role in metabolism at a fundamental, cellular level. They provide chemical energy—in the form of the nucleoside triphosphates , adenosine triphosphate (ATP), guanosine triphosphate (GTP), cytidine triphosphate (CTP), and uridine triphosphate (UTP)—throughout the cell for the many cellular functions that demand energy, including: amino acid , protein and cell membrane synthesis, moving

235-466: A double helix, the two strands are oriented in opposite directions, which permits base pairing and complementarity between the base-pairs, all which is essential for replicating or transcribing the encoded information found in DNA. Nucleic acids then are polymeric macromolecules assembled from nucleotides, the monomer-units of nucleic acids . The purine bases adenine and guanine and pyrimidine base cytosine occur in both DNA and RNA, while

282-483: A phosphorylated ribosyl unit. The covalent linkage between the ribose and pyrimidine occurs at position C 1 of the ribose unit, which contains a pyrophosphate , and N 1 of the pyrimidine ring. Orotate phosphoribosyltransferase (PRPP transferase) catalyzes the net reaction yielding orotidine monophosphate (OMP): Orotidine 5'-monophosphate is decarboxylated by orotidine-5'-phosphate decarboxylase to form uridine monophosphate (UMP). PRPP transferase catalyzes both

329-399: A second one-carbon unit from formyl-THF is added to the nitrogen group and the ring is covalently closed to form the common purine precursor inosine monophosphate (IMP). Inosine monophosphate is converted to adenosine monophosphate in two steps. First, GTP hydrolysis fuels the addition of aspartate to IMP by adenylosuccinate synthase, substituting the carbonyl oxygen for a nitrogen and forming

376-478: A systematic survey of small non-coding RNA transcripts in C. elegans . A systematic survey of 2,2,7-trimethylguanosine (TMG) 5′ capped transcripts in C.elegans using anti TMG antibodies identified two TMG capped SmY transcripts. Sequence analysis of the potential Sm binding sites in these transcripts indicated the SmY, U5 snRNA , U3 snoRNA and the spliced leader RNAs transcripts ( SL1 and SL2 ) all contain

423-403: A typical double- helix DNA comprises a purine and a pyrimidine: either an A paired with a T or a C paired with a G. These purine-pyrimidine pairs, which are called base complements , connect the two strands of the helix and are often compared to the rungs of a ladder. Only pairing purine with pyrimidine ensures a constant width for the DNA. The A–T pairing is based on two hydrogen bonds , while

470-543: A very similar consensus SM binding sequence (AAU 4 – 5 GGA). The predicted SM binding sites identified in the U1 , U2 and U4 snRNA transcripts varied from this consensus. In C. elegans , SmY RNAs copurify with spliceosome and with Sm, SL75p , and SL26p proteins, while the better-characterized C. elegans SL1 trans-splicing snRNA copurifies in a complex with Sm, SL75p, and SL21p (a paralog of SL26p). Loss of function of either SL21p or SL26p individually causes only

517-603: A weak cold-sensitive phenotype , whereas knockdown of both is lethal, as is a SL75p knockdown. Based on these results, the SmY RNAs are believed to have a function in trans-splicing. Nucleotide Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate . They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth . Nucleotides are obtained in

SECTION 10

#1732868924860

564-432: Is a common unit of length for single-stranded nucleic acids, similar to how base pair is a unit of length for double-stranded nucleic acids. The IUPAC has designated the symbols for nucleotides. Apart from the five (A, G, C, T/U) bases, often degenerate bases are used especially for designing PCR primers . These nucleotide codes are listed here. Some primer sequences may also include the character "I", which codes for

611-411: Is fueled by ATP hydrolysis. In humans, pyrimidine rings (C, T, U) can be degraded completely to CO 2 and NH 3 (urea excretion). That having been said, purine rings (G, A) cannot. Instead, they are degraded to the metabolically inert uric acid which is then excreted from the body. Uric acid is formed when GMP is split into the base guanine and ribose. Guanine is deaminated to xanthine which in turn

658-432: Is oxidized to uric acid. This last reaction is irreversible. Similarly, uric acid can be formed when AMP is deaminated to IMP from which the ribose unit is removed to form hypoxanthine. Hypoxanthine is oxidized to xanthine and finally to uric acid. Instead of uric acid secretion, guanine and IMP can be used for recycling purposes and nucleic acid synthesis in the presence of PRPP and aspartate (NH 3 donor). Theories about

705-543: Is protected to create a phosphoramidite , which can then be used to obtain analogues not found in nature and/or to synthesize an oligonucleotide . In vivo, nucleotides can be synthesized de novo or recycled through salvage pathways . The components used in de novo nucleotide synthesis are derived from biosynthetic precursors of carbohydrate and amino acid metabolism, and from ammonia and carbon dioxide. Recently it has been also demonstrated that cellular bicarbonate metabolism can be regulated by mTORC1 signaling. The liver

752-447: Is required of chemical pathways that permit formation of the key building blocks of life under plausible prebiotic conditions . According to the RNA world hypothesis, free-floating ribonucleotides were present in the primordial soup . These were the fundamental molecules that combined in series to form RNA . Molecules as complex as RNA must have arisen from small molecules whose reactivity

799-527: Is subsequently formed by the amination of UTP by the catalytic activity of CTP synthetase . Glutamine is the NH 3 donor and the reaction is fueled by ATP hydrolysis, too: Cytidine monophosphate (CMP) is derived from cytidine triphosphate (CTP) with subsequent loss of two phosphates. The atoms that are used to build the purine nucleotides come from a variety of sources: The de novo synthesis of purine nucleotides by which these precursors are incorporated into

846-435: Is the committed step in purine synthesis. The reaction occurs with the inversion of configuration about ribose C 1 , thereby forming β - 5-phosphorybosylamine (5-PRA) and establishing the anomeric form of the future nucleotide. Next, a glycine is incorporated fueled by ATP hydrolysis, and the carboxyl group forms an amine bond to the NH 2 previously introduced. A one-carbon unit from folic acid coenzyme N 10 -formyl-THF

893-421: Is the major organ of de novo synthesis of all four nucleotides. De novo synthesis of pyrimidines and purines follows two different pathways. Pyrimidines are synthesized first from aspartate and carbamoyl-phosphate in the cytoplasm to the common precursor ring structure orotic acid, onto which a phosphorylated ribosyl unit is covalently linked. Purines, however, are first synthesized from the sugar template onto which

940-413: Is then added to the amino group of the substituted glycine followed by the closure of the imidazole ring. Next, a second NH 2 group is transferred from glutamine to the first carbon of the glycine unit. A carboxylation of the second carbon of the glycin unit is concomitantly added. This new carbon is modified by the addition of a third NH 2 unit, this time transferred from an aspartate residue. Finally,

987-494: The genetic code , with the bases A, G, C, and T being found in DNA while A, G, C, and U are found in RNA. Thymine and uracil are distinguished by merely the presence or absence of a methyl group on the fifth carbon (C5) of these heterocyclic six-membered rings. In addition, some viruses have aminoadenine (Z) instead of adenine. It differs in having an extra amine group, creating a more stable bond to thymine. Adenine and guanine have

SECTION 20

#1732868924860

1034-407: The origin of life require knowledge of chemical pathways that permit formation of life's key building blocks under plausible prebiotic conditions. The RNA world hypothesis holds that in the primordial soup there existed free-floating ribonucleotides , the fundamental molecules that combine in series to form RNA . Complex molecules like RNA must have arisen from small molecules whose reactivity

1081-406: The pyrimidine nucleotides . Being on a major metabolic crossroad and requiring much energy, this reaction is highly regulated. In the first reaction unique to purine nucleotide biosynthesis, PPAT catalyzes the displacement of PRPP's pyrophosphate group (PP i ) by an amide nitrogen donated from either glutamine (N), glycine (N&C), aspartate (N), folic acid (C 1 ), or CO 2 . This

1128-441: The umami taste, often in the form of a yeast extract. A nucleo tide is composed of three distinctive chemical sub-units: a five-carbon sugar molecule, a nucleobase (the two of which together are called a nucleo side ), and one phosphate group . With all three joined, a nucleotide is also termed a "nucleo side mono phosphate", "nucleoside di phosphate" or "nucleoside tri phosphate", depending on how many phosphates make up

1175-544: The C–G pairing is based on three. In both cases, the hydrogen bonds are between the amine and carbonyl groups on the complementary bases. Nucleobases such as adenine, guanine, xanthine , hypoxanthine , purine, 2,6-diaminopurine , and 6,8-diaminopurine may have formed in outer space as well as on earth. The origin of the term base reflects these compounds' chemical properties in acid–base reactions , but those properties are not especially important for understanding most of

1222-453: The activity of proteins and other signaling molecules, and as enzymatic cofactors , often carrying out redox reactions. Signaling cyclic nucleotides are formed by binding the phosphate group twice to the same sugar molecule , bridging the 5'- and 3'- hydroxyl groups of the sugar. Some signaling nucleotides differ from the standard single-phosphate group configuration, in having multiple phosphate groups attached to different positions on

1269-413: The basic building blocks of nucleic acids . The ability of nucleobases to form base pairs and to stack one upon another leads directly to long-chain helical structures such as ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). Five nucleobases— adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U)—are called primary or canonical . They function as the fundamental units of

1316-528: The biological functions of nucleobases. At the sides of nucleic acid structure, phosphate molecules successively connect the two sugar-rings of two adjacent nucleotide monomers, thereby creating a long chain biomolecule . These chain-joins of phosphates with sugars ( ribose or deoxyribose ) create the "backbone" strands for a single- or double helix biomolecule. In the double helix of DNA, the two strands are oriented chemically in opposite directions, which permits base pairing by providing complementarity between

1363-558: The cell and cell parts (both internally and intercellularly), cell division, etc.. In addition, nucleotides participate in cell signaling ( cyclic guanosine monophosphate or cGMP and cyclic adenosine monophosphate or cAMP) and are incorporated into important cofactors of enzymatic reactions (e.g., coenzyme A , FAD , FMN , NAD , and NADP ). In experimental biochemistry , nucleotides can be radiolabeled using radionuclides to yield radionucleotides. 5-nucleotides are also used in flavour enhancers as food additive to enhance

1410-411: The diet and are also synthesized from common nutrients by the liver . Nucleotides are composed of three subunit molecules: a nucleobase , a five-carbon sugar ( ribose or deoxyribose ), and a phosphate group consisting of one to three phosphates . The four nucleobases in DNA are guanine , adenine , cytosine , and thymine ; in RNA, uracil is used in place of thymine. Nucleotides also play

1457-415: The formation of PRPP . PRPS1 is the enzyme that activates R5P , which is formed primarily by the pentose phosphate pathway , to PRPP by reacting it with ATP . The reaction is unusual in that a pyrophosphoryl group is directly transferred from ATP to C 1 of R5P and that the product has the α configuration about C1. This reaction is also shared with the pathways for the synthesis of Trp , His , and

SmY RNA - Misplaced Pages Continue

1504-412: The formation of carbamoyl phosphate from glutamine and CO 2 . Next, aspartate carbamoyltransferase catalyzes a condensation reaction between aspartate and carbamoyl phosphate to form carbamoyl aspartic acid , which is cyclized into 4,5-dihydroorotic acid by dihydroorotase . The latter is converted to orotate by dihydroorotate oxidase . The net reaction is: Orotate is covalently linked with

1551-607: The genetic code, such as isoguanine and isocytosine or the fluorescent 2-amino-6-(2-thienyl)purine and pyrrole-2-carbaldehyde . In medicine, several nucleoside analogues are used as anticancer and antiviral agents. The viral polymerase incorporates these compounds with non-canonical bases. These compounds are activated in the cells by being converted into nucleotides; they are administered as nucleosides as charged nucleotides cannot easily cross cell membranes. At least one set of new base pairs has been announced as of May 2014. In order to understand how life arose , knowledge

1598-407: The intermediate adenylosuccinate. Fumarate is then cleaved off forming adenosine monophosphate. This step is catalyzed by adenylosuccinate lyase. Inosine monophosphate is converted to guanosine monophosphate by the oxidation of IMP forming xanthylate, followed by the insertion of an amino group at C 2 . NAD is the electron acceptor in the oxidation reaction. The amide group transfer from glutamine

1645-673: The many bases created through mutagen presence, both of them through deamination (replacement of the amine-group with a carbonyl-group). Hypoxanthine is produced from adenine, xanthine from guanine, and uracil results from deamination of cytosine. These are examples of modified adenosine or guanosine. These are examples of modified cytidine, thymidine or uridine. A vast number of nucleobase analogues exist. The most common applications are used as fluorescent probes, either directly or indirectly, such as aminoallyl nucleotide , which are used to label cRNA or cDNA in microarrays . Several groups are working on alternative "extra" base pairs to extend

1692-692: The more distantly related Trichinella spiralis in class Dorylaimia . The number of SmY genes in each species varies, with most Caenorhabditis and Pristionchus species having 10–26 related paralogous copies, while other nematodes have 1–5. The first SmY RNA was discovered in 1996 in purified Ascaris lumbricoides spliceosome preparations, as was another called SmX RNA that is not detectably homologous to SmY. Twelve SmY homologs were identified computationally in Caenorhabditis elegans , and ten in Caenorhabditis briggsae . Several transcripts from these SmY genes were cloned and sequenced in

1739-664: The non-standard nucleotide inosine . Inosine occurs in tRNAs and will pair with adenine, cytosine, or thymine. This character does not appear in the following table, however, because it does not represent a degeneracy. While inosine can serve a similar function as the degeneracy "H", it is an actual nucleotide, rather than a representation of a mix of nucleotides that covers each possible pairing needed. Nucleobase Nucleotide bases (also nucleobases , nitrogenous bases ) are nitrogen -containing biological compounds that form nucleosides , which, in turn, are components of nucleotides , with all of these monomers constituting

1786-422: The nucleotide monomers of a nucleic acid end-to-end into a long chain. These chain-joins of sugar and phosphate molecules create a 'backbone' strand for a single- or double helix . In any one strand, the chemical orientation ( directionality ) of the chain-joins runs from the 5'-end to the 3'-end ( read : 5 prime-end to 3 prime-end)—referring to the five carbon sites on sugar molecules in adjacent nucleotides. In

1833-415: The phosphate group. In nucleic acids , nucleotides contain either a purine or a pyrimidine base—i.e., the nucleobase molecule, also known as a nitrogenous base—and are termed ribo nucleotides if the sugar is ribose, or deoxyribo nucleotides if the sugar is deoxyribose. Individual phosphate molecules repetitively connect the sugar-ring molecules in two adjacent nucleotide monomers, thereby connecting

1880-478: The purine and pyrimidine bases. Thus a reaction network towards the purine and pyrimidine RNA building blocks can be established starting from simple atmospheric or volcanic molecules. An unnatural base pair (UBP) is a designed subunit (or nucleobase ) of DNA which is created in a laboratory and does not occur in nature. Examples include d5SICS and dNaM . These artificial nucleotides bearing hydrophobic nucleobases , feature two fused aromatic rings that form

1927-485: The purine ring proceeds by a 10-step pathway to the branch-point intermediate IMP , the nucleotide of the base hypoxanthine . AMP and GMP are subsequently synthesized from this intermediate via separate, two-step pathways. Thus, purine moieties are initially formed as part of the ribonucleotides rather than as free bases . Six enzymes take part in IMP synthesis. Three of them are multifunctional: The pathway starts with

SmY RNA - Misplaced Pages Continue

1974-528: The pyrimidine bases thymine (in DNA) and uracil (in RNA) occur in just one. Adenine forms a base pair with thymine with two hydrogen bonds, while guanine pairs with cytosine with three hydrogen bonds. In addition to being building blocks for the construction of nucleic acid polymers, singular nucleotides play roles in cellular energy storage and provision, cellular signaling, as a source of phosphate groups used to modulate

2021-403: The ribosylation and decarboxylation reactions, forming UMP from orotic acid in the presence of PRPP. It is from UMP that other pyrimidine nucleotides are derived. UMP is phosphorylated by two kinases to uridine triphosphate (UTP) via two sequential reactions with ATP. First, the diphosphate from UDP is produced, which in turn is phosphorylated to UTP. Both steps are fueled by ATP hydrolysis: CTP

2068-407: The ring synthesis occurs. For reference, the syntheses of the purine and pyrimidine nucleotides are carried out by several enzymes in the cytoplasm of the cell, not within a specific organelle . Nucleotides undergo breakdown such that useful parts can be reused in synthesis reactions to create new nucleotides. The synthesis of the pyrimidines CTP and UTP occurs in the cytoplasm and starts with

2115-471: The sugar. Nucleotide cofactors include a wider range of chemical groups attached to the sugar via the glycosidic bond , including nicotinamide and flavin , and in the latter case, the ribose sugar is linear rather than forming the ring seen in other nucleotides. Nucleotides can be synthesized by a variety of means, both in vitro and in vivo . In vitro, protecting groups may be used during laboratory production of nucleotides. A purified nucleoside

2162-527: The two bases, and which is essential for replication of or transcription of the encoded information found in DNA. DNA and RNA also contain other (non-primary) bases that have been modified after the nucleic acid chain has been formed. In DNA, the most common modified base is 5-methylcytosine (m C). In RNA, there are many modified bases, including those contained in the nucleosides pseudouridine (Ψ), dihydrouridine (D), inosine (I), and 7-methylguanosine (m G). Hypoxanthine and xanthine are two of

2209-548: Was governed by physico-chemical processes. RNA is composed of purine and pyrimidine nucleotides, both of which are necessary for reliable information transfer, and thus Darwinian evolution . Becker et al. showed how pyrimidine nucleosides can be synthesized from small molecules and ribose , driven solely by wet-dry cycles. Purine nucleosides can be synthesized by a similar pathway. 5'-mono- and di-phosphates also form selectively from phosphate-containing minerals, allowing concurrent formation of polyribonucleotides with both

#859140