Misplaced Pages

Paropamisus Mountains

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A mountain range or hill range is a series of mountains or hills arranged in a line and connected by high ground. A mountain system or mountain belt is a group of mountain ranges with similarity in form, structure, and alignment that have arisen from the same cause, usually an orogeny . Mountain ranges are formed by a variety of geological processes, but most of the significant ones on Earth are the result of plate tectonics . Mountain ranges are also found on many planetary mass objects in the Solar System and are likely a feature of most terrestrial planets .

#959040

43-575: The Paropamisus Mountains (locally known as Selseleh-ye Safīd Kūh ) is a mountain range in north western Afghanistan stretching circa 300 mi (480 km) between the western extension of the Hindu Kush in the east (near Chaghcharan , also called Firozkoh) and following the north bank of the Hari River via Herat toward the eastern extensions of Alborz Mountains in Iran in the west. These mountains are part of

86-422: A convergent plate tectonic boundary in the gap between an active volcanic arc and the associated trench , thus above the subducting oceanic plate. The formation of a forearc basin is often created by the vertical growth of an accretionary wedge that acts as a linear dam, parallel to the volcanic arc, creating a depression in which sediments can accumulate. Trench basins are deep linear depressions formed where

129-509: A high probability of preservation. In contrast, sedimentary basins formed on oceanic crust are likely to be destroyed by subduction . Continental margins formed when new ocean basins like the Atlantic are created as continents rift apart are likely to have lifespans of hundreds of millions of years, but may be only partially preserved when those ocean basins close as continents collide. Sedimentary basins are of great economic importance. Almost all

172-445: A load is placed on the lithosphere, it will tend to flex in the manner of an elastic plate. The magnitude of the lithospheric flexure is a function of the imposed load and the flexural rigidity of the lithosphere, and the wavelength of flexure is a function of flexural rigidity of the lithospheric plate. Flexural rigidity is in itself, a function of the lithospheric mineral composition, thermal regime, and effective elastic thickness of

215-606: A million, and their sedimentary fills range from one to almost twenty kilometers in thickness. A dozen or so common types of sedimentary basins are widely recognized and several classification schemes are proposed, however no single classification scheme is recognized as the standard. Most sedimentary basin classification schemes are based on one or more of these interrelated criteria: Although no one basin classification scheme has been widely adopted, several common types of sedimentary basins are widely accepted and well understood as distinct types. Over its complete lifespan

258-665: A result of isostasy . The long-term preserved geologic record of a sedimentary basin is a large scale contiguous three-dimensional package of sedimentary rocks created during a particular period of geologic time, a 'stratigraphic succession', that geologists continue to refer to as a sedimentary basin even if it is no longer a bathymetric or topographic depression. The Williston Basin , Molasse basin and Magallanes Basin are examples of sedimentary basins that are no longer depressions. Basins formed in different tectonic regimes vary in their preservation potential . Intracratonic basins, which form on highly-stable continental interiors, have

301-650: A result of the closing of a major ocean through continental collision resulting from plate tectonics. As a result the sedimentary record of inactive passive margins often are found as thick sedimentary sequences in mountain belts. For example the passive margins of the ancient Tethys Ocean are found in the mountain belts of the Alps and Himalayas that formed when the Tethys closed. Many authors recognize two subtypes of foreland basins: Peripheral foreland basins Retroarc foreland basins A sedimentary basin formed in association with

344-575: A single sedimentary basin can go through multiple phases and evolve from one of these types to another, such as a rift process going to completion to form a passive margin. In this case the sedimentary rocks of the rift basin phase are overlain by those rocks deposited during the passive margin phase. Hybrid basins where a single regional basin results from the processes that are characteristic of multiple of these types are also possible. Terrestrial rift valleys Proto-oceanic rift troughs Passive margins are long-lived and generally become inactive only as

387-404: A subducting oceanic plate descends into the mantle, beneath the overriding continental (Andean type) or oceanic plate (Mariana type). Trenches form in the deep ocean but, particularly where the overriding plate is continental crust they can accumulate thick sequences of sediments from eroding coastal mountains. Smaller 'trench slope basins' can form in association with a trench can form directly atop

430-801: A variety of rock types . Most geologically young mountain ranges on the Earth's land surface are associated with either the Pacific Ring of Fire or the Alpide belt . The Pacific Ring of Fire includes the Andes of South America, extends through the North American Cordillera , the Aleutian Range , on through Kamchatka Peninsula , Japan , Taiwan , the Philippines , Papua New Guinea , to New Zealand . The Andes

473-688: Is 7,000 kilometres (4,350 mi) long and is often considered the world's longest mountain system. The Alpide belt stretches 15,000 km across southern Eurasia , from Java in Maritime Southeast Asia to the Iberian Peninsula in Western Europe , including the ranges of the Himalayas , Karakoram , Hindu Kush , Alborz , Caucasus , and the Alps . The Himalayas contain the highest mountains in

SECTION 10

#1733092352960

516-516: Is a piece of rubber, which thins in the middle when stretched.) An example of a basin caused by lithospheric stretching is the North Sea – also an important location for significant hydrocarbon reserves. Another such feature is the Basin and Range Province which covers most of Nevada, forming a series of horst and graben structures. Tectonic extension at divergent boundaries where continental rifting

559-525: Is at work while the mountains are being uplifted until the mountains are reduced to low hills and plains. The early Cenozoic uplift of the Rocky Mountains of Colorado provides an example. As the uplift was occurring some 10,000 feet (3,000 m) of mostly Mesozoic sedimentary strata were removed by erosion over the core of the mountain range and spread as sand and clays across the Great Plains to

602-527: Is drier, having been stripped of much of its moisture. Often, a rain shadow will affect the leeward side of a range. As a consequence, large mountain ranges, such as the Andes, compartmentalize continents into distinct climate regions . Mountain ranges are constantly subjected to erosional forces which work to tear them down. The basins adjacent to an eroding mountain range are then filled with sediments that are buried and turned into sedimentary rock . Erosion

645-572: Is large enough and long-lived enough to create a sedimentary basin often called a pull-apart basin or strike-slip basin. These basins are often roughly rhombohedral in shape and may be called a rhombochasm . A classic rhombochasm is illustrated by the Dead Sea rift, where northward movement of the Arabian Plate relative to the Anatolian Plate has created a strike slip basin. The opposite effect

688-540: Is occurring can create a nascent ocean basin leading to either an ocean or the failure of the rift zone . Another expression of lithospheric stretching results in the formation of ocean basins with central ridges. The Red Sea is in fact an incipient ocean, in a plate tectonic context. The mouth of the Red Sea is also a tectonic triple junction where the Indian Ocean Ridge, Red Sea Rift and East African Rift meet. This

731-458: Is particularly measurable and observable with oceanic crust, as there is a well-established correlation between the age of the underlying crust and depth of the ocean . As newly-formed oceanic crust cools over a period of tens of millions of years. This is an important contribution to subsidence in rift basins, backarc basins and passive margins where they are underlain by newly-formed oceanic crust. In strike-slip tectonic settings, deformation of

774-535: Is that of transpression , where converging movement of a curved fault plane causes collision of the opposing sides of the fault. An example is the San Bernardino Mountains north of Los Angeles, which result from convergence along a curve in the San Andreas Fault system. The Northridge earthquake was caused by vertical movement along local thrust and reverse faults "bunching up" against the bend in

817-416: Is the only place on the planet where such a triple junction in oceanic crust is exposed subaerially . This is due to a high thermal buoyancy ( thermal subsidence ) of the junction, and also to a local crumpled zone of seafloor crust acting as a dam against the Red Sea. Lithospheric flexure is another geodynamic mechanism that can cause regional subsidence resulting in the creation of a sedimentary basin. If

860-466: Is thus an important area of study for purely scientific and academic reasons. There are however important economic incentives as well for understanding the processes of sedimentary basin formation and evolution because almost all of the world's fossil fuel reserves were formed in sedimentary basins. All of these perspectives on the history of a particular region are based on the study of a large three-dimensional body of sedimentary rocks that resulted from

903-520: The Earth's crust where subsidence has occurred and a thick sequence of sediments have accumulated to form a large three-dimensional body of sedimentary rock . They form when long-term subsidence creates a regional depression that provides accommodation space for accumulation of sediments. Over millions or tens or hundreds of millions of years the deposition of sediment , primarily gravity-driven transportation of water-borne eroded material, acts to fill

SECTION 20

#1733092352960

946-646: The Mithrim Montes and Doom Mons on Titan, and Tenzing Montes and Hillary Montes on Pluto. Some terrestrial planets other than Earth also exhibit rocky mountain ranges, such as Maxwell Montes on Venus taller than any on Earth and Tartarus Montes on Mars . Jupiter's moon Io has mountain ranges formed from tectonic processes including the Boösaule , Dorian, Hi'iaka and Euboea Montes . Sedimentary basin Sedimentary basins are region-scale depressions of

989-467: The Ocean Ridge forms the longest continuous mountain system on Earth, with a length of 65,000 kilometres (40,400 mi). The position of mountain ranges influences climate, such as rain or snow. When air masses move up and over mountains, the air cools, producing orographic precipitation (rain or snow). As the air descends on the leeward side, it warms again (following the adiabatic lapse rate ) and

1032-482: The associated accretionary prism as it grows and changes shape creating ponded basins. Pull-apart basins is are created along major strike-slip faults where a bend in the fault geometry or the splitting of the fault into two or more faults creates tensional forces that cause crustal thinning or stretching due to extension, creating a regional depression. Frequently, the basins are rhombic, S-like or Z-like in shape. A broad comparatively shallow basin formed far from

1075-443: The depression. As the sediments are buried, they are subject to increasing pressure and begin the processes of compaction and lithification that transform them into sedimentary rock . Sedimentary basins are created by deformation of Earth's lithosphere in diverse geological settings, usually as a result of plate tectonic activity. Mechanisms of crustal deformation that lead to subsidence and sedimentary basin formation include

1118-401: The earth's surface over time. Regional study of these rocks can be used as the primary record for different kinds of scientific investigation aimed at understanding and reconstructing the earth's past plate tectonics (paleotectonics), geography ( paleogeography , climate ( paleoclimatology ), oceans ( paleoceanography ), habitats ( paleoecology and paleobiogeography ). Sedimentary basin analysis

1161-485: The east. This mass of rock was removed as the range was actively undergoing uplift. The removal of such a mass from the core of the range most likely caused further uplift as the region adjusted isostatically in response to the removed weight. Rivers are traditionally believed to be the principal cause of mountain range erosion, by cutting into bedrock and transporting sediment. Computer simulation has shown that as mountain belts change from tectonically active to inactive,

1204-425: The edge of a continental craton as a result of prolonged, broadly distributed but slow subsidence of the continental lithosphere relative to the surrounding area. They are sometimes referred to as intracratonic sag basins. They tend to be subcircular in shape and are commonly filled with shallow water marine or terrestrial sedimentary rocks that remain flat-lying and relatively undeformed over long periods of time due to

1247-439: The effect is believed to be twofold. The lower, hotter part of the lithosphere will "flow" slowly away from the main area being stretched, whilst the upper, cooler and more brittle crust will tend to fault (crack) and fracture. The combined effect of these two mechanisms is for Earth's surface in the area of extension to subside, creating a geographical depression which is then often infilled with water and/or sediments. (An analogy

1290-405: The fill of one or more sedimentary basins over time. The scientific studies of stratigraphy and in recent decades sequence stratigraphy are focused on understanding the three-dimensional architecture, packaging and layering of this body of sedimentary rocks as a record resulting from sedimentary processes acting over time, influenced by global sea level change and regional plate tectonics. Where

1333-584: The large Alpide belt . Silver and lead deposits are found in Paropamisus. The Marghab River rise is in the region. Mountain range Mountain ranges are usually segmented by highlands or mountain passes and valleys . Individual mountains within the same mountain range do not necessarily have the same geologic structure or petrology . They may be a mix of different orogenic expressions and terranes , for example thrust sheets , uplifted blocks , fold mountains, and volcanic landforms resulting in

Paropamisus Mountains - Misplaced Pages Continue

1376-425: The lithosphere occurs primarily in the plane of Earth as a result of near horizontal maximum and minimum principal stresses . Faults associated with these plate boundaries are primarily vertical. Wherever these vertical fault planes encounter bends, movement along the fault can create local areas of compression or tension. When the curve in the fault plane moves apart, a region of transtension occurs and sometimes

1419-405: The lithosphere. Plate tectonic processes that can create sufficient loads on the lithosphere to induce basin-forming processes include: After any kind of sedimentary basin has begun to form, the load created by the water and sediments filling the basin creates additional load, thus causing additional lithospheric flexure and amplifying the original subsidence that created the basin, regardless of

1462-478: The long-lived tectonic stability of the underlying craton. The geodynamic forces that create them remain poorly understood. Sedimentary basins form as a result of regional subsidence of the lithosphere, mostly as a result of a few geodynamic processes. If the lithosphere is caused to stretch horizontally, by mechanisms such as rifting (which is associated with divergent plate boundaries) or ridge-push or trench-pull (associated with convergent boundaries),

1505-471: The original cause of basin inception. Cooling of a lithospheric plate, particularly young oceanic crust or recently stretched continental crust, causes thermal subsidence . As the plate cools it shrinks and becomes denser through thermal contraction . Analogous to a solid floating in a liquid, as the lithospheric plate gets denser it sinks because it displaces more of the underlying mantle through an equilibrium process known as isostasy . Thermal subsidence

1548-413: The otherwise strike-slip fault environment. The study of sedimentary basins as entities unto themselves is often referred to as sedimentary basin analysis . Study involving quantitative modeling of the dynamic geologic processes by which they evolved is called basin modelling . The sedimentary rocks comprising the fill of sedimentary basins hold the most complete historical record of the evolution of

1591-617: The rate of erosion drops because there are fewer abrasive particles in the water and fewer landslides. Mountains on other planets and natural satellites of the Solar System, including the Moon , are often isolated and formed mainly by processes such as impacts, though there are examples of mountain ranges (or "Montes") somewhat similar to those on Earth. Saturn 's moon Titan and Pluto , in particular, exhibit large mountain ranges in chains composed mainly of ices rather than rock. Examples include

1634-429: The rocks directly and also very importantly allow paleontologists to study the microfossils they contain ( micropaleontology ). At the time they are being drilled, boreholes are also surveyed by pulling electronic instruments along the length of the borehole in a process known as well logging . Well logging, which is sometimes appropriately called borehole geophysics , uses electromagnetic and radioactive properties of

1677-486: The sedimentary rocks comprising a sedimentary basin's fill are exposed at the earth's surface, traditional field geology and aerial photography techniques as well as satellite imagery can be used in the study of sedimentary basins. Much of a sedimentary basin's fill often remains buried below the surface, often submerged in the ocean, and thus cannot be studied directly. Acoustic imaging using seismic reflection acquired through seismic data acquisition and studied through

1720-400: The specific sub-discipline of seismic stratigraphy is the primary means of understanding the three-dimensional architecture of the basin's fill through remote sensing . Direct sampling of the rocks themselves is accomplished via the drilling of boreholes and the retrieval of rock samples in the form of both core samples and drill cuttings . These allow geologists to study small samples of

1763-402: The thinning of underlying crust; depression of the crust by sedimentary, tectonic or volcanic loading; or changes in the thickness or density of underlying or adjacent lithosphere . Once the process of basin formation has begun, the weight of the sediments being deposited in the basin adds a further load on the underlying crust that accentuates subsidence and thus amplifies basin development as

Paropamisus Mountains - Misplaced Pages Continue

1806-546: The world's natural gas and petroleum and all of its coal are found in sedimentary rock. Many metal ores are found in sedimentary rocks formed in particular sedimentary environments. Sedimentary basins are also important from a purely scientific perspective because their sedimentary fill provides a record of Earth's history during the time in which the basin was actively receiving sediment. More than six hundred sedimentary basins have been identified worldwide. They range in areal size from tens of square kilometers to well over

1849-528: The world, including Mount Everest , which is 8,848 metres (29,029 ft) high. Mountain ranges outside these two systems include the Arctic Cordillera , Appalachians , Great Dividing Range , East Siberians , Altais , Scandinavians , Qinling , Western Ghats , Vindhyas , Byrrangas , and the Annamite Range . If the definition of a mountain range is stretched to include underwater mountains, then

#959040