Misplaced Pages

Seabed

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The seabed (also known as the seafloor , sea floor , ocean floor , and ocean bottom ) is the bottom of the ocean . All floors of the ocean are known as 'seabeds'.

#144855

116-442: The structure of the seabed of the global ocean is governed by plate tectonics . Most of the ocean is very deep, where the seabed is known as the abyssal plain . Seafloor spreading creates mid-ocean ridges along the center line of major ocean basins, where the seabed is slightly shallower than the surrounding abyssal plain. From the abyssal plain, the seabed slopes upward toward the continents and becomes, in order from deep to shallow,

232-439: A consequence, a powerful source generating plate motion is the excess density of the oceanic lithosphere sinking in subduction zones. When the new crust forms at mid-ocean ridges, this oceanic lithosphere is initially less dense than the underlying asthenosphere, but it becomes denser with age as it conductively cools and thickens. The greater density of old lithosphere relative to the underlying asthenosphere allows it to sink into

348-450: A few tens of millions of years. Armed with the knowledge of a new heat source, scientists realized that Earth would be much older, and that its core was still sufficiently hot to be liquid. By 1915, after having published a first article in 1912, Alfred Wegener was making serious arguments for the idea of continental drift in the first edition of The Origin of Continents and Oceans . In that book (re-issued in four successive editions up to

464-511: A few tens to exist. Hawaii , Réunion , Yellowstone , Galápagos , and Iceland are some of the most active volcanic regions to which the hypothesis is applied. The plumes imaged to date vary widely in width and other characteristics, and are tilted, being not the simple, relatively narrow and purely thermal plumes many expected. Only one, (Yellowstone) has as yet been consistently modelled and imaged from deep mantle to surface. Most hotspot volcanoes are basaltic (e.g., Hawaii , Tahiti ). As

580-480: A globe-spanning mid-ocean ridge system, as well as undersea volcanoes , oceanic trenches , submarine canyons , oceanic plateaus and abyssal plains . The mass of the oceans is approximately 1.35 × 10  metric tons , or about 1/4400 of the total mass of the Earth. The oceans cover an area of 3.618 × 10 km with a mean depth of 3,682 m, resulting in an estimated volume of 1.332 × 10 km. Each region of

696-571: A layer of basalt (sial) underlies the continental rocks. However, based on abnormalities in plumb line deflection by the Andes in Peru, Pierre Bouguer had deduced that less-dense mountains must have a downward projection into the denser layer underneath. The concept that mountains had "roots" was confirmed by George B. Airy a hundred years later, during study of Himalayan gravitation, and seismic studies detected corresponding density variations. Therefore, by

812-400: A misnomer as there is no force "pushing" horizontally, indeed tensional features are dominant along ridges. It is more accurate to refer to this mechanism as "gravitational sliding", since the topography across the whole plate can vary considerably and spreading ridges are only the most prominent feature. Other mechanisms generating this gravitational secondary force include flexural bulging of

928-510: A number of large tectonic plates , which have been slowly moving since 3–4 billion years ago. The model builds on the concept of continental drift , an idea developed during the first decades of the 20th century. Plate tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s. The processes that result in plates and shape Earth's crust are called tectonics . Tectonic plates also occur in other planets and moons. Earth's lithosphere,

1044-500: A rate anywhere from 1 mm to 1 cm every 1000 years. Hydrogenous sediments are uncommon. They only occur with changes in oceanic conditions such as temperature and pressure. Rarer still are cosmogenous sediments. Hydrogenous sediments are formed from dissolved chemicals that precipitate from the ocean water, or along the mid-ocean ridges, they can form by metallic elements binding onto rocks that have water of more than 300 °C circulating around them. When these elements mix with

1160-500: A result, they are less explosive than subduction zone volcanoes, in which water is trapped under the overriding plate. Where hotspots occur in continental regions , basaltic magma rises through the continental crust, which melts to form rhyolites . These rhyolites can form violent eruptions. For example, the Yellowstone Caldera was formed by some of the most powerful volcanic explosions in geologic history. However, when

1276-551: A secondary phenomenon of this basically vertically oriented mechanism. It finds its roots in the Undation Model of van Bemmelen . This can act on various scales, from the small scale of one island arc up to the larger scale of an entire ocean basin. Alfred Wegener , being a meteorologist , had proposed tidal forces and centrifugal forces as the main driving mechanisms behind continental drift ; however, these forces were considered far too small to cause continental motion as

SECTION 10

#1732877147145

1392-407: A solid crust and mantle and a liquid core, but there seemed to be no way that portions of the crust could move around. Many distinguished scientists of the time, such as Harold Jeffreys and Charles Schuchert , were outspoken critics of continental drift. Despite much opposition, the view of continental drift gained support and a lively debate started between "drifters" or "mobilists" (proponents of

1508-478: A static Earth without moving continents up until the major breakthroughs of the early sixties. Two- and three-dimensional imaging of Earth's interior ( seismic tomography ) shows a varying lateral density distribution throughout the mantle. Such density variations can be material (from rock chemistry), mineral (from variations in mineral structures), or thermal (through thermal expansion and contraction from heat energy). The manifestation of this varying lateral density

1624-402: Is absorbed before it can reach deep ocean water, the energy source for deep benthic ecosystems is often organic matter from higher up in the water column that drifts down to the depths. This dead and decaying matter sustains the benthic food chain ; most organisms in the benthic zone are scavengers or detritivores . Seabed topography ( ocean topography or marine topography ) refers to

1740-438: Is mantle convection from buoyancy forces. How mantle convection directly and indirectly relates to plate motion is a matter of ongoing study and discussion in geodynamics. Somehow, this energy must be transferred to the lithosphere for tectonic plates to move. There are essentially two main types of mechanisms that are thought to exist related to the dynamics of the mantle that influence plate motion which are primary (through

1856-432: Is a vertical coordinate used in geology, paleontology , oceanography , and petrology (see ocean drilling ). The acronym "mbsf" (meaning "meters below the seafloor") is a common convention used for depths below the seafloor. Sediments in the seabed vary in origin, from eroded land materials carried into the ocean by rivers or wind flow, waste and decompositions of sea creatures, and precipitation of chemicals within

1972-475: Is abundant in the deep sea around hydrothermal vents . Large deep sea communities of marine life have been discovered around black and white smokers – vents emitting chemicals toxic to humans and most vertebrates . This marine life receives its energy both from the extreme temperature difference (typically a drop of 150 degrees) and from chemosynthesis by bacteria . Brine pools are another seabed feature, usually connected to cold seeps . In shallow areas,

2088-527: Is based on their modes of formation. Oceanic crust is formed at sea-floor spreading centers. Continental crust is formed through arc volcanism and accretion of terranes through plate tectonic processes. Oceanic crust is denser than continental crust because it has less silicon and more of the heavier elements than continental crust . As a result of this density difference, oceanic crust generally lies below sea level , while continental crust buoyantly projects above sea level. Average oceanic lithosphere

2204-456: Is called a plate boundary . Plate boundaries are where geological events occur, such as earthquakes and the creation of topographic features such as mountains , volcanoes , mid-ocean ridges , and oceanic trenches . The vast majority of the world's active volcanoes occur along plate boundaries, with the Pacific plate's Ring of Fire being the most active and widely known. Some volcanoes occur in

2320-533: Is called the geosynclinal theory . Generally, this was placed in the context of a contracting planet Earth due to heat loss in the course of a relatively short geological time. It was observed as early as 1596 that the opposite coasts of the Atlantic Ocean—or, more precisely, the edges of the continental shelves —have similar shapes and seem to have once fitted together. Since that time many theories were proposed to explain this apparent complementarity, but

2436-573: Is controversial. Environmental advocacy groups such as Greenpeace and the Deep Sea Mining Campaign claimed that seabed mining has the potential to damage deep sea ecosystems and spread pollution from heavy metal-laden plumes. Critics have called for moratoria or permanent bans. Opposition campaigns enlisted the support of some industry figures, including firms reliant on the target metals. Individual countries with significant deposits within their exclusive economic zones (EEZ's) are exploring

SECTION 20

#1732877147145

2552-445: Is divided into layers or zones, each with typical features of salinity, pressure, temperature and marine life , according to their depth. Lying along the top of the abyssal plain is the abyssal zone , whose lower boundary lies at about 6,000 m (20,000 ft). The hadal zone – which includes the oceanic trenches, lies between 6,000 and 11,000 metres (20,000–36,000 ft) and is the deepest oceanic zone. Depth below seafloor

2668-459: Is estimated that the global ocean floor holds more than 120 million tons of cobalt, five times the amount found in terrestrial reserves. As of July 2024, only exploratory licenses have been issued, with no commercial-scale deep sea mining operations yet. The International Seabed Authority (ISA) regulates all mineral-related activities in international waters and has granted 31 exploration licenses so far: 19 for polymetallic nodules, mostly in

2784-487: Is in motion, presents a problem. The same holds for the African, Eurasian , and Antarctic plates. Gravitational sliding away from mantle doming: According to older theories, one of the driving mechanisms of the plates is the existence of large scale asthenosphere/mantle domes which cause the gravitational sliding of lithosphere plates away from them (see the paragraph on Mantle Mechanisms). This gravitational sliding represents

2900-408: Is invoked as the major driving force, through slab pull along subduction zones. Gravitational sliding away from a spreading ridge is one of the proposed driving forces, it proposes plate motion is driven by the higher elevation of plates at ocean ridges. As oceanic lithosphere is formed at spreading ridges from hot mantle material, it gradually cools and thickens with age (and thus adds distance from

3016-465: Is not anomalously hot, rather the crust above is unusually weak or thin, so that lithospheric extension permits the passive rising of melt from shallow depths. The origins of the concept of hotspots lie in the work of J. Tuzo Wilson , who postulated in 1963 that the formation of the Hawaiian Islands resulted from the slow movement of a tectonic plate across a hot region beneath the surface. It

3132-413: Is not moving so quickly. This means that larger grains of sediment may come together in higher energy conditions and smaller grains in lower energy conditions. Benthos (from Ancient Greek βένθος ( bénthos )  'the depths [of the sea]'), also known as benthon, is the community of organisms that live on, in, or near the bottom of a sea, river , lake , or stream , also known as

3248-477: Is now closely linked to the mantle plume hypothesis. The detailed compositional studies now possible on hotspot basalts have allowed linkage of samples over the wider areas often implicate in the later hypothesis, and it's seismic imaging developments. Hotspot volcanoes are considered to have a fundamentally different origin from island arc volcanoes. The latter form over subduction zones, at converging plate boundaries. When one oceanic plate meets another,

3364-415: Is still advocated to explain the break-up of supercontinents during specific geological epochs. It has followers amongst the scientists involved in the theory of Earth expansion . Another theory is that the mantle flows neither in cells nor large plumes but rather as a series of channels just below Earth's crust, which then provide basal friction to the lithosphere. This theory, called "surge tectonics",

3480-480: Is the next most abundant material on the seafloor. Biogenous sediments are biologically produced by living creatures. Sediments made up of at least 30% biogenous material are called "oozes." There are two types of oozes: Calcareous oozes and Siliceous oozes. Plankton grow in ocean waters and create the materials that become oozes on the seabed. Calcareous oozes are predominantly composed of calcium shells found in phytoplankton such as coccolithophores and zooplankton like

3596-561: Is through their descriptive classification. These sediments vary in size, anywhere from 1/4096 of a mm to greater than 256 mm. The different types are: boulder, cobble, pebble, granule, sand, silt, and clay, each type becoming finer in grain. The grain size indicates the type of sediment and the environment in which it was created. Larger grains sink faster and can only be pushed by rapid flowing water (high energy environment) whereas small grains sink very slowly and can be suspended by slight water movement, accumulating in conditions where water

Seabed - Misplaced Pages Continue

3712-488: Is to consider the relative rate at which each plate is moving as well as the evidence related to the significance of each process to the overall driving force on the plate. One of the most significant correlations discovered to date is that lithospheric plates attached to downgoing (subducting) plates move much faster than other types of plates. The Pacific plate, for instance, is essentially surrounded by zones of subduction (the so-called Ring of Fire) and moves much faster than

3828-407: Is typically 100 km (62 mi) thick. Its thickness is a function of its age. As time passes, it cools by conducting heat from below, and releasing it raditively into space. The adjacent mantle below is cooled by this process and added to its base. Because it is formed at mid-ocean ridges and spreads outwards, its thickness is therefore a function of its distance from the mid-ocean ridge where it

3944-435: Is used. It asserts that super plumes rise from the deeper mantle and are the drivers or substitutes of the major convection cells. These ideas find their roots in the early 1930s in the works of Beloussov and van Bemmelen , which were initially opposed to plate tectonics and placed the mechanism in a fixed frame of vertical movements. Van Bemmelen later modified the concept in his "Undation Models" and used "Mantle Blisters" as

4060-558: The Appalachian Mountains of North America are very similar in structure and lithology . However, his ideas were not taken seriously by many geologists, who pointed out that there was no apparent mechanism for continental drift. Specifically, they did not see how continental rock could plow through the much denser rock that makes up oceanic crust. Wegener could not explain the force that drove continental drift, and his vindication did not come until after his death in 1930. As it

4176-436: The abyssal plain regions of the ocean are relatively flat and covered in many layers of sediments. Sediments in these flat areas come from various sources, including but not limited to: land erosion sediments from rivers, chemically precipitated sediments from hydrothermal vents, Microorganism activity, sea currents eroding the seabed and transporting sediments to the deeper ocean, and phytoplankton shell materials. Where

4292-451: The benthic zone . This community lives in or near marine or freshwater sedimentary environments , from tidal pools along the foreshore , out to the continental shelf , and then down to the abyssal depths . Many organisms adapted to deep-water pressure cannot survive in the upper parts of the water column . The pressure difference can be very significant (approximately one atmosphere for every 10 metres of water depth). Because light

4408-422: The chemical subdivision of these same layers into the mantle (comprising both the asthenosphere and the mantle portion of the lithosphere) and the crust: a given piece of mantle may be part of the lithosphere or the asthenosphere at different times depending on its temperature and pressure. The key principle of plate tectonics is that the lithosphere exists as separate and distinct tectonic plates , which ride on

4524-425: The continental rise , slope , and shelf . The depth within the seabed itself, such as the depth down through a sediment core , is known as the "depth below seafloor". The ecological environment of the seabed and the deepest waters are collectively known, as a habitat for creatures, as the " benthos ". Most of the seabed throughout the world's oceans is covered in layers of marine sediments . Categorized by where

4640-724: The fluid-like solid the asthenosphere . Plate motions range from 10 to 40 millimetres per year (0.4 to 1.6 in/year) at the Mid-Atlantic Ridge (about as fast as fingernails grow), to about 160 millimetres per year (6.3 in/year) for the Nazca plate (about as fast as hair grows). Tectonic lithosphere plates consist of lithospheric mantle overlain by one or two types of crustal material: oceanic crust (in older texts called sima from silicon and magnesium ) and continental crust ( sial from silicon and aluminium ). The distinction between oceanic crust and continental crust

4756-473: The lithosphere and asthenosphere . The division is based on differences in mechanical properties and in the method for the transfer of heat . The lithosphere is cooler and more rigid, while the asthenosphere is hotter and flows more easily. In terms of heat transfer, the lithosphere loses heat by conduction , whereas the asthenosphere also transfers heat by convection and has a nearly adiabatic temperature gradient. This division should not be confused with

Seabed - Misplaced Pages Continue

4872-774: The CCZ; 7 for polymetallic sulphides in mid-ocean ridges ; and 5 for cobalt-rich crusts in the Western Pacific Ocean . There is a push for deep sea mining to commence by 2025, when regulations by the ISA are expected to be completed. Deep sea mining is also possible in the exclusive economic zone (EEZ) of countries, such as Norway , where it has been approved. In 2022, the Cook Islands Seabed Minerals Authority (SBMA) granted three exploration licenses for cobalt-rich polymetallic nodules within their EEZ. Papua New Guinea

4988-542: The Earth's rotation and the Moon as main driving forces for the plates. The vector of a plate's motion is a function of all the forces acting on the plate; however, therein lies the problem regarding the degree to which each process contributes to the overall motion of each tectonic plate. The diversity of geodynamic settings and the properties of each plate result from the impact of the various processes actively driving each individual plate. One method of dealing with this problem

5104-405: The Earth's surface is independent of tectonic plate boundaries , and so hotspots may create a chain of volcanoes as the plates move above them. There are two hypotheses that attempt to explain their origins. One suggests that hotspots are due to mantle plumes that rise as thermal diapirs from the core–mantle boundary. The alternative plate theory is that the mantle source beneath a hotspot

5220-515: The Underwater Cultural Heritage . The convention aims at preventing looting and the destruction or loss of historic and cultural information by providing an international legal framework. Plate tectonics Plate tectonics (from Latin tectonicus , from Ancient Greek τεκτονικός ( tektonikós )  'pertaining to building') is the scientific theory that Earth 's lithosphere comprises

5336-533: The actual motions of the Pacific plate and other plates associated with the East Pacific Rise do not correlate mainly with either slab pull or slab push, but rather with a mantle convection upwelling whose horizontal spreading along the bases of the various plates drives them along via viscosity-related traction forces. The driving forces of plate motion continue to be active subjects of on-going research within geophysics and tectonophysics . The development of

5452-533: The amount of plastic thought – per Jambeck et al., 2015 – to currently enter the oceans annually. Deep sea mining is the extraction of minerals from the seabed of the deep sea . The main ores of commercial interest are polymetallic nodules , which are found at depths of 4–6 km (2.5–3.7 mi) primarily on the abyssal plain . The Clarion–Clipperton zone (CCZ) alone contains over 21 billion metric tons of these nodules, with minerals such as copper , nickel , and cobalt making up 2.5% of their weight. It

5568-478: The assumption of a solid Earth made these various proposals difficult to accept. The discovery of radioactivity and its associated heating properties in 1895 prompted a re-examination of the apparent age of Earth . This had previously been estimated by its cooling rate under the assumption that Earth's surface radiated like a black body . Those calculations had implied that, even if it started at red heat , Earth would have dropped to its present temperature in

5684-399: The asthenosphere. This theory was launched by Arthur Holmes and some forerunners in the 1930s and was immediately recognized as the solution for the acceptance of the theory as originally discussed in the papers of Alfred Wegener in the early years of the 20th century. However, despite its acceptance, it was long debated in the scientific community because the leading theory still envisaged

5800-484: The balance between sedimentary processes and hydrodynamics however, anthropogenic influences can impact the natural system more than any physical driver. Marine topographies include coastal and oceanic landforms ranging from coastal estuaries and shorelines to continental shelves and coral reefs . Further out in the open ocean, they include underwater and deep sea features such as ocean rises and seamounts . The submerged surface has mountainous features, including

5916-469: The base of the lithosphere. Slab pull is therefore most widely thought to be the greatest force acting on the plates. In this understanding, plate motion is mostly driven by the weight of cold, dense plates sinking into the mantle at trenches. Recent models indicate that trench suction plays an important role as well. However, the fact that the North American plate is nowhere being subducted, although it

SECTION 50

#1732877147145

6032-495: The bathymetry of the deep ocean floors and the nature of the oceanic crust such as magnetic properties and, more generally, with the development of marine geology which gave evidence for the association of seafloor spreading along the mid-oceanic ridges and magnetic field reversals , published between 1959 and 1963 by Heezen, Dietz, Hess, Mason, Vine & Matthews, and Morley. Simultaneous advances in early seismic imaging techniques in and around Wadati–Benioff zones along

6148-447: The cold sea water they precipitate from the cooling water. Known as manganese nodules , they are composed of layers of different metals like manganese, iron, nickel, cobalt, and copper, and they are always found on the surface of the ocean floor. Cosmogenous sediments are the remains of space debris such as comets and asteroids, made up of silicates and various metals that have impacted the Earth. Another way that sediments are described

6264-537: The concept of a hotspot has been used to explain its origin. A review article by Courtillot et al. listing possible hotspots makes a distinction between primary hotspots coming from deep within the mantle and secondary hotspots derived from mantle plumes. The primary hotspots originate from the core/mantle boundary and create large volcanic provinces with linear tracks (Easter Island, Iceland, Hawaii, Afar, Louisville, Reunion, and Tristan confirmed; Galapagos, Kerguelen and Marquersas likely). The secondary hotspots originate at

6380-413: The concept was of continents plowing through oceanic crust. Therefore, Wegener later changed his position and asserted that convection currents are the main driving force of plate tectonics in the last edition of his book in 1929. However, in the plate tectonics context (accepted since the seafloor spreading proposals of Heezen, Hess, Dietz, Morley, Vine, and Matthews (see below) during the early 1960s),

6496-464: The continental slope and the abyssal plain usually has a more gradual descent, and is called the continental rise , which is caused by sediment cascading down the continental slope. The mid-ocean ridge , as its name implies, is a mountainous rise through the middle of all the oceans, between the continents. Typically a rift runs along the edge of this ridge. Along tectonic plate edges there are typically oceanic trenches – deep valleys, created by

6612-415: The deep mantle at subduction zones, providing most of the driving force for plate movement. The weakness of the asthenosphere allows the tectonic plates to move easily towards a subduction zone. For much of the first quarter of the 20th century, the leading theory of the driving force behind tectonic plate motions envisaged large scale convection currents in the upper mantle, which can be transmitted through

6728-466: The denser plate is forced downward into a deep ocean trench. This plate, as it is subducted, releases water into the base of the over-riding plate, and this water mixes with the rock, thus changing its composition causing some rock to melt and rise. It is this that fuels a chain of volcanoes, such as the Aleutian Islands , near Alaska . The joint mantle plume /hotspot hypothesis originally envisaged

6844-530: The discussions treated in this section) or proposed as minor modulations within the overall plate tectonics model. In 1973, George W. Moore of the USGS and R. C. Bostrom presented evidence for a general westward drift of Earth's lithosphere with respect to the mantle, based on the steepness of the subduction zones (shallow dipping towards the east, steeply dipping towards the west). They concluded that tidal forces (the tidal lag or "friction") caused by Earth's rotation and

6960-466: The driving force for horizontal movements, invoking gravitational forces away from the regional crustal doming. The theories find resonance in the modern theories which envisage hot spots or mantle plumes which remain fixed and are overridden by oceanic and continental lithosphere plates over time and leave their traces in the geological record (though these phenomena are not invoked as real driving mechanisms, but rather as modulators). The mechanism

7076-504: The feeder structures to be fixed relative to one another, with the continents and seafloor drifting overhead. The hypothesis thus predicts that time-progressive chains of volcanoes are developed on the surface. Examples are Yellowstone , which lies at the end of a chain of extinct calderas, which become progressively older to the west. Another example is the Hawaiian archipelago, where islands become progressively older and more deeply eroded to

SECTION 60

#1732877147145

7192-473: The final one in 1936), he noted how the east coast of South America and the west coast of Africa looked as if they were once attached. Wegener was not the first to note this ( Abraham Ortelius , Antonio Snider-Pellegrini , Eduard Suess , Roberto Mantovani and Frank Bursley Taylor preceded him just to mention a few), but he was the first to marshal significant fossil and paleo-topographical and climatological evidence to support this simple observation (and

7308-415: The foraminiferans. These calcareous oozes are never found deeper than about 4,000 to 5,000 meters because at further depths the calcium dissolves. Similarly, Siliceous oozes are dominated by the siliceous shells of phytoplankton like diatoms and zooplankton such as radiolarians. Depending on the productivity of these planktonic organisms, the shell material that collects when these organisms die may build up at

7424-691: The forces acting upon it by the Moon are a driving force for plate tectonics. As Earth spins eastward beneath the Moon, the Moon's gravity ever so slightly pulls Earth's surface layer back westward, just as proposed by Alfred Wegener (see above). Since 1990 this theory is mainly advocated by Doglioni and co-workers ( Doglioni 1990 ), such as in a more recent 2006 study, where scientists reviewed and advocated these ideas. It has been suggested in Lovett (2006) that this observation may also explain why Venus and Mars have no plate tectonics, as Venus has no moon and Mars' moons are too small to have significant tidal effects on

7540-588: The geographical latitudinal and longitudinal grid of Earth itself. These systematic relations studies in the second half of the nineteenth century and the first half of the twentieth century underline exactly the opposite: that the plates had not moved in time, that the deformation grid was fixed with respect to Earth's equator and axis, and that gravitational driving forces were generally acting vertically and caused only local horizontal movements (the so-called pre-plate tectonic, "fixist theories"). Later studies (discussed below on this page), therefore, invoked many of

7656-708: The interiors of plates, and these have been variously attributed to internal plate deformation and to mantle plumes. Tectonic plates may include continental crust or oceanic crust, or both. For example, the African plate includes the continent and parts of the floor of the Atlantic and Indian Oceans. Some pieces of oceanic crust, known as ophiolites , failed to be subducted under continental crust at destructive plate boundaries; instead these oceanic crustal fragments were pushed upward and were preserved within continental crust. Three types of plate boundaries exist, characterized by

7772-412: The large scale convection cells) or secondary. The secondary mechanisms view plate motion driven by friction between the convection currents in the asthenosphere and the more rigid overlying lithosphere. This is due to the inflow of mantle material related to the downward pull on plates in subduction zones at ocean trenches. Slab pull may occur in a geodynamic setting where basal tractions continue to act on

7888-421: The lithosphere before it dives underneath an adjacent plate, producing a clear topographical feature that can offset, or at least affect, the influence of topographical ocean ridges. Mantle plumes and hot spots are also postulated to impinge on the underside of tectonic plates. Slab pull : Scientific opinion is that the asthenosphere is insufficiently competent or rigid to directly cause motion by friction along

8004-403: The lower mantle, there is a slight westward component in the motions of all the plates. They demonstrated though that the westward drift, seen only for the past 30 Ma, is attributed to the increased dominance of the steadily growing and accelerating Pacific plate. The debate is still open, and a recent paper by Hofmeister et al. (2022) revived the idea advocating again the interaction between

8120-443: The mantle circulation movement from the mid-ocean mountain ridge to the oceanic trench. Hotspot volcanic island ridges are created by volcanic activity, erupting periodically, as the tectonic plates pass over a hotspot. In areas with volcanic activity and in the oceanic trenches there are hydrothermal vents – releasing high pressure and extremely hot water and chemicals into the typically freezing water around it. Deep ocean water

8236-405: The many geographical, geological, and biological continuities between continents. In 1912, the meteorologist Alfred Wegener described what he called continental drift, an idea that culminated fifty years later in the modern theory of plate tectonics. Wegener expanded his theory in his 1915 book The Origin of Continents and Oceans . Starting from the idea (also expressed by his forerunners) that

8352-429: The matching of the rock formations along these edges. Confirmation of their previous contiguous nature also came from the fossil plants Glossopteris and Gangamopteris , and the therapsid or mammal-like reptile Lystrosaurus , all widely distributed over South America, Africa, Antarctica, India, and Australia. The evidence for such an erstwhile joining of these continents was patent to field geologists working in

8468-415: The materials come from or composition, these sediments are classified as either: from land ( terrigenous ), from biological organisms (biogenous), from chemical reactions (hydrogenous), and from space (cosmogenous). Categorized by size, these sediments range from very small particles called clays and silts , known as mud, to larger particles from sand to boulders . Features of the seabed are governed by

8584-492: The mid-1950s, the question remained unresolved as to whether mountain roots were clenched in surrounding basalt or were floating on it like an iceberg. Hotspot (geology) In geology , hotspots (or hot spots ) are volcanic locales thought to be fed by underlying mantle that is anomalously hot compared with the surrounding mantle. Examples include the Hawaii , Iceland , and Yellowstone hotspots . A hotspot's position on

8700-563: The motion picture of the Atlantic region", processes that anticipated seafloor spreading and subduction . One of the first pieces of geophysical evidence that was used to support the movement of lithospheric plates came from paleomagnetism . This is based on the fact that rocks of different ages show a variable magnetic field direction, evidenced by studies since the mid–nineteenth century. The magnetic north and south poles reverse through time, and, especially important in paleotectonic studies,

8816-438: The motion. At a subduction zone the relatively cold, dense oceanic crust sinks down into the mantle, forming the downward convecting limb of a mantle cell , which is the strongest driver of plate motion. The relative importance and interaction of other proposed factors such as active convection, upwelling inside the mantle, and tidal drag of the Moon is still the subject of debate. The outer layers of Earth are divided into

8932-466: The north pole, and each continent, in fact, shows its own "polar wander path". During the late 1950s, it was successfully shown on two occasions that these data could show the validity of continental drift: by Keith Runcorn in a paper in 1956, and by Warren Carey in a symposium held in March 1956. The second piece of evidence in support of continental drift came during the late 1950s and early 60s from data on

9048-534: The northwest. Geologists have tried to use hotspot volcanic chains to track the movement of the Earth's tectonic plates. This effort has been vexed by the lack of very long chains, by the fact that many are not time-progressive (e.g. the Galápagos ) and by the fact that hotspots do not appear to be fixed relative to one another (e.g. Hawaii and Iceland ). That mantle plumes are much more complex than originally hypothesised and move independently of each other and plates

9164-407: The oceanic crust is suggested to be in motion with the continents which caused the proposals related to Earth rotation to be reconsidered. In more recent literature, these driving forces are: Forces that are small and generally negligible are: For these mechanisms to be overall valid, systematic relationships should exist all over the globe between the orientation and kinematics of deformation and

9280-437: The oceanic lithosphere and the thicker continental lithosphere, each topped by its own kind of crust. Along convergent plate boundaries , the process of subduction carries the edge of one plate down under the other plate and into the mantle . This process reduces the total surface area (crust) of the Earth. The lost surface is balanced by the formation of new oceanic crust along divergent margins by seafloor spreading, keeping

9396-448: The oceans have a common structure, created by common physical phenomena, mainly from tectonic movement, and sediment from various sources. The structure of the oceans, starting with the continents, begins usually with a continental shelf , continues to the continental slope – which is a steep descent into the ocean, until reaching the abyssal plain – a topographic plain , the beginning of the seabed, and its main area. The border between

9512-441: The physics of sediment transport and by the biology of the creatures living in the seabed and in the ocean waters above. Physically, seabed sediments often come from the erosion of material on land and from other rarer sources, such as volcanic ash . Sea currents transport sediments, especially in shallow waters where tidal energy and wave energy cause resuspension of seabed sediments. Biologically, microorganisms living within

9628-463: The planet. In a paper by it was suggested that, on the other hand, it can easily be observed that many plates are moving north and eastward, and that the dominantly westward motion of the Pacific Ocean basins derives simply from the eastward bias of the Pacific spreading center (which is not a predicted manifestation of such lunar forces). In the same paper the authors admit, however, that relative to

9744-399: The plate as it dives into the mantle (although perhaps to a greater extent acting on both the under and upper side of the slab). Furthermore, slabs that are broken off and sink into the mantle can cause viscous mantle forces driving plates through slab suction. In the theory of plume tectonics followed by numerous researchers during the 1990s, a modified concept of mantle convection currents

9860-426: The plates of the Atlantic basin, which are attached (perhaps one could say 'welded') to adjacent continents instead of subducting plates. It is thus thought that forces associated with the downgoing plate (slab pull and slab suction) are the driving forces which determine the motion of plates, except for those plates which are not being subducted. This view however has been contradicted by a recent study which found that

9976-408: The present continents once formed a single land mass (later called Pangaea ), Wegener suggested that these separated and drifted apart, likening them to "icebergs" of low density sial floating on a sea of denser sima . Supporting evidence for the idea came from the dove-tailing outlines of South America's east coast and Africa's west coast Antonio Snider-Pellegrini had drawn on his maps, and from

10092-459: The relationships recognized during this pre-plate tectonics period to support their theories (see reviews of these various mechanisms related to Earth rotation the work of van Dijk and collaborators). Of the many forces discussed above, tidal force is still highly debated and defended as a possible principal driving force of plate tectonics. The other forces are only used in global geodynamic models not using plate tectonics concepts (therefore beyond

10208-428: The relative position of the magnetic north pole varies through time. Initially, during the first half of the twentieth century, the latter phenomenon was explained by introducing what was called "polar wander" (see apparent polar wander ) (i.e., it was assumed that the north pole location had been shifting through time). An alternative explanation, though, was that the continents had moved (shifted and rotated) relative to

10324-516: The rhyolite is completely erupted, it may be followed by eruptions of basaltic magma rising through the same lithospheric fissures (cracks in the lithosphere). An example of this activity is the Ilgachuz Range in British Columbia, which was created by an early complex series of trachyte and rhyolite eruptions, and late extrusion of a sequence of basaltic lava flows. The hotspot hypothesis

10440-399: The ridge). Cool oceanic lithosphere is significantly denser than the hot mantle material from which it is derived and so with increasing thickness it gradually subsides into the mantle to compensate the greater load. The result is a slight lateral incline with increased distance from the ridge axis. This force is regarded as a secondary force and is often referred to as " ridge push ". This is

10556-614: The rigid outer shell of the planet including the crust and upper mantle , is fractured into seven or eight major plates (depending on how they are defined) and many minor plates or "platelets". Where the plates meet, their relative motion determines the type of plate boundary (or fault ): convergent , divergent , or transform . The relative movement of the plates typically ranges from zero to 10 cm annually. Faults tend to be geologically active, experiencing earthquakes , volcanic activity , mountain-building , and oceanic trench formation. Tectonic plates are composed of

10672-535: The sea water itself, including some from outer space. There are four basic types of sediment of the sea floor: Terrigenous sediment is the most abundant sediment found on the seafloor. Terrigenous sediments come from the continents. These materials are eroded from continents and transported by wind and water to the ocean. Fluvial sediments are transported from land by rivers and glaciers, such as clay, silt, mud, and glacial flour. Aeolian sediments are transported by wind, such as dust and volcanic ash. Biogenous sediment

10788-481: The seabed , and these satellite-derived maps are used extensively in the study and exploration of the ocean floor. In 2020 scientists created what may be the first scientific estimate of how much microplastic currently resides in Earth's seafloor , after investigating six areas of ~3 km depth ~300 km off the Australian coast. They found the highly variable microplastic counts to be proportionate to plastic on

10904-439: The seabed can host sediments created by marine life such as corals, fish, algae, crabs, marine plants and other organisms. The seabed has been explored by submersibles such as Alvin and, to some extent, scuba divers with special equipment. Hydrothermal vents were discovered in 1977 by researchers using an underwater camera platform. In recent years satellite measurements of ocean surface topography show very clear maps of

11020-404: The seabed has typical features such as common sediment composition, typical topography, salinity of water layers above it, marine life, magnetic direction of rocks, and sedimentation . Some features of the seabed include flat abyssal plains , mid-ocean ridges , deep trenches , and hydrothermal vents . Seabed topography is flat where layers of sediments cover the tectonic features. For example,

11136-501: The seabed sediments change seabed chemistry. Marine organisms create sediments, both within the seabed and in the water above. For example, phytoplankton with silicate or calcium carbonate shells grow in abundance in the upper ocean, and when they die, their shells sink to the seafloor to become seabed sediments. Human impacts on the seabed are diverse. Examples of human effects on the seabed include exploration, plastic pollution, and exploitation by mining and dredging operations. To map

11252-592: The seabed, ships use acoustic technology to map water depths throughout the world. Submersible vehicles help researchers study unique seabed ecosystems such as hydrothermal vents . Plastic pollution is a global phenomenon, and because the ocean is the ultimate destination for global waterways, much of the world's plastic ends up in the ocean and some sinks to the seabed. Exploitation of the seabed involves extracting valuable minerals from sulfide deposits via deep sea mining, as well as dredging sand from shallow environments for construction and beach nourishment . Most of

11368-410: The seafloor is actively spreading and sedimentation is relatively light, such as in the northern and eastern Atlantic Ocean , the original tectonic activity can be clearly seen as straight line "cracks" or "vents" thousands of kilometers long. These underwater mountain ranges are known as mid-ocean ridges . Other seabed environments include hydrothermal vents, cold seeps, and shallow areas. Marine life

11484-410: The shape of the land ( topography ) when it interfaces with the ocean. These shapes are obvious along coastlines, but they occur also in significant ways underwater. The effectiveness of marine habitats is partially defined by these shapes, including the way they interact with and shape ocean currents , and the way sunlight diminishes when these landforms occupy increasing depths. Tidal networks depend on

11600-486: The southern hemisphere. The South African Alex du Toit put together a mass of such information in his 1937 publication Our Wandering Continents , and went further than Wegener in recognising the strong links between the Gondwana fragments. Wegener's work was initially not widely accepted, in part due to a lack of detailed evidence but mostly because of the lack of a reasonable physically supported mechanism. Earth might have

11716-517: The subject. Some children's play songs include elements such as "There's a hole at the bottom of the sea", or "A sailor went to sea... but all that he could see was the bottom of the deep blue sea". On and under the seabed are archaeological sites of historic interest, such as shipwrecks and sunken towns. This underwater cultural heritage is protected by the UNESCO Convention on the Protection of

11832-411: The surface and the angle of the seafloor slope. By averaging the microplastic mass per cm, they estimated that Earth's seafloor contains ~14 million tons of microplastic – about double the amount they estimated based on data from earlier studies – despite calling both estimates "conservative" as coastal areas are known to contain much more microplastic pollution . These estimates are about one to two times

11948-470: The theory of plate tectonics was the scientific and cultural change which occurred during a period of 50 years of scientific debate. The event of the acceptance itself was a paradigm shift and can therefore be classified as a scientific revolution, now described as the Plate Tectonics Revolution . Around the start of the twentieth century, various theorists unsuccessfully attempted to explain

12064-502: The theory) and "fixists" (opponents). During the 1920s, 1930s and 1940s, the former reached important milestones proposing that convection currents might have driven the plate movements, and that spreading may have occurred below the sea within the oceanic crust. Concepts close to the elements of plate tectonics were proposed by geophysicists and geologists (both fixists and mobilists) like Vening-Meinesz, Holmes, and Umbgrove. In 1941, Otto Ampferer described, in his publication "Thoughts on

12180-476: The total surface area constant in a tectonic "conveyor belt". Tectonic plates are relatively rigid and float across the ductile asthenosphere beneath. Lateral density variations in the mantle result in convection currents, the slow creeping motion of Earth's solid mantle. At a seafloor spreading ridge , plates move away from the ridge, which is a topographic high, and the newly formed crust cools as it moves away, increasing its density and contributing to

12296-429: The trenches bounding many continental margins, together with many other geophysical (e.g., gravimetric) and geological observations, showed how the oceanic crust could disappear into the mantle, providing the mechanism to balance the extension of the ocean basins with shortening along its margins. All this evidence, both from the ocean floor and from the continental margins, made it clear around 1965 that continental drift

12412-526: The upper/lower mantle boundary, and do not form large volcanic provinces, but island chains (Samoa, Tahiti, Cook, Pitcairn, Caroline, MacDonald confirmed, with up to 20 or so more possible). Other potential hotspots are the result of shallow mantle material surfacing in areas of lithospheric break-up caused by tension and are thus a very different type of volcanism. Estimates for the number of hotspots postulated to be fed by mantle plumes have ranged from about 20 to several thousand, with most geologists considering

12528-399: The water column. Related technologies include robotic mining machines, as surface ships, and offshore and onshore metal refineries. Wind farms, solar energy, electric vehicles , and battery technologies use many of the deep-sea metals. Electric vehicle batteries are the main driver of the critical metals demand that incentivizes deep sea mining. The environmental impact of deep sea mining

12644-467: The way the plates move relative to each other. They are associated with different types of surface phenomena. The different types of plate boundaries are: Tectonic plates are able to move because of the relative density of oceanic lithosphere and the relative weakness of the asthenosphere . Dissipation of heat from the mantle is the original source of the energy required to drive plate tectonics through convection or large scale upwelling and doming. As

12760-531: Was feasible. The theory of plate tectonics was defined in a series of papers between 1965 and 1967. The theory revolutionized the Earth sciences, explaining a diverse range of geological phenomena and their implications in other studies such as paleogeography and paleobiology . In the late 19th and early 20th centuries, geologists assumed that Earth's major features were fixed, and that most geologic features such as basin development and mountain ranges could be explained by vertical crustal movement, described in what

12876-599: Was formed. For a typical distance that oceanic lithosphere must travel before being subducted, the thickness varies from about 6 km (4 mi) thick at mid-ocean ridges to greater than 100 km (62 mi) at subduction zones. For shorter or longer distances, the subduction zone, and therefore also the mean, thickness becomes smaller or larger, respectively. Continental lithosphere is typically about 200 km (120 mi) thick, though this varies considerably between basins, mountain ranges, and stable cratonic interiors of continents. The location where two plates meet

12992-419: Was later postulated that hotspots are fed by streams of hot mantle rising from the Earth's core–mantle boundary in a structure called a mantle plume . Whether or not such mantle plumes exist has been the subject of a major controversy in Earth science, but seismic images consistent with evolving theory now exist. At any place where volcanism is not linked to a constructive or destructive plate margin,

13108-424: Was observed early that although granite existed on continents, seafloor seemed to be composed of denser basalt , the prevailing concept during the first half of the twentieth century was that there were two types of crust, named "sial" (continental type crust) and "sima" (oceanic type crust). Furthermore, it was supposed that a static shell of strata was present under the continents. It therefore looked apparent that

13224-443: Was popularized during the 1980s and 1990s. Recent research, based on three-dimensional computer modelling, suggests that plate geometry is governed by a feedback between mantle convection patterns and the strength of the lithosphere. Forces related to gravity are invoked as secondary phenomena within the framework of a more general driving mechanism such as the various forms of mantle dynamics described above. In modern views, gravity

13340-560: Was supported in this by researchers such as Alex du Toit ). Furthermore, when the rock strata of the margins of separate continents are very similar it suggests that these rocks were formed in the same way, implying that they were joined initially. For instance, parts of Scotland and Ireland contain rocks very similar to those found in Newfoundland and New Brunswick . Furthermore, the Caledonian Mountains of Europe and parts of

13456-510: Was the first country to approve a deep sea mining permit for the Solwara 1 project, despite three independent reviews highlighting significant gaps and flaws in the environmental impact statement. The most common commercial model of deep sea mining proposed involves a caterpillar-track hydraulic collector and a riser lift system bringing the harvested ore to a production support vessel with dynamic positioning , and then depositing extra discharge down

#144855