Misplaced Pages

Schlieferspitze

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Schlieferspitze is a mountain, 3,290  m (AA) , on the ridge known as the Krimmler Kamm in the Venediger Group of the Alps . The ridge lies in the northwest of the High Tauern , part of the Austrian Central Alps in the Austrian federal state of Salzburg . The summit is the highest on the Krimmler Kamm and is described in the sources as one of the most attractive peaks in the Venediger Group. From the valleys of the Krimmler Achental to the southwest and the Obersulzbachtal to the northeast it appears as an extremely dominant mountain. Long and evenly formed arêtes, about two kilometres long, run from the summit to the northwest, northeast, southeast and southwest. The mountain was first ascended on 22 August 1871 by Eduard Richter, professor of geography at the University of Graz, and Johann Stüdl, a merchant from Prague and co-founder of the German Alpine Club .

#837162

118-717: To the north, east and west of the Schlieferspitze are glaciers , known as kees , that climb to a height of over 3,100 metres. To the north is the Rear Jaidbachkees ( Hinterjaidbachkees ), to the east, the Eastern Sonntagkees ( Östliche Sonntagkees ), and to the west, the Western Jaidbachkees ( Westliche Jaidbachkees ). The northeast arête runs down to the Obersulzbachtal valley, the southwest arête, known as

236-424: A cirque landform (alternatively known as a corrie or as a cwm ) – a typically armchair-shaped geological feature (such as a depression between mountains enclosed by arêtes ) – which collects and compresses through gravity the snow that falls into it. This snow accumulates and the weight of the snow falling above compacts it, forming névé (granular snow). Further crushing of the individual snowflakes and squeezing

354-483: A climate change feedback if it is gradually released through meltwater, thus increasing overall carbon dioxide emissions . For comparison, 1400–1650 billion tonnes are contained within the Arctic permafrost . Also for comparison, the annual human caused carbon dioxide emissions amount to around 40 billion tonnes of CO 2 . In Greenland, there is one known area, at Russell Glacier , where meltwater carbon

472-581: A 1 m tidal oscillation can be felt as much as 100 km from the sea. During larger spring tides , an ice stream will remain almost stationary for hours at a time, before a surge of around a foot in under an hour, just after the peak high tide; a stationary period then takes hold until another surge towards the middle or end of the falling tide. At neap tides, this interaction is less pronounced, and surges instead occur approximately every 12 hours. Increasing global air temperatures due to climate change take around 10,000 years to directly propagate through

590-425: A buttressing effect on the ice sheet, the so-called back stress increases and the grounding line is pushed backwards. The ice sheet is likely to start losing more ice from the new location of the grounding line and so become lighter and less capable of displacing seawater. This eventually pushes the grounding line back even further, creating a self-reinforcing mechanism . Because the entire West Antarctic Ice Sheet

708-511: A glacier is usually assessed by determining the glacier mass balance or observing terminus behavior. Healthy glaciers have large accumulation zones, more than 60% of their area is snow-covered at the end of the melt season, and they have a terminus with a vigorous flow. Following the Little Ice Age 's end around 1850, glaciers around the Earth have retreated substantially . A slight cooling led to

826-411: A glacier via moulins . Streams within or beneath a glacier flow in englacial or sub-glacial tunnels. These tunnels sometimes reemerge at the glacier's surface. Most of the important processes controlling glacial motion occur in the ice-bed contact—even though it is only a few meters thick. The bed's temperature, roughness and softness define basal shear stress, which in turn defines whether movement of

944-485: A group of skiers with F. Müller on 17 April 1908. Today the base for an ascent of the Schlieferspitze is the Warnsdorfer Hut to the south in the upper Krimmler Achental valley at 2,336 metres. The normal route to the top heads in a northerly direction to the southwest arête and then continues up a steep gradient classified, according to the literature as a UIAA grade II- climb to the summit cross . The journey time

1062-477: A higher level of warming. Isostatic rebound of ice-free land may also add around 1 m (3 ft 3 in) to the global sea levels over another 1,000 years. The East Antarctic Ice Sheet (EAIS) lies between 45° west and 168° east longitudinally. It was first formed around 34 million years ago, and it is the largest ice sheet on the entire planet, with far greater volume than the Greenland ice sheet or

1180-408: A kilometer per year. Eventually, the ice will be surging fast enough that it begins to thin, as accumulation cannot keep up with the transport. This thinning will increase the conductive heat loss, slowing the glacier and causing freezing. This freezing will slow the glacier further, often until it is stationary, whence the cycle can begin again. The flow of water under the glacial surface can have

1298-404: A large effect on the motion of the glacier itself. Subglacial lakes contain significant amounts of water, which can move fast: cubic kilometers can be transported between lakes over the course of a couple of years. This motion is thought to occur in two main modes: pipe flow involves liquid water moving through pipe-like conduits, like a sub-glacial river; sheet flow involves motion of water in

SECTION 10

#1733093182838

1416-460: A lower heat conductance, meaning that the basal temperature is also likely to be higher. Bed temperature tends to vary in a cyclic fashion. A cool bed has a high strength, reducing the speed of the glacier. This increases the rate of accumulation, since newly fallen snow is not transported away. Consequently, the glacier thickens, with three consequences: firstly, the bed is better insulated, allowing greater retention of geothermal heat. Secondly,

1534-432: A much greater area than this minimum definition, measuring at 1.7 million km and 14 million km , respectively. Both ice sheets are also very thick, as they consist of a continuous ice layer with an average thickness of 2 km (1 mi). This ice layer forms because most of the snow which falls onto the ice sheet never melts, and is instead compressed by the mass of newer snow layers. This process of ice sheet growth

1652-700: A portion of the ice sheet collapses. External factors might also play a role in forcing ice sheets. Dansgaard–Oeschger events are abrupt warmings of the northern hemisphere occurring over the space of perhaps 40 years. While these D–O events occur directly after each Heinrich event, they also occur more frequently – around every 1500 years; from this evidence, paleoclimatologists surmise that the same forcings may drive both Heinrich and D–O events. Hemispheric asynchrony in ice sheet behavior has been observed by linking short-term spikes of methane in Greenland ice cores and Antarctic ice cores. During Dansgaard–Oeschger events ,

1770-456: A shallow fjord and stabilized) could have involved MICI, but there weren't enough observations to confirm or refute this theory. The retreat of Greenland ice sheet 's three largest glaciers - Jakobshavn , Helheim , and Kangerdlugssuaq Glacier - did not resemble predictions from ice cliff collapse at least up until the end of 2013, but an event observed at Helheim Glacier in August 2014 may fit

1888-484: A thin layer. A switch between the two flow conditions may be associated with surging behavior. Indeed, the loss of sub-glacial water supply has been linked with the shut-down of ice movement in the Kamb ice stream. The subglacial motion of water is expressed in the surface topography of ice sheets, which slump down into vacated subglacial lakes. The speed of glacial displacement is partly determined by friction . Friction makes

2006-410: A tremendous impact as the iceberg strikes the water. Tidewater glaciers undergo centuries-long cycles of advance and retreat that are much less affected by climate change than other glaciers. Thermally, a temperate glacier is at a melting point throughout the year, from its surface to its base. The ice of a polar glacier is always below the freezing threshold from the surface to its base, although

2124-407: A worst-case of about 33 cm (13 in). For comparison, melting has so far contributed 1.4 cm ( 1 ⁄ 2  in) since 1972, while sea level rise from all sources was 15–25 cm (6–10 in) between 1901 and 2018. Historically, ice sheets were viewed as inert components of the carbon cycle and were largely disregarded in global models. In 2010s, research had demonstrated

2242-409: Is about 1 million years old. Due to anthropogenic greenhouse gas emissions , the ice sheet is now the warmest it has been in the past 1000 years, and is losing ice at the fastest rate in at least the past 12,000 years. Every summer, parts of the surface melt and ice cliffs calve into the sea. Normally the ice sheet would be replenished by winter snowfall, but due to global warming the ice sheet

2360-494: Is about 3 1 ⁄ 2 hours. From 1904 to 1934 climbing routes were opened up the faces and flanks of the Spitze; however these are no longer used due to the high risk of rockfalls . Glacier A glacier ( US : / ˈ ɡ l eɪ ʃ ər / ; UK : / ˈ ɡ l æ s i ər , ˈ ɡ l eɪ s i ər / ) is a persistent body of dense ice that is constantly moving downhill under its own weight. A glacier forms where

2478-456: Is above or at freezing at the interface and is able to slide at this contact. This contrast is thought to a large extent to govern the ability of a glacier to effectively erode its bed , as sliding ice promotes plucking at rock from the surface below. Glaciers which are partly cold-based and partly warm-based are known as polythermal . Glaciers form where the accumulation of snow and ice exceeds ablation . A glacier usually originates from

SECTION 20

#1733093182838

2596-407: Is affected by factors such as slope, ice thickness, snowfall, longitudinal confinement, basal temperature, meltwater production, and bed hardness. A few glaciers have periods of very rapid advancement called surges . These glaciers exhibit normal movement until suddenly they accelerate, then return to their previous movement state. These surges may be caused by the failure of the underlying bedrock,

2714-411: Is because these peaks are located near or in the hyperarid Atacama Desert . Glaciers erode terrain through two principal processes: plucking and abrasion . As glaciers flow over bedrock, they soften and lift blocks of rock into the ice. This process, called plucking, is caused by subglacial water that penetrates fractures in the bedrock and subsequently freezes and expands. This expansion causes

2832-456: Is believed that the loss of the ice sheet would take place between 2,000 and 13,000 years in the future, although several centuries of high emissions may shorten this to 500 years. 3.3 m (10 ft 10 in) of sea level rise would occur if the ice sheet collapses but leaves ice caps on the mountains behind. Total sea level rise from West Antarctica increases to 4.3 m (14 ft 1 in) if they melt as well, but this would require

2950-406: Is by basal sliding, where meltwater forms between the ice and the bed itself. Whether a bed is hard or soft depends on the porosity and pore pressure; higher porosity decreases the sediment strength (thus increases the shear stress τ B ). Porosity may vary through a range of methods. Bed softness may vary in space or time, and changes dramatically from glacier to glacier. An important factor

3068-434: Is called glaciology . Glaciers are important components of the global cryosphere . Glaciers are categorized by their morphology, thermal characteristics, and behavior. Alpine glaciers form on the crests and slopes of mountains. A glacier that fills a valley is called a valley glacier , or alternatively, an alpine glacier or mountain glacier . A large body of glacial ice astride a mountain, mountain range, or volcano

3186-416: Is called rock flour and is made up of rock grains between 0.002 and 0.00625 mm in size. Abrasion leads to steeper valley walls and mountain slopes in alpine settings, which can cause avalanches and rock slides, which add even more material to the glacier. Glacial abrasion is commonly characterized by glacial striations . Glaciers produce these when they contain large boulders that carve long scratches in

3304-528: Is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water. On Earth, 99% of glacial ice is contained within vast ice sheets (also known as "continental glaciers") in the polar regions , but glaciers may be found in mountain ranges on every continent other than the Australian mainland, including Oceania's high-latitude oceanic island countries such as New Zealand . Between latitudes 35°N and 35°S, glaciers occur only in

3422-468: Is evidence of large glaciers in Greenland for most of the past 18 million years, these ice bodies were probably similar to various smaller modern examples, such as Maniitsoq and Flade Isblink , which cover 76,000 and 100,000 square kilometres (29,000 and 39,000 sq mi) around the periphery. Conditions in Greenland were not initially suitable for a single coherent ice sheet to develop, but this began to change around 10 million years ago , during

3540-408: Is generally warmer due to geothermal heat. In places, melting occurs and the melt-water lubricates the ice sheet so that it flows more rapidly. This process produces fast-flowing channels in the ice sheet — these are ice streams . Even stable ice sheets are continually in motion as the ice gradually flows outward from the central plateau, which is the tallest point of the ice sheet, and towards

3658-466: Is greater than 50,000 km (19,000 sq mi). The only current ice sheets are the Antarctic ice sheet and the Greenland ice sheet . Ice sheets are bigger than ice shelves or alpine glaciers . Masses of ice covering less than 50,000 km are termed an ice cap . An ice cap will typically feed a series of glaciers around its periphery. Although the surface is cold, the base of an ice sheet

Schlieferspitze - Misplaced Pages Continue

3776-478: Is grounded below the sea level, it would be vulnerable to geologically rapid ice loss in this scenario. In particular, the Thwaites and Pine Island glaciers are most likely to be prone to MISI, and both glaciers have been rapidly thinning and accelerating in recent decades. As the result, sea level rise from the ice sheet could be accelerated by tens of centimeters within the 21st century alone. The majority of

3894-628: Is higher, and the mountains above 5,000 m (16,400 ft) usually have permanent snow. Even at high latitudes, glacier formation is not inevitable. Areas of the Arctic , such as Banks Island , and the McMurdo Dry Valleys in Antarctica are considered polar deserts where glaciers cannot form because they receive little snowfall despite the bitter cold. Cold air, unlike warm air, is unable to transport much water vapor. Even during glacial periods of

4012-665: Is known to vary on seasonal to interannual timescales. The Wilkes Basin is the only major submarine basin in Antarctica that is not thought to be sensitive to warming. Ultimately, even geologically rapid sea level rise would still most likely require several millennia for the entirety of these ice masses (WAIS and the subglacial basins) to be lost. A related process known as Marine Ice Cliff Instability (MICI) posits that ice cliffs which exceed ~ 90 m ( 295 + 1 ⁄ 2  ft) in above-ground height and are ~ 800 m ( 2,624 + 1 ⁄ 2  ft) in basal (underground) height are likely to collapse under their own weight once

4130-494: Is melting two to five times faster than before 1850, and snowfall has not kept up since 1996. If the Paris Agreement goal of staying below 2 °C (3.6 °F) is achieved, melting of Greenland ice alone would still add around 6 cm ( 2 + 1 ⁄ 2  in) to global sea level rise by the end of the century. If there are no reductions in emissions, melting would add around 13 cm (5 in) by 2100, with

4248-483: Is released into the atmosphere as methane , which has a much larger global warming potential than carbon dioxide. However, it also harbours large numbers of methanotrophic bacteria, which limit those emissions. Normally, the transitions between glacial and interglacial states are governed by Milankovitch cycles , which are patterns in insolation (the amount of sunlight reaching the Earth). These patterns are caused by

4366-478: Is still occurring nowadays, as can be clearly seen in an example that occurred in World War II . A Lockheed P-38 Lightning fighter plane crashed in Greenland in 1942. It was only recovered 50 years later. By then, it had been buried under 81 m (268 feet) of ice which had formed over that time period. Even stable ice sheets are continually in motion as the ice gradually flows outward from the central plateau, which

4484-517: Is still open for debate. The icing of Antarctica began in the Late Palaeocene or middle Eocene between 60 and 45.5 million years ago and escalated during the Eocene–Oligocene extinction event about 34 million years ago. CO 2 levels were then about 760 ppm and had been decreasing from earlier levels in the thousands of ppm. Carbon dioxide decrease, with a tipping point of 600 ppm,

4602-897: Is termed an ice cap or ice field . Ice caps have an area less than 50,000 km (19,000 sq mi) by definition. Glacial bodies larger than 50,000 km (19,000 sq mi) are called ice sheets or continental glaciers . Several kilometers deep, they obscure the underlying topography. Only nunataks protrude from their surfaces. The only extant ice sheets are the two that cover most of Antarctica and Greenland. They contain vast quantities of freshwater, enough that if both melted, global sea levels would rise by over 70 m (230 ft). Portions of an ice sheet or cap that extend into water are called ice shelves ; they tend to be thin with limited slopes and reduced velocities. Narrow, fast-moving sections of an ice sheet are called ice streams . In Antarctica, many ice streams drain into large ice shelves . Some drain directly into

4720-413: Is the region where there is a net loss in glacier mass. The upper part of a glacier, where accumulation exceeds ablation, is called the accumulation zone . The equilibrium line separates the ablation zone and the accumulation zone; it is the contour where the amount of new snow gained by accumulation is equal to the amount of ice lost through ablation. In general, the accumulation zone accounts for 60–70% of

4838-675: Is the segment of the continental ice sheet that covers West Antarctica , the portion of Antarctica on the side of the Transantarctic Mountains that lies in the Western Hemisphere . It is classified as a marine-based ice sheet, meaning that its bed lies well below sea level and its edges flow into floating ice shelves. The WAIS is bounded by the Ross Ice Shelf , the Ronne Ice Shelf , and outlet glaciers that drain into

Schlieferspitze - Misplaced Pages Continue

4956-456: Is the tallest point of the ice sheet, and towards the margins. The ice sheet slope is low around the plateau but increases steeply at the margins. This difference in slope occurs due to an imbalance between high ice accumulation in the central plateau and lower accumulation, as well as higher ablation , at the margins. This imbalance increases the shear stress on a glacier until it begins to flow. The flow velocity and deformation will increase as

5074-402: Is the underlying geology; glacial speeds tend to differ more when they change bedrock than when the gradient changes. Further, bed roughness can also act to slow glacial motion. The roughness of the bed is a measure of how many boulders and obstacles protrude into the overlying ice. Ice flows around these obstacles by melting under the high pressure on their stoss side ; the resultant meltwater

5192-552: Is then forced into the cavity arising in their lee side , where it re-freezes. As well as affecting the sediment stress, fluid pressure (p w ) can affect the friction between the glacier and the bed. High fluid pressure provides a buoyancy force upwards on the glacier, reducing the friction at its base. The fluid pressure is compared to the ice overburden pressure, p i , given by ρgh. Under fast-flowing ice streams, these two pressures will be approximately equal, with an effective pressure (p i – p w ) of 30 kPa; i.e. all of

5310-506: The Amundsen Sea . As a smaller part of Antarctica, WAIS is also more strongly affected by climate change . There has been warming over the ice sheet since the 1950s, and a substantial retreat of its coastal glaciers since at least the 1990s. Estimates suggest it added around 7.6 ± 3.9 mm ( 19 ⁄ 64  ±  5 ⁄ 32  in) to the global sea level rise between 1992 and 2017, and has been losing ice in

5428-952: The Andes , the Himalayas , the Rocky Mountains , the Caucasus , Scandinavian Mountains , and the Alps . Snezhnika glacier in Pirin Mountain, Bulgaria with a latitude of 41°46′09″ N is the southernmost glacial mass in Europe. Mainland Australia currently contains no glaciers, although a small glacier on Mount Kosciuszko was present in the last glacial period . In New Guinea, small, rapidly diminishing, glaciers are located on Puncak Jaya . Africa has glaciers on Mount Kilimanjaro in Tanzania, on Mount Kenya , and in

5546-636: The Faroe and Crozet Islands were completely glaciated. The permanent snow cover necessary for glacier formation is affected by factors such as the degree of slope on the land, amount of snowfall and the winds. Glaciers can be found in all latitudes except from 20° to 27° north and south of the equator where the presence of the descending limb of the Hadley circulation lowers precipitation so much that with high insolation snow lines reach above 6,500 m (21,330 ft). Between 19˚N and 19˚S, however, precipitation

5664-750: The Himalayas , Andes , and a few high mountains in East Africa, Mexico, New Guinea and on Zard-Kuh in Iran. With more than 7,000 known glaciers, Pakistan has more glacial ice than any other country outside the polar regions. Glaciers cover about 10% of Earth's land surface. Continental glaciers cover nearly 13 million km (5 million sq mi) or about 98% of Antarctica 's 13.2 million km (5.1 million sq mi), with an average thickness of ice 2,100 m (7,000 ft). Greenland and Patagonia also have huge expanses of continental glaciers. The volume of glaciers, not including

5782-680: The Last Glacial Period at Last Glacial Maximum , the Laurentide Ice Sheet covered much of North America . In the same period, the Weichselian ice sheet covered Northern Europe and the Patagonian Ice Sheet covered southern South America . An ice sheet is a body of ice which covers a land area of continental size - meaning that it exceeds 50,000 km . The currently existing two ice sheets in Greenland and Antarctica have

5900-551: The Quaternary , Manchuria , lowland Siberia , and central and northern Alaska , though extraordinarily cold, had such light snowfall that glaciers could not form. In addition to the dry, unglaciated polar regions, some mountains and volcanoes in Bolivia, Chile and Argentina are high (4,500 to 6,900 m or 14,800 to 22,600 ft) and cold, but the relative lack of precipitation prevents snow from accumulating into glaciers. This

6018-724: The Rinderwand , descends to the Krimmler Achental. Important neighbouring peaks lies on the Spitze's northwest and southeast arêtes. One kilometre away to the northwest lies the Jaidbachspitze (3,100 m) and another 1,000 metres beyond is the Unlaßkarkopf which reaches a height of 3,074 m. One and a half kilometres away on the southeastern arête lie the two towers of the Schliefertürme (the southeast tower at 3,142 m and

SECTION 50

#1733093182838

6136-521: The Rwenzori Mountains . Oceanic islands with glaciers include Iceland, several of the islands off the coast of Norway including Svalbard and Jan Mayen to the far north, New Zealand and the subantarctic islands of Marion , Heard , Grande Terre (Kerguelen) and Bouvet . During glacial periods of the Quaternary, Taiwan , Hawaii on Mauna Kea and Tenerife also had large alpine glaciers, while

6254-630: The West Antarctic Ice Sheet (WAIS), from which it is separated by the Transantarctic Mountains . The ice sheet is around 2.2 km (1.4 mi) thick on average and is 4,897 m (16,066 ft) at its thickest point. It is also home to the geographic South Pole , South Magnetic Pole and the Amundsen–Scott South Pole Station . The surface of the EAIS is the driest, windiest, and coldest place on Earth. Lack of moisture in

6372-540: The Younger Dryas period which appears consistent with MICI. However, it indicates "relatively rapid" yet still prolonged ice sheet retreat, with a movement of >200 km (120 mi) inland taking place over an estimated 1100 years (from ~12,300 years Before Present to ~11,200 B.P.) In recent years, 2002-2004 fast retreat of Crane Glacier immediately after the collapse of the Larsen B ice shelf (before it reached

6490-638: The first climbers in 1871 led from the Johannis Hut (2,121 m), a long way to the southeast in the Dorfertal valley and headed in a northeasterly direction. According to the original account, they then went over the Obersulzbachtörl (2,918 m) and circumnavigated the expansive Obersulzbachferner glacier in a wide arc to the west almost as far as the Krimmler Törl (2,776 m). They then crossed

6608-448: The 1990s and 2000s. In a study using data from January 1993 through October 2005, more events were detected every year since 2002, and twice as many events were recorded in 2005 as there were in any other year. Ogives or Forbes bands are alternating wave crests and valleys that appear as dark and light bands of ice on glacier surfaces. They are linked to seasonal motion of glaciers; the width of one dark and one light band generally equals

6726-548: The 2010s at a rate equivalent to 0.4 millimetres (0.016 inches) of annual sea level rise. While some of its losses are offset by the growth of the East Antarctic ice sheet , Antarctica as a whole will most likely lose enough ice by 2100 to add 11 cm (4.3 in) to sea levels. Further, marine ice sheet instability may increase this amount by tens of centimeters, particularly under high warming. Fresh meltwater from WAIS also contributes to ocean stratification and dilutes

6844-497: The Antarctic winter is cooler at the surface than in its middle layers. Consequently, greenhouse gases actually trap heat in the middle atmosphere and reduce its flow towards the surface while the temperature inversion lasts. Due to these factors, East Antarctica had experienced slight cooling for decades while the rest of the world warmed as the result of climate change . Clear warming over East Antarctica only started to occur since

6962-500: The East Antarctic Ice Sheet would not be affected. Totten Glacier is the largest glacier there which is known to be subject to MISI - yet, its potential contribution to sea level rise is comparable to that of the entire West Antarctic Ice Sheet. Totten Glacier has been losing mass nearly monotonically in recent decades, suggesting rapid retreat is possible in the near future, although the dynamic behavior of Totten Ice Shelf

7080-635: The SLR was greater than 6 m ( 19 + 1 ⁄ 2  ft). As of 2023, the most recent analysis indicates that the Last Interglacial SLR is unlikely to have been higher than 2.7 m (9 ft), as higher values in other research, such as 5.7 m ( 18 + 1 ⁄ 2  ft), appear inconsistent with the new paleoclimate data from The Bahamas and the known history of the Greenland Ice Sheet. The West Antarctic Ice Sheet (WAIS)

7198-524: The Western Sonntagskees, and advanced up several rocky ridges, with randklufts and hollows, not shown on the contemporary Alpine Club map . Finally they made their way along the southeastern arête to the summit of the Schlieferspitze after 7 1 ⁄ 2 hours. On the same day, the two alpinists also climbed the Prägraten am Großvenediger . The first winter ascent of the Schlieferspitze was made by

SECTION 60

#1733093182838

7316-422: The accumulation of snow exceeds its ablation over many years, often centuries . It acquires distinguishing features, such as crevasses and seracs , as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques , moraines , or fjords . Although a glacier may flow into a body of water, it forms only on land and

7434-412: The advance of many alpine glaciers between 1950 and 1985, but since 1985 glacier retreat and mass loss has become larger and increasingly ubiquitous. Glaciers move downhill by the force of gravity and the internal deformation of ice. At the molecular level, ice consists of stacked layers of molecules with relatively weak bonds between layers. When the amount of strain (deformation) is proportional to

7552-520: The air from the snow turns it into "glacial ice". This glacial ice will fill the cirque until it "overflows" through a geological weakness or vacancy, such as a gap between two mountains. When the mass of snow and ice reaches sufficient thickness, it begins to move by a combination of surface slope, gravity, and pressure. On steeper slopes, this can occur with as little as 15 m (49 ft) of snow-ice. In temperate glaciers, snow repeatedly freezes and thaws, changing into granular ice called firn . Under

7670-412: The air, high albedo from the snow as well as the surface's consistently high elevation results in the reported cold temperature records of nearly −100 °C (−148 °F). It is the only place on Earth cold enough for atmospheric temperature inversion to occur consistently. That is, while the atmosphere is typically warmest near the surface and becomes cooler at greater elevation, atmosphere during

7788-430: The amount of melting at surface of the glacier, the faster the ice will flow. Basal sliding is dominant in temperate or warm-based glaciers. The presence of basal meltwater depends on both bed temperature and other factors. For instance, the melting point of water decreases under pressure, meaning that water melts at a lower temperature under thicker glaciers. This acts as a "double whammy", because thicker glaciers have

7906-713: The annual movement of the glacier. Ogives are formed when ice from an icefall is severely broken up, increasing ablation surface area during summer. This creates a swale and space for snow accumulation in the winter, which in turn creates a ridge. Sometimes ogives consist only of undulations or color bands and are described as wave ogives or band ogives. Glaciers are present on every continent and in approximately fifty countries, excluding those (Australia, South Africa) that have glaciers only on distant subantarctic island territories. Extensive glaciers are found in Antarctica, Argentina, Chile, Canada, Pakistan, Alaska, Greenland and Iceland. Mountain glaciers are widespread, especially in

8024-416: The base of the glacier in as little as 2–18 hours – lubricating the bed and causing the glacier to surge . Water that reaches the bed of a glacier may freeze there, increasing the thickness of the glacier by pushing it up from below. As the margins end at the marine boundary, excess ice is discharged through ice streams or outlet glaciers . Then, it either falls directly into the sea or is accumulated atop

8142-432: The bedrock has frequent fractures on the surface, glacial erosion rates tend to increase as plucking is the main erosive force on the surface; when the bedrock has wide gaps between sporadic fractures, however, abrasion tends to be the dominant erosive form and glacial erosion rates become slow. Glaciers in lower latitudes tend to be much more erosive than glaciers in higher latitudes, because they have more meltwater reaching

8260-445: The bedrock. By mapping the direction of the striations, researchers can determine the direction of the glacier's movement. Similar to striations are chatter marks , lines of crescent-shape depressions in the rock underlying a glacier. They are formed by abrasion when boulders in the glacier are repeatedly caught and released as they are dragged along the bedrock. The rate of glacier erosion varies. Six factors control erosion rate: When

8378-427: The boulders and other continental rocks they carried, leaving layers known as ice rafted debris . These so-called Heinrich events , named after their discoverer Hartmut Heinrich , appear to have a 7,000–10,000-year periodicity , and occur during cold periods within the last interglacial. Internal ice sheet "binge-purge" cycles may be responsible for the observed effects, where the ice builds to unstable levels, then

8496-402: The collapse of Larsen B, in context. In the 1970s, Johannes Weertman proposed that because seawater is denser than ice, then any ice sheets grounded below sea level inherently become less stable as they melt due to Archimedes' principle . Effectively, these marine ice sheets must have enough mass to exceed the mass of the seawater displaced by the ice, which requires excess thickness. As

8614-515: The continent since the 1957. The Greenland ice sheet is an ice sheet which forms the second largest body of ice in the world. It is an average of 1.67 km (1.0 mi) thick, and over 3 km (1.9 mi) thick at its maximum. It is almost 2,900 kilometres (1,800 mi) long in a north–south direction, with a maximum width of 1,100 kilometres (680 mi) at a latitude of 77°N , near its northern edge. The ice sheet covers 1,710,000 square kilometres (660,000 sq mi), around 80% of

8732-559: The created ice's density. The word glacier is a loanword from French and goes back, via Franco-Provençal , to the Vulgar Latin glaciārium , derived from the Late Latin glacia , and ultimately Latin glaciēs , meaning "ice". The processes and features caused by or related to glaciers are referred to as glacial. The process of glacier establishment, growth and flow is called glaciation . The corresponding area of study

8850-467: The deep profile of fjords , which can reach a kilometer in depth as ice is topographically steered into them. The extension of fjords inland increases the rate of ice sheet thinning since they are the principal conduits for draining ice sheets. It also makes the ice sheets more sensitive to changes in climate and the ocean. Although evidence in favor of glacial flow was known by the early 19th century, other theories of glacial motion were advanced, such as

8968-505: The definition. Further, modelling done after the initial hypothesis indicates that ice-cliff instability would require implausibly fast ice shelf collapse (i.e. within an hour for ~ 90 m ( 295 + 1 ⁄ 2  ft)-tall cliffs), unless the ice had already been substantially damaged beforehand. Further, ice cliff breakdown would produce a large number of debris in the coastal waters - known as ice mélange - and multiple studies indicate their build-up would slow or even outright stop

9086-483: The deformation to become a plastic flow rather than elastic. Then, the glacier will begin to deform under its own weight and flow across the landscape. According to the Glen–Nye flow law , the relationship between stress and strain, and thus the rate of internal flow, can be modeled as follows: where: The lowest velocities are near the base of the glacier and along valley sides where friction acts against flow, causing

9204-522: The equilibrium line between these two processes is approached. This motion is driven by gravity but is controlled by temperature and the strength of individual glacier bases. A number of processes alter these two factors, resulting in cyclic surges of activity interspersed with longer periods of inactivity, on time scales ranging from hourly (i.e. tidal flows) to the centennial (Milankovich cycles). On an unrelated hour-to-hour basis, surges of ice motion can be modulated by tidal activity. The influence of

9322-418: The essentially correct explanation in the 1840s, although it was several decades before it was fully accepted. The top 50 m (160 ft) of a glacier are rigid because they are under low pressure . This upper section is known as the fracture zone and moves mostly as a single unit over the plastic-flowing lower section. When a glacier moves through irregular terrain, cracks called crevasses develop in

9440-498: The existence of uniquely adapted microbial communities , high rates of biogeochemical and physical weathering in ice sheets, and storage and cycling of organic carbon in excess of 100 billion tonnes. There is a massive contrast in carbon storage between the two ice sheets. While only about 0.5-27 billion tonnes of pure carbon are present underneath the Greenland ice sheet, 6000-21,000 billion tonnes of pure carbon are thought to be located underneath Antarctica. This carbon can act as

9558-406: The floating ice shelves . Those ice shelves then calve icebergs at their periphery if they experience excess of ice. Ice shelves would also experience accelerated calving due to basal melting. In Antarctica, this is driven by heat fed to the shelf by the circumpolar deep water current, which is 3 °C above the ice's melting point. The presence of ice shelves has a stabilizing influence on

9676-514: The formation of salty Antarctic bottom water , which destabilizes Southern Ocean overturning circulation . In the long term, the West Antarctic Ice Sheet is likely to disappear due to the warming which has already occurred. Paleoclimate evidence suggests that this has already happened during the Eemian period, when the global temperatures were similar to the early 21st century. It

9794-475: The fracture zone. Crevasses form because of differences in glacier velocity. If two rigid sections of a glacier move at different speeds or directions, shear forces cause them to break apart, opening a crevasse. Crevasses are seldom more than 46 m (150 ft) deep but, in some cases, can be at least 300 m (1,000 ft) deep. Beneath this point, the plasticity of the ice prevents the formation of cracks. Intersecting crevasses can create isolated peaks in

9912-442: The glacial base and facilitate sediment production and transport under the same moving speed and amount of ice. Material that becomes incorporated in a glacier is typically carried as far as the zone of ablation before being deposited. Glacial deposits are of two distinct types: Ice sheet In glaciology , an ice sheet , also known as a continental glacier , is a mass of glacial ice that covers surrounding terrain and

10030-515: The glacier behind them, while an absence of an ice shelf becomes destabilizing. For instance, when Larsen B ice shelf in the Antarctic Peninsula had collapsed over three weeks in February 2002, the four glaciers behind it - Crane Glacier , Green Glacier , Hektoria Glacier and Jorum Glacier - all started to flow at a much faster rate, while the two glaciers (Flask and Leppard) stabilized by

10148-453: The glacier to melt, creating a water source that is especially important for plants, animals and human uses when other sources may be scant. However, within high-altitude and Antarctic environments, the seasonal temperature difference is often not sufficient to release meltwater. Since glacial mass is affected by long-term climatic changes, e.g., precipitation , mean temperature , and cloud cover , glacial mass changes are considered among

10266-428: The glacier will be accommodated by motion in the sediments, or if it'll be able to slide. A soft bed, with high porosity and low pore fluid pressure, allows the glacier to move by sediment sliding: the base of the glacier may even remain frozen to the bed, where the underlying sediment slips underneath it like a tube of toothpaste. A hard bed cannot deform in this way; therefore the only way for hard-based glaciers to move

10384-504: The glacier's surface area, more if the glacier calves icebergs. Ice in the accumulation zone is deep enough to exert a downward force that erodes underlying rock. After a glacier melts, it often leaves behind a bowl- or amphitheater-shaped depression that ranges in size from large basins like the Great Lakes to smaller mountain depressions known as cirques . The accumulation zone can be subdivided based on its melt conditions. The health of

10502-562: The ice at the bottom of the glacier move more slowly than ice at the top. In alpine glaciers, friction is also generated at the valley's sidewalls, which slows the edges relative to the center. Mean glacial speed varies greatly but is typically around 1 m (3 ft) per day. There may be no motion in stagnant areas; for example, in parts of Alaska, trees can establish themselves on surface sediment deposits. In other cases, glaciers can move as fast as 20–30 m (70–100 ft) per day, such as in Greenland's Jakobshavn Isbræ . Glacial speed

10620-437: The ice before they influence bed temperatures, but may have an effect through increased surface melting, producing more supraglacial lakes . These lakes may feed warm water to glacial bases and facilitate glacial motion. Lakes of a diameter greater than ~300 m are capable of creating a fluid-filled crevasse to the glacier/bed interface. When these crevasses form, the entirety of the lake's (relatively warm) contents can reach

10738-415: The ice sheet melts and becomes thinner, the weight of the overlying ice decreases. At a certain point, sea water could force itself into the gaps which form at the base of the ice sheet, and marine ice sheet instability (MISI) would occur. Even if the ice sheet is grounded below the sea level, MISI cannot occur as long as there is a stable ice shelf in front of it. The boundary between the ice sheet and

10856-420: The ice sheets of Antarctica and Greenland, has been estimated at 170,000 km . Glacial ice is the largest reservoir of fresh water on Earth, holding with ice sheets about 69 percent of the world's freshwater. Many glaciers from temperate , alpine and seasonal polar climates store water as ice during the colder seasons and release it later in the form of meltwater as warmer summer temperatures cause

10974-440: The ice shelf, known as the grounding line , is particularly stable if it is constrained in an embayment . In that case, the ice sheet may not be thinning at all, as the amount of ice flowing over the grounding line would be likely to match the annual accumulation of ice from snow upstream. Otherwise, ocean warming at the base of an ice shelf tends to thin it through basal melting. As the ice shelf becomes thinner, it exerts less of

11092-544: The ice to act as a lever that loosens the rock by lifting it. Thus, sediments of all sizes become part of the glacier's load. If a retreating glacier gains enough debris, it may become a rock glacier , like the Timpanogos Glacier in Utah. Abrasion occurs when the ice and its load of rock fragments slide over bedrock and function as sandpaper, smoothing and polishing the bedrock below. The pulverized rock this process produces

11210-488: The ice, called seracs . Crevasses can form in several different ways. Transverse crevasses are transverse to flow and form where steeper slopes cause a glacier to accelerate. Longitudinal crevasses form semi-parallel to flow where a glacier expands laterally. Marginal crevasses form near the edge of the glacier, caused by the reduction in speed caused by friction of the valley walls. Marginal crevasses are largely transverse to flow. Moving glacier ice can sometimes separate from

11328-411: The idea that meltwater, refreezing inside glaciers, caused the glacier to dilate and extend its length. As it became clear that glaciers behaved to some degree as if the ice were a viscous fluid, it was argued that "regelation", or the melting and refreezing of ice at a temperature lowered by the pressure on the ice inside the glacier, was what allowed the ice to deform and flow. James Forbes came up with

11446-418: The increased pressure can facilitate melting. Most importantly, τ D is increased. These factors will combine to accelerate the glacier. As friction increases with the square of velocity, faster motion will greatly increase frictional heating, with ensuing melting – which causes a positive feedback, increasing ice speed to a faster flow rate still: west Antarctic glaciers are known to reach velocities of up to

11564-423: The infrared OH stretching mode of the water molecule. (Liquid water appears blue for the same reason. The blue of glacier ice is sometimes misattributed to Rayleigh scattering of bubbles in the ice.) A glacier originates at a location called its glacier head and terminates at its glacier foot, snout, or terminus . Glaciers are broken into zones based on surface snowpack and melt conditions. The ablation zone

11682-458: The instability soon after it started. Some scientists - including the originators of the hypothesis, Robert DeConto and David Pollard - have suggested that the best way to resolve the question would be to precisely determine sea level rise during the Last Interglacial . MICI can be effectively ruled out if SLR at the time was lower than 4 m (13 ft), while it is very likely if

11800-526: The margins. The ice sheet slope is low around the plateau but increases steeply at the margins. Increasing global air temperatures due to climate change take around 10,000 years to directly propagate through the ice before they influence bed temperatures, but may have an effect through increased surface melting, producing more supraglacial lakes . These lakes may feed warm water to glacial bases and facilitate glacial motion. In previous geologic time spans ( glacial periods ) there were other ice sheets. During

11918-679: The most deformation. Velocity increases inward toward the center line and upward, as the amount of deformation decreases. The highest flow velocities are found at the surface, representing the sum of the velocities of all the layers below. Because ice can flow faster where it is thicker, the rate of glacier-induced erosion is directly proportional to the thickness of overlying ice. Consequently, pre-glacial low hollows will be deepened and pre-existing topography will be amplified by glacial action, while nunataks , which protrude above ice sheets, barely erode at all – erosion has been estimated as 5 m per 1.2 million years. This explains, for example,

12036-445: The most sensitive indicators of climate change and are a major source of variations in sea level . A large piece of compressed ice, or a glacier, appears blue , as large quantities of water appear blue , because water molecules absorb other colors more efficiently than blue. The other reason for the blue color of glaciers is the lack of air bubbles. Air bubbles, which give a white color to ice, are squeezed out by pressure increasing

12154-475: The northern hemisphere warmed considerably, dramatically increasing the release of methane from wetlands, that were otherwise tundra during glacial times. This methane quickly distributes evenly across the globe, becoming incorporated in Antarctic and Greenland ice. With this tie, paleoclimatologists have been able to say that the ice sheets on Greenland only began to warm after the Antarctic ice sheet had been warming for several thousand years. Why this pattern occurs

12272-605: The northwest tower at 3,126 m) and a few hundred metres beyond them is the Hohe Sonntagskopf at 3,136 m Important settlements in the wider area are the village of Ströden in the upper Virgental valley in East Tyrol , a good 13 kilometres away to the southeast as the crow flies , and Krimml on the Gerlos Straße in the state of Salzburg which is about 12 kilometres away to the north-northwest. The route used by

12390-415: The peripheral ice stabilizing them is gone. Their collapse then exposes the ice masses following them to the same instability, potentially resulting in a self-sustaining cycle of cliff collapse and rapid ice sheet retreat - i.e. sea level rise of a meter or more by 2100 from Antarctica alone. This theory had been highly influential - in a 2020 survey of 106 experts, the paper which had advanced this theory

12508-721: The pooling of meltwater at the base of the glacier  — perhaps delivered from a supraglacial lake  — or the simple accumulation of mass beyond a critical "tipping point". Temporary rates up to 90 m (300 ft) per day have occurred when increased temperature or overlying pressure caused bottom ice to melt and water to accumulate beneath a glacier. In glaciated areas where the glacier moves faster than one km per year, glacial earthquakes occur. These are large scale earthquakes that have seismic magnitudes as high as 6.1. The number of glacial earthquakes in Greenland peaks every year in July, August, and September and increased rapidly in

12626-410: The pressure of the layers of ice and snow above it, this granular ice fuses into denser firn. Over a period of years, layers of firn undergo further compaction and become glacial ice. Glacier ice is slightly more dense than ice formed from frozen water because glacier ice contains fewer trapped air bubbles. Glacial ice has a distinctive blue tint because it absorbs some red light due to an overtone of

12744-565: The remnants of the ice shelf did not accelerate. The collapse of the Larsen B shelf was preceded by thinning of just 1 metre per year, while some other Antarctic ice shelves have displayed thinning of tens of metres per year. Further, increased ocean temperatures of 1 °C may lead to up to 10 metres per year of basal melting. Ice shelves are always stable under mean annual temperatures of −9 °C, but never stable above −5 °C; this places regional warming of 1.5 °C, as preceded

12862-558: The sea, often with an ice tongue , like Mertz Glacier . Tidewater glaciers are glaciers that terminate in the sea, including most glaciers flowing from Greenland, Antarctica, Baffin , Devon , and Ellesmere Islands in Canada, Southeast Alaska , and the Northern and Southern Patagonian Ice Fields . As the ice reaches the sea, pieces break off or calve, forming icebergs . Most tidewater glaciers calve above sea level, which often results in

12980-409: The stagnant ice above, forming a bergschrund . Bergschrunds resemble crevasses but are singular features at a glacier's margins. Crevasses make travel over glaciers hazardous, especially when they are hidden by fragile snow bridges . Below the equilibrium line, glacial meltwater is concentrated in stream channels. Meltwater can pool in proglacial lakes on top of a glacier or descend into the depths of

13098-423: The stress being applied, ice will act as an elastic solid. Ice needs to be at least 30 m (98 ft) thick to even start flowing, but once its thickness exceeds about 50 m (160 ft) (160 ft), stress on the layer above will exceeds the inter-layer binding strength, and then it'll move faster than the layer below. This means that small amounts of stress can result in a large amount of strain, causing

13216-438: The surface snowpack may experience seasonal melting. A subpolar glacier includes both temperate and polar ice, depending on the depth beneath the surface and position along the length of the glacier. In a similar way, the thermal regime of a glacier is often described by its basal temperature. A cold-based glacier is below freezing at the ice-ground interface and is thus frozen to the underlying substrate. A warm-based glacier

13334-448: The surface of Greenland , or about 12% of the area of the Antarctic ice sheet . The term 'Greenland ice sheet' is often shortened to GIS or GrIS in scientific literature . Greenland has had major glaciers and ice caps for at least 18 million years, but a single ice sheet first covered most of the island some 2.6 million years ago. Since then, it has both grown and contracted significantly. The oldest known ice on Greenland

13452-525: The variations in shape of the Earth's orbit and its angle relative to the Sun, caused by the gravitational pull of other planets as they go through their own orbits. For instance, during at least the last 100,000 years, portions of the ice sheet covering much of North America, the Laurentide Ice Sheet broke apart sending large flotillas of icebergs into the North Atlantic. When these icebergs melted they dropped

13570-417: The weight of the ice is supported by the underlying water, and the glacier is afloat. Glaciers may also move by basal sliding , where the base of the glacier is lubricated by the presence of liquid water, reducing basal shear stress and allowing the glacier to slide over the terrain on which it sits. Meltwater may be produced by pressure-induced melting, friction or geothermal heat . The more variable

13688-460: The year 2000, and was not conclusively detected until the 2020s. In the early 2000s, cooling over East Antarctica seemingly outweighing warming over the rest of the continent was frequently misinterpreted by the media and occasionally used as an argument for climate change denial . After 2009, improvements in Antarctica's instrumental temperature record have proven that the warming over West Antarctica resulted in consistent net warming across

13806-867: Was considered more important than even the year 2014 IPCC Fifth Assessment Report . Sea level rise projections which involve MICI are much larger than the others, particularly under high warming rate. At the same time, this theory has also been highly controversial. It was originally proposed in order to describe how the large sea level rise during the Pliocene and the Last Interglacial could have occurred - yet more recent research found that these sea level rise episodes can be explained without any ice cliff instability taking place. Research in Pine Island Bay in West Antarctica (the location of Thwaites and Pine Island Glacier ) had found seabed gouging by ice from

13924-520: Was the primary agent forcing Antarctic glaciation. The glaciation was favored by an interval when the Earth's orbit favored cool summers but oxygen isotope ratio cycle marker changes were too large to be explained by Antarctic ice-sheet growth alone indicating an ice age of some size. The opening of the Drake Passage may have played a role as well though models of the changes suggest declining CO 2 levels to have been more important. While there

#837162