Misplaced Pages

Vesicular monoamine transporter 1

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A catecholamine ( / ˌ k æ t ə ˈ k oʊ l ə m iː n / ; abbreviated CA ) is a monoamine neurotransmitter , an organic compound that has a catechol ( benzene with two hydroxyl side groups next to each other) and a side-chain amine .

#926073

102-402: 6570 110877 ENSG00000036565 ENSMUSG00000036330 P54219 Q8R090 NM_001135691 NM_001142324 NM_001142325 NM_003053 NM_153054 NP_001129163 NP_001135796 NP_001135797 NP_003044 NP_694694 Vesicular monoamine transporter 1 (VMAT1) also known as chromaffin granule amine transporter (CGAT) or solute carrier family 18 member 1 (SLC18A1)

204-516: A carboxyl group, and a variable side chain are bonded . Only proline differs from this basic structure as it contains an unusual ring to the N-end amine group, which forces the CO–NH amide moiety into a fixed conformation. The side chains of the standard amino acids, detailed in the list of standard amino acids , have a great variety of chemical structures and properties; it is the combined effect of all of

306-470: A gene may be duplicated before it can mutate freely. However, this can also lead to complete loss of gene function and thus pseudo-genes . More commonly, single amino acid changes have limited consequences although some can change protein function substantially, especially in enzymes . For instance, many enzymes can change their substrate specificity by one or a few mutations. Changes in substrate specificity are facilitated by substrate promiscuity , i.e.

408-565: A cell that uses epinephrine as its transmitter contains four enzymes (TH, AADC, DBH, and PNMT), whereas norepinephrine neurons contain only three enzymes (lacking PNMT) and dopamine cells only two (TH and AADC). Catecholamines have a half-life of a few minutes when circulating in the blood. They can be degraded either by methylation by catechol- O -methyltransferases (COMT) or by deamination by monoamine oxidases (MAO) . MAOIs bind to MAO, thereby preventing it from breaking down catecholamines and other monoamines. Catabolism of catecholamines

510-552: A combination of sequence, structure and function, and they can be combined in many different ways. In an early study of 170,000 proteins, about two-thirds were assigned at least one domain, with larger proteins containing more domains (e.g. proteins larger than 600 amino acids having an average of more than 5 domains). Most proteins consist of linear polymers built from series of up to 20 different L -α- amino acids. All proteinogenic amino acids possess common structural features, including an α-carbon to which an amino group,

612-403: A defined conformation . Proteins can interact with many types of molecules, including with other proteins , with lipids , with carbohydrates , and with DNA . It has been estimated that average-sized bacteria contain about 2 million proteins per cell (e.g. E. coli and Staphylococcus aureus ). Smaller bacteria, such as Mycoplasma or spirochetes contain fewer molecules, on

714-834: A detailed review of the vegetable proteins at the Connecticut Agricultural Experiment Station . Then, working with Lafayette Mendel and applying Liebig's law of the minimum , which states that growth is limited by the scarcest resource, to the feeding of laboratory rats, the nutritionally essential amino acids were established. The work was continued and communicated by William Cumming Rose . The difficulty in purifying proteins in large quantities made them very difficult for early protein biochemists to study. Hence, early studies focused on proteins that could be purified in large quantities, including those of blood, egg whites, and various toxins, as well as digestive and metabolic enzymes obtained from slaughterhouses. In

816-462: A free molecule or a substituent of a larger molecule, where it represents a 1,2-dihydroxybenzene group. Catecholamines are derived from the amino acid tyrosine , which is derived from dietary sources as well as synthesis from phenylalanine . Catecholamines are water-soluble and are 50% bound to plasma proteins in circulation. Included among catecholamines are epinephrine (adrenaline), norepinephrine (noradrenaline), and dopamine . Release of

918-411: A hydroxyl group on the ethyl chain. Catecholamines are produced mainly by the chromaffin cells of the adrenal medulla and the postganglionic fibers of the sympathetic nervous system . Dopamine , which acts as a neurotransmitter in the central nervous system , is largely produced in neuronal cell bodies in two areas of the brainstem: the ventral tegmental area and the substantia nigra ,

1020-478: A little ambiguous and can overlap in meaning. Protein is generally used to refer to the complete biological molecule in a stable conformation , whereas peptide is generally reserved for a short amino acid oligomers often lacking a stable 3D structure. But the boundary between the two is not well defined and usually lies near 20–30 residues. Polypeptide can refer to any single linear chain of amino acids, usually regardless of length, but often implies an absence of

1122-436: A nucleus in the dorsal region of the solitary tract . Dopamine is the first catecholamine synthesized from DOPA. In turn, norepinephrine and epinephrine are derived from further metabolic modification of dopamine. The enzyme dopamine hydroxylase requires copper as a cofactor (not shown in the diagram) and DOPA decarboxylase requires PLP (not shown in the diagram). The rate limiting step in catecholamine biosynthesis through

SECTION 10

#1733093247927

1224-410: A particular cell or cell type is known as its proteome . The chief characteristic of proteins that also allows their diverse set of functions is their ability to bind other molecules specifically and tightly. The region of the protein responsible for binding another molecule is known as the binding site and is often a depression or "pocket" on the molecular surface. This binding ability is mediated by

1326-500: A protein carries out its function: for example, enzyme kinetics studies explore the chemical mechanism of an enzyme's catalytic activity and its relative affinity for various possible substrate molecules. By contrast, in vivo experiments can provide information about the physiological role of a protein in the context of a cell or even a whole organism . In silico studies use computational methods to study proteins. Proteins may be purified from other cellular components using

1428-411: A protein is defined by the sequence of a gene, which is encoded in the genetic code . In general, the genetic code specifies 20 standard amino acids; but in certain organisms the genetic code can include selenocysteine and—in certain archaea — pyrrolysine . Shortly after or even during synthesis, the residues in a protein are often chemically modified by post-translational modification , which alters

1530-539: A protein that fold into distinct structural units. Domains usually also have specific functions, such as enzymatic activities (e.g. kinase ) or they serve as binding modules (e.g. the SH3 domain binds to proline-rich sequences in other proteins). Short amino acid sequences within proteins often act as recognition sites for other proteins. For instance, SH3 domains typically bind to short PxxP motifs (i.e. 2 prolines [P], separated by two unspecified amino acids [x], although

1632-486: A role in biological recognition phenomena involving cells and proteins. Receptors and hormones are highly specific binding proteins. Transmembrane proteins can also serve as ligand transport proteins that alter the permeability of the cell membrane to small molecules and ions. The membrane alone has a hydrophobic core through which polar or charged molecules cannot diffuse . Membrane proteins contain internal channels that allow such molecules to enter and exit

1734-406: A series of purification steps may be necessary to obtain protein sufficiently pure for laboratory applications. To simplify this process, genetic engineering is often used to add chemical features to proteins that make them easier to purify without affecting their structure or activity. Here, a "tag" consisting of a specific amino acid sequence, often a series of histidine residues (a " His-tag "),

1836-599: A significant difference between the two groups, suggesting that, at least for people of European descent, variation in the VMAT1 gene may confer susceptibility. A second study examined a population of Japanese individuals, one group healthy and the other schizophrenic. This study resulted in mostly inconclusive findings, but some indications that variation in the VMAT1 gene would confer susceptibility to schizophrenia in Japanese women. While these studies provide some promising insight into

1938-432: A solution known as a crude lysate . The resulting mixture can be purified using ultracentrifugation , which fractionates the various cellular components into fractions containing soluble proteins; membrane lipids and proteins; cellular organelles , and nucleic acids . Precipitation by a method known as salting out can concentrate the proteins from this lysate. Various types of chromatography are then used to isolate

2040-441: A variety of techniques such as ultracentrifugation , precipitation , electrophoresis , and chromatography ; the advent of genetic engineering has made possible a number of methods to facilitate purification. To perform in vitro analysis, a protein must be purified away from other cellular components. This process usually begins with cell lysis , in which a cell's membrane is disrupted and its internal contents released into

2142-490: Is a protein that in humans is encoded by the SLC18A1 gene . VMAT1 is an integral membrane protein , which is embedded in synaptic vesicles and serves to transfer monoamines , such as norepinephrine , epinephrine , dopamine , and serotonin , between the cytosol and synaptic vesicles. SLC18A1 is an isoform of the vesicular monoamine transporter . The idea that there must be specific transport proteins associated with

SECTION 20

#1733093247927

2244-425: Is attached to one terminus of the protein. As a result, when the lysate is passed over a chromatography column containing nickel , the histidine residues ligate the nickel and attach to the column while the untagged components of the lysate pass unimpeded. A number of different tags have been developed to help researchers purify specific proteins from complex mixtures. Catecholamines Catechol can be either

2346-562: Is dictated by the nucleotide sequence of their genes , and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide . A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides . The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residues in

2448-411: Is facilitated via proton gradient generated by the protein proton ATPase . The inward transport of the monoamine is coupled with the efflux of two protons per monoamine. The first proton is thought to cause a change in VMAT1's conformation , which pushes a high affinity amine binding site , to which the monoamine attaches. The second proton then causes a second change in the conformation which pulls

2550-628: Is found in hard or filamentous structures such as hair , nails , feathers , hooves , and some animal shells . Some globular proteins can also play structural functions, for example, actin and tubulin are globular and soluble as monomers, but polymerize to form long, stiff fibers that make up the cytoskeleton , which allows the cell to maintain its shape and size. Other proteins that serve structural functions are motor proteins such as myosin , kinesin , and dynein , which are capable of generating mechanical forces. These proteins are crucial for cellular motility of single celled organisms and

2652-469: Is higher in prokaryotes than eukaryotes and can reach up to 20 amino acids per second. The process of synthesizing a protein from an mRNA template is known as translation . The mRNA is loaded onto the ribosome and is read three nucleotides at a time by matching each codon to its base pairing anticodon located on a transfer RNA molecule, which carries the amino acid corresponding to the codon it recognizes. The enzyme aminoacyl tRNA synthetase "charges"

2754-461: Is inefficient for polypeptides longer than about 300 amino acids, and the synthesized proteins may not readily assume their native tertiary structure . Most chemical synthesis methods proceed from C-terminus to N-terminus, opposite the biological reaction. Most proteins fold into unique 3D structures. The shape into which a protein naturally folds is known as its native conformation . Although many proteins can fold unassisted, simply through

2856-417: Is located on chromosome 8p 21. It is thought that disruption in transport of monoamine neurotransmitters due to variation in the VMAT1 gene may be relevant to the etiology of these mental disorders. One study looked at a population of European descent, examining the genotypes of a bipolar group and a control group. The study confirmed expression of VMAT1 in the brain at a protein and mRNA level, and found

2958-472: Is mediated by two main enzymes: catechol- O -methyltransferase (COMT) which is present in the synaptic cleft and cytosol of the cell and monoamine oxidase (MAO) which is located in the mitochondrial membrane. Both enzymes require cofactors: COMT uses Mg as a cofactor while MAO uses FAD . The first step of the catabolic process is mediated by either MAO or COMT which depends on the tissue and location of catecholamines (for example degradation of catecholamines in

3060-404: Is often enormous—as much as 10 -fold increase in rate over the uncatalysed reaction in the case of orotate decarboxylase (78 million years without the enzyme, 18 milliseconds with the enzyme). The molecules bound and acted upon by enzymes are called substrates . Although enzymes can consist of hundreds of amino acids, it is usually only a small fraction of the residues that come in contact with

3162-485: Is one of the enzymes responsible for degradation of these neurotransmitters, its deficiency increases the bioavailability of these neurotransmitters considerably. It occurs in the absence of pheochromocytoma , neuroendocrine tumors , and carcinoid syndrome , but it looks similar to carcinoid syndrome with symptoms such as facial flushing and aggression. Acute porphyria can cause elevated catecholamines. Catecholamines cause general physiological changes that prepare

Vesicular monoamine transporter 1 - Misplaced Pages Continue

3264-408: Is present in the endocrine system, this type of cancer is likely. VMAT1 also has effects on the modulation of gastrin processing in G cells . These intestinal endocrine cells process amine precursors, and VMAT1 pulls them into vesicles for storage. The activity of VMAT1 in these cells has a seemingly inhibitory effect on the processing of gastrin. Essentially, this means that certain compounds in

3366-425: Is secreted into urine after being broken down, and its secretion level can be measured for the diagnosis of illnesses associated with catecholamine levels in the body. Urine testing for catecholamine is used to detect pheochromocytoma . "They have been found in 44 plant families, but no essential metabolic function has been established for them. They are precursors of benzo[ c ]phenanthridine alkaloids , which are

3468-532: Is the code for methionine . Because DNA contains four nucleotides, the total number of possible codons is 64; hence, there is some redundancy in the genetic code, with some amino acids specified by more than one codon. Genes encoded in DNA are first transcribed into pre- messenger RNA (mRNA) by proteins such as RNA polymerase . Most organisms then process the pre-mRNA (also known as a primary transcript ) using various forms of post-transcriptional modification to form

3570-542: Is thought that RES exhibits competitive inhibition , binding to the same site as the monoamine substrate, as studies have shown that it can be displaced via introduction of norepinephrine. TBZ, DTBZOH, and KET are thought to exhibit non-competitive inhibition , instead binding to allosteric sites and decreasing the activity of the VMAT rather than simply blocking its substrate binding site. It has been found that these inhibitors are less effective at inhibiting VMAT1 than VMAT2, and

3672-486: The amino acid leucine for which he found a (nearly correct) molecular weight of 131 Da . Early nutritional scientists such as the German Carl von Voit believed that protein was the most important nutrient for maintaining the structure of the body, because it was generally believed that "flesh makes flesh." Around 1862, Karl Heinrich Ritthausen isolated the amino acid glutamic acid . Thomas Burr Osborne compiled

3774-470: The brainstem , in particular, those nuclei affecting the sympathetic nervous system . In emergency medicine , this occurrence is widely known as a "catecholamine dump". Extremely high levels of catecholamine can also be caused by neuroendocrine tumors in the adrenal medulla , a treatable condition known as pheochromocytoma . High levels of catecholamines can also be caused by monoamine oxidase A (MAO-A) deficiency, known as Brunner syndrome . As MAO-A

3876-519: The catecholamines (norepinephrine and epinephrine ) into systemic circulation . Enterochromaffin cells are responsible for storing serotonin in the gastrointestinal tract. SIFs are interneurons associated with the sympathetic nervous system which are managed by dopamine. VMAT1 is found in both large dense-core vesicles (LDCVs) as well as in small synaptic vesicles (SSVs). This was discovered via studying rat adrenal medulla cells (PC12 cells). LDCVs are 70-200 nm in size and exist throughout

3978-674: The central nervous system and as hormones in the blood circulation. The catecholamine norepinephrine is a neuromodulator of the peripheral sympathetic nervous system but is also present in the blood (mostly through "spillover" from the synapses of the sympathetic system). High catecholamine levels in blood are associated with stress , which can be induced from psychological reactions or environmental stressors such as elevated sound levels , intense light , or low blood sugar levels . Extremely high levels of catecholamines (also known as catecholamine toxicity) can occur in central nervous system trauma due to stimulation or damage of nuclei in

4080-399: The crystallographic structure has not yet been fully resolved, VMAT1 is known to have either twelve transmembrane domains (TMDs), based on Kyte-Doolittle hydrophobicity scale analysis or ten TMDs, based on MAXHOM alignment. MAXHOM alignment was determined using the "profile-fed neural network systems from Heidelberg" (PHD) program. The main difference between these two models arises from

4182-432: The hormones epinephrine and norepinephrine from the adrenal medulla of the adrenal glands is part of the fight-or-flight response . Tyrosine is created from phenylalanine by hydroxylation by the enzyme phenylalanine hydroxylase . Tyrosine is also ingested directly from dietary protein. Catecholamine-secreting cells use several reactions to convert tyrosine serially to L -DOPA and then to dopamine. Depending on

Vesicular monoamine transporter 1 - Misplaced Pages Continue

4284-644: The muscle sarcomere , with a molecular mass of almost 3,000 kDa and a total length of almost 27,000 amino acids. Short proteins can also be synthesized chemically by a family of methods known as peptide synthesis , which rely on organic synthesis techniques such as chemical ligation to produce peptides in high yield. Chemical synthesis allows for the introduction of non-natural amino acids into polypeptide chains, such as attachment of fluorescent probes to amino acid side chains. These methods are useful in laboratory biochemistry and cell biology , though generally not for commercial applications. Chemical synthesis

4386-408: The neuron ( soma , dendrites , etc.). SSVs are much smaller (usually about 40 nm) and typically exist as clusters in the presynaptic cleft. The active transport of monoamines from the cytosol into storage vesicles operates against a large (>10) concentration gradient. Secondary active transport is the type of active transport used, meaning that VMAT1 is an antiporter . This transport

4488-645: The sperm of many multicellular organisms which reproduce sexually . They also generate the forces exerted by contracting muscles and play essential roles in intracellular transport. A key question in molecular biology is how proteins evolve, i.e. how can mutations (or rather changes in amino acid sequence) lead to new structures and functions? Most amino acids in a protein can be changed without disrupting activity or function, as can be seen from numerous homologous proteins across species (as collected in specialized databases for protein families , e.g. PFAM ). In order to prevent dramatic consequences of mutations,

4590-493: The 1700s by Antoine Fourcroy and others, who often collectively called them " albumins ", or "albuminous materials" ( Eiweisskörper , in German). Gluten , for example, was first separated from wheat in published research around 1747, and later determined to exist in many plants. In 1789, Antoine Fourcroy recognized three distinct varieties of animal proteins: albumin , fibrin , and gelatin . Vegetable (plant) proteins studied in

4692-562: The 1950s, the Armour Hot Dog Company purified 1 kg of pure bovine pancreatic ribonuclease A and made it freely available to scientists; this gesture helped ribonuclease A become a major target for biochemical study for the following decades. The understanding of proteins as polypeptides , or chains of amino acids, came through the work of Franz Hofmeister and Hermann Emil Fischer in 1902. The central role of proteins as enzymes in living organisms that catalyzed reactions

4794-498: The 20,000 or so proteins encoded by the human genome, only 6,000 are detected in lymphoblastoid cells. Proteins are assembled from amino acids using information encoded in genes. Each protein has its own unique amino acid sequence that is specified by the nucleotide sequence of the gene encoding this protein. The genetic code is a set of three-nucleotide sets called codons and each three-nucleotide combination designates an amino acid, for example AUG ( adenine – uracil – guanine )

4896-516: The EC number system provides a functional classification scheme. Similarly, the gene ontology classifies both genes and proteins by their biological and biochemical function, but also by their intracellular location. Sequence similarity is used to classify proteins both in terms of evolutionary and functional similarity. This may use either whole proteins or protein domains , especially in multi-domain proteins . Protein domains allow protein classification by

4998-709: The ability of many enzymes to bind and process multiple substrates . When mutations occur, the specificity of an enzyme can increase (or decrease) and thus its enzymatic activity. Thus, bacteria (or other organisms) can adapt to different food sources, including unnatural substrates such as plastic. Methods commonly used to study protein structure and function include immunohistochemistry , site-directed mutagenesis , X-ray crystallography , nuclear magnetic resonance and mass spectrometry . The activities and structures of proteins may be examined in vitro , in vivo , and in silico . In vitro studies of purified proteins in controlled environments are useful for learning how

5100-554: The active principal ingredients of many medicinal plant extracts. CAs have been implicated to have a possible protective role against insect predators, injuries, and nitrogen detoxification. They have been shown to promote plant tissue growth, somatic embryogenesis from in vitro cultures, and flowering. CAs inhibit indole-3-acetic acid oxidation and enhance ethylene biosynthesis. They have also been shown to enhance synergistically various effects of gibberellins ." Catecholamines are secreted by cells in tissues of different systems of

5202-405: The addition of a single methyl group to a binding partner can sometimes suffice to nearly eliminate binding; for example, the aminoacyl tRNA synthetase specific to the amino acid valine discriminates against the very similar side chain of the amino acid isoleucine . Proteins can bind to other proteins as well as to small-molecule substrates. When proteins bind specifically to other copies of

SECTION 50

#1733093247927

5304-595: The alpha carbons are roughly coplanar . The other two dihedral angles in the peptide bond determine the local shape assumed by the protein backbone. The end with a free amino group is known as the N-terminus or amino terminus, whereas the end of the protein with a free carboxyl group is known as the C-terminus or carboxy terminus (the sequence of the protein is written from N-terminus to C-terminus, from left to right). The words protein , polypeptide, and peptide are

5406-531: The amino acid side chains in a protein that ultimately determines its three-dimensional structure and its chemical reactivity. The amino acids in a polypeptide chain are linked by peptide bonds . Once linked in the protein chain, an individual amino acid is called a residue, and the linked series of carbon, nitrogen, and oxygen atoms are known as the main chain or protein backbone. The peptide bond has two resonance forms that contribute some double-bond character and inhibit rotation around its axis, so that

5508-574: The binding of a substrate molecule to an enzyme's active site , or the physical region of the protein that participates in chemical catalysis. In solution, proteins also undergo variation in structure through thermal vibration and the collision with other molecules. Proteins can be informally divided into three main classes, which correlate with typical tertiary structures: globular proteins , fibrous proteins , and membrane proteins . Almost all globular proteins are soluble and many are enzymes. Fibrous proteins are often structural, such as collagen ,

5610-437: The body for physical activity (the fight-or-flight response ). Some typical effects are increases in heart rate , blood pressure , blood glucose levels, and a general reaction of the sympathetic nervous system . Some drugs, like tolcapone (a central COMT -inhibitor), raise the levels of all the catecholamines. Increased catecholamines may also cause an increased respiratory rate ( tachypnoea ) in patients. Catecholamine

5712-570: The body of a multicellular organism. These proteins must have a high binding affinity when their ligand is present in high concentrations, but must also release the ligand when it is present at low concentrations in the target tissues. The canonical example of a ligand-binding protein is haemoglobin , which transports oxygen from the lungs to other organs and tissues in all vertebrates and has close homologs in every biological kingdom . Lectins are sugar-binding proteins which are highly specific for their sugar moieties. Lectins typically play

5814-681: The cause of some of the most prevalent mental disorders, it is clear that additional research will be necessary in order to gain a full understanding. Protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues . Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions , DNA replication , responding to stimuli , providing structure to cells and organisms , and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which

5916-558: The cell is as enzymes , which catalyse chemical reactions. Enzymes are usually highly specific and accelerate only one or a few chemical reactions. Enzymes carry out most of the reactions involved in metabolism , as well as manipulating DNA in processes such as DNA replication , DNA repair , and transcription . Some enzymes act on other proteins to add or remove chemical groups in a process known as posttranslational modification. About 4,000 reactions are known to be catalysed by enzymes. The rate acceleration conferred by enzymatic catalysis

6018-436: The cell surface and an effector domain within the cell, which may have enzymatic activity or may undergo a conformational change detected by other proteins within the cell. Antibodies are protein components of an adaptive immune system whose main function is to bind antigens , or foreign substances in the body, and target them for destruction. Antibodies can be secreted into the extracellular environment or anchored in

6120-417: The cell type, dopamine may be further converted to norepinephrine or even further converted to epinephrine. Various stimulant drugs (such as a number of substituted amphetamines ) are catecholamine analogues. Catecholamines have the distinct structure of a benzene ring with two hydroxyl groups, an intermediate ethyl chain, and a terminal amine group. Phenylethanolamines such as norepinephrine have

6222-752: The cell's machinery through the process of protein turnover . A protein's lifespan is measured in terms of its half-life and covers a wide range. They can exist for minutes or years with an average lifespan of 1–2 days in mammalian cells. Abnormal or misfolded proteins are degraded more rapidly either due to being targeted for destruction or due to being unstable. Like other biological macromolecules such as polysaccharides and nucleic acids , proteins are essential parts of organisms and participate in virtually every process within cells . Many proteins are enzymes that catalyse biochemical reactions and are vital to metabolism . Proteins also have structural or mechanical functions, such as actin and myosin in muscle and

SECTION 60

#1733093247927

6324-450: The cell. Many ion channel proteins are specialized to select for only a particular ion; for example, potassium and sodium channels often discriminate for only one of the two ions. Structural proteins confer stiffness and rigidity to otherwise-fluid biological components. Most structural proteins are fibrous proteins ; for example, collagen and elastin are critical components of connective tissue such as cartilage , and keratin

6426-621: The chemical properties of their amino acids, others require the aid of molecular chaperones to fold into their native states. Biochemists often refer to four distinct aspects of a protein's structure: Proteins are not entirely rigid molecules. In addition to these levels of structure, proteins may shift between several related structures while they perform their functions. In the context of these functional rearrangements, these tertiary or quaternary structures are usually referred to as " conformations ", and transitions between them are called conformational changes. Such changes are often induced by

6528-441: The chief actors within the cell, said to be carrying out the duties specified by the information encoded in genes. With the exception of certain types of RNA , most other biological molecules are relatively inert elements upon which proteins act. Proteins make up half the dry weight of an Escherichia coli cell, whereas other macromolecules such as DNA and RNA make up only 3% and 20%, respectively. The set of proteins expressed in

6630-490: The construction of enormously complex signaling networks. As interactions between proteins are reversible, and depend heavily on the availability of different groups of partner proteins to form aggregates that are capable to carry out discrete sets of function, study of the interactions between specific proteins is a key to understand important aspects of cellular function, and ultimately the properties that distinguish particular cell types. The best-known role of proteins in

6732-408: The derivative unit kilodalton (kDa). The average size of a protein increases from Archaea to Bacteria to Eukaryote (283, 311, 438 residues and 31, 34, 49 kDa respectively) due to a bigger number of protein domains constituting proteins in higher organisms. For instance, yeast proteins are on average 466 amino acids long and 53 kDa in mass. The largest known proteins are the titins , a component of

6834-500: The enzyme phenylalanine hydroxylase , found in large amounts in the liver. Insufficient amounts of phenylalanine hydroxylase result in phenylketonuria , a metabolic disorder that leads to intellectual deficits unless treated by dietary manipulation. Catecholamine synthesis is usually considered to begin with tyrosine. The enzyme tyrosine hydroxylase (TH) converts the amino acid L -tyrosine into 3,4-dihydroxyphenylalanine ( L -DOPA). The hydroxylation of L -tyrosine by TH results in

6936-447: The erroneous conclusion that they might be composed of a single type of (very large) molecule. The term "protein" to describe these molecules was proposed by Mulder's associate Berzelius; protein is derived from the Greek word πρώτειος ( proteios ), meaning "primary", "in the lead", or "standing in front", + -in . Mulder went on to identify the products of protein degradation such as

7038-459: The formation of the DA precursor L -DOPA, which is metabolized by aromatic L -amino acid decarboxylase (AADC; see Cooper et al., 2002 ) to the transmitter dopamine. This step occurs so rapidly that it is difficult to measure L -DOPA in the brain without first inhibiting AADC. In neurons that use DA as the transmitter, the decarboxylation of L -DOPA to dopamine is the final step in formation of

7140-414: The gut can be taken into these G cells and either amplify or inhibit the function of VMAT1, which will impact gastrin processing (conversion from G34 to G17). Additionally, VMAT1 is known to play a role in the uptake and secretion of serotonin in the gut. Enterochromaffin cells in the intestines will secrete serotonin in response to the activation of certain mechanosensors . The regulation of serotonin in

7242-400: The gut is critically important, as it modulates appetite and controls intestinal contraction. Presence of VMAT1 in cells has been shown to protect them from the damaging effects of cooling and rewarming associated with hypothermia . Experiments were carried out on aortic and kidney cells and tissues . Evidence was found that an accumulation of serotonin using VMAT1 and TPH1 allowed for

7344-469: The human body, mostly by the nervous and the endocrine systems. The adrenal glands secrete certain catecholamines into the blood when the person is physically or mentally stressed and this is usually a healthy physiological response. However, acute or chronic excess of circulating catecholamines can potentially increase blood pressure and heart rate to very high levels and eventually provoke dangerous effects. Tests for fractionated plasma free metanephrines or

7446-485: The inhibitory effects of the tetrabenazines on VMAT1 is negligible. The expression of VMAT1 in healthy endocrine cells was compared to VMAT1 expression in infants with hyperinsulinemic hypoglycemia and adults with pancreatic endocrine tumors. Through immunohistochemistry (IHC) and in situ hybridization (ISH), they found VMAT1 and VMAT2 were located in mutually exclusive cell types, and that in insulinomas VMAT2 activity disappeared, suggesting that if only VMAT1 activity

7548-525: The late 1700s and early 1800s included gluten , plant albumin , gliadin , and legumin . Proteins were first described by the Dutch chemist Gerardus Johannes Mulder and named by the Swedish chemist Jöns Jacob Berzelius in 1838. Mulder carried out elemental analysis of common proteins and found that nearly all proteins had the same empirical formula , C 400 H 620 N 100 O 120 P 1 S 1 . He came to

7650-420: The latter of which contains neuromelanin -pigmented neurons. The similarly neuromelanin-pigmented cell bodies of the locus coeruleus produce norepinephrine . Epinephrine is produced in small groups of neurons in the human brain which express its synthesizing enzyme, phenylethanolamine N -methyltransferase ; these neurons project from a nucleus that is adjacent (ventrolateral) to the area postrema and from

7752-478: The major component of connective tissue, or keratin , the protein component of hair and nails. Membrane proteins often serve as receptors or provide channels for polar or charged molecules to pass through the cell membrane . A special case of intramolecular hydrogen bonds within proteins, poorly shielded from water attack and hence promoting their own dehydration , are called dehydrons . Many proteins are composed of several protein domains , i.e. segments of

7854-443: The mature mRNA, which is then used as a template for protein synthesis by the ribosome . In prokaryotes the mRNA may either be used as soon as it is produced, or be bound by a ribosome after having moved away from the nucleoid . In contrast, eukaryotes make mRNA in the cell nucleus and then translocate it across the nuclear membrane into the cytoplasm , where protein synthesis then takes place. The rate of protein synthesis

7956-405: The membranes of specialized B cells known as plasma cells . Whereas enzymes are limited in their binding affinity for their substrates by the necessity of conducting their reaction, antibodies have no such constraints. An antibody's binding affinity to its target is extraordinarily high. Many ligand transport proteins bind particular small biomolecules and transport them to other locations in

8058-485: The monoamine into the vesicle and greatly reduces the affinity of the binding site for amines. A series of tests suggest that His 419, located between TMDs X and XI, plays the key role in the first of these conformational changes, and that Asp 431, located on TMD XI, does likewise during the second change. Several reuptake inhibitors of VMATs are known to exist, including reserpine (RES), tetrabenazine (TBZ), dihydrotetrabenazine (DTBZOH), and ketanserin (KET). It

8160-496: The nobel prize in 1972, solidified the thermodynamic hypothesis of protein folding, according to which the folded form of a protein represents its free energy minimum. With the development of X-ray crystallography , it became possible to determine protein structures as well as their sequences. The first protein structures to be solved were hemoglobin by Max Perutz and myoglobin by John Kendrew , in 1958. The use of computers and increasing computing power also supported

8262-500: The order of 50,000 to 1 million. By contrast, eukaryotic cells are larger and thus contain much more protein. For instance, yeast cells have been estimated to contain about 50 million proteins and human cells on the order of 1 to 3 billion. The concentration of individual protein copies ranges from a few molecules per cell up to 20 million. Not all genes coding proteins are expressed in most cells and their number depends on, for example, cell type and external stimuli. For instance, of

8364-440: The physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Some proteins have non-peptide groups attached, which can be called prosthetic groups or cofactors . Proteins can also work together to achieve a particular function, and they often associate to form stable protein complexes . Once formed, proteins only exist for a certain period and are then degraded and recycled by

8466-488: The placement of TMDs II and IV in the vesicle lumen or the cytoplasm . VMATs are found in a variety of cell types throughout the body, however, VMAT1 is found exclusively in neuroendocrine cells , in contrast to VMAT2, which is also found in the PNS and CNS . Specifically, VMAT1 is found in chromaffin cells , enterochromaffin cells , and small intensely fluorescent cells (SIFs). Chromaffin cells are responsible for releasing

8568-438: The predominant metabolic pathway is the hydroxylation of L -tyrosine to L -DOPA. Catecholamine synthesis is inhibited by alpha-methyl- p -tyrosine ( AMPT ), which inhibits tyrosine hydroxylase . The amino acids phenylalanine and tyrosine are precursors for catecholamines. Both amino acids are found in high concentrations in blood plasma and the brain. In mammals, tyrosine can be formed from dietary phenylalanine by

8670-424: The process of cell signaling and signal transduction . Some proteins, such as insulin , are extracellular proteins that transmit a signal from the cell in which they were synthesized to other cells in distant tissues . Others are membrane proteins that act as receptors whose main function is to bind a signaling molecule and induce a biochemical response in the cell. Many receptors have a binding site exposed on

8772-534: The protein or proteins of interest based on properties such as molecular weight, net charge and binding affinity. The level of purification can be monitored using various types of gel electrophoresis if the desired protein's molecular weight and isoelectric point are known, by spectroscopy if the protein has distinguishable spectroscopic features, or by enzyme assays if the protein has enzymatic activity. Additionally, proteins can be isolated according to their charge using electrofocusing . For natural proteins,

8874-427: The proteins in the cytoskeleton , which form a system of scaffolding that maintains cell shape. Other proteins are important in cell signaling, immune responses , cell adhesion , and the cell cycle . In animals, proteins are needed in the diet to provide the essential amino acids that cannot be synthesized . Digestion breaks the proteins down for metabolic use. Proteins have been studied and recognized since

8976-431: The rat homologs as probes, and heterologous-cell amine uptake assays were performed to verify transport properties. Across mammalian species, VMATs have been found to be structurally well conserved; VMAT1s have an overall sequence identity exceeding 80%. However, there exists only a 60% sequence identity between the human VMAT1 and VMAT2. VMAT1 is an acidic glycoprotein with an apparent weight of 40 kDa . Although

9078-582: The same molecule, they can oligomerize to form fibrils; this process occurs often in structural proteins that consist of globular monomers that self-associate to form rigid fibers. Protein–protein interactions also regulate enzymatic activity, control progression through the cell cycle , and allow the assembly of large protein complexes that carry out many closely related reactions with a common biological function. Proteins can also bind to, or even be integrated into, cell membranes. The ability of binding partners to induce conformational changes in proteins allows

9180-573: The sample, allowing scientists to obtain more information and analyze larger structures. Computational protein structure prediction of small protein structural domains has also helped researchers to approach atomic-level resolution of protein structures. As of April 2024 , the Protein Data Bank contains 181,018 X-ray, 19,809 EM and 12,697 NMR protein structures. Proteins are primarily classified by sequence and structure, although other classifications are commonly used. Especially for enzymes

9282-430: The sequencing of complex proteins. In 1999, Roger Kornberg succeeded in sequencing the highly complex structure of RNA polymerase using high intensity X-rays from synchrotrons . Since then, cryo-electron microscopy (cryo-EM) of large macromolecular assemblies has been developed. Cryo-EM uses protein samples that are frozen rather than crystals, and beams of electrons rather than X-rays. It causes less damage to

9384-438: The subsequent release of serotonin when exposed to cold temperatures. This allows cystathionine beta synthase (CBS) mediated generation of H 2 S . The protection against the damage caused by hypothermia is due to a reduction in the generation of reactive oxygen species (ROS), which can induce apoptosis , due to the presence of H 2 S. VMAT1 (SLC18A1) maps to a shared bipolar disorder (BPD)/ schizophrenia locus , which

9486-405: The substrate, and an even smaller fraction—three to four residues on average—that are directly involved in catalysis. The region of the enzyme that binds the substrate and contains the catalytic residues is known as the active site . Dirigent proteins are members of a class of proteins that dictate the stereochemistry of a compound synthesized by other enzymes. Many proteins are involved in

9588-706: The surrounding amino acids may determine the exact binding specificity). Many such motifs has been collected in the Eukaryotic Linear Motif (ELM) database. Topology of a protein describes the entanglement of the backbone and the arrangement of contacts within the folded chain. Two theoretical frameworks of knot theory and Circuit topology have been applied to characterise protein topology. Being able to describe protein topology opens up new pathways for protein engineering and pharmaceutical development, and adds to our understanding of protein misfolding diseases such as neuromuscular disorders and cancer. Proteins are

9690-477: The synaptic cleft is mediated by COMT because MAO is a mitochondrial enzyme). The next catabolic steps in the pathway involve alcohol dehydrogenase , aldehyde dehydrogenase and aldehyde reductase . The end product of epinephrine and norepinephrine is vanillylmandelic acid (VMA) which is excreted in the urine . Dopamine catabolism leads to the production of homovanillic acid (HVA) . Two catecholamines, norepinephrine and dopamine , act as neuromodulators in

9792-400: The tRNA molecules with the correct amino acids. The growing polypeptide is often termed the nascent chain . Proteins are always biosynthesized from N-terminus to C-terminus . The size of a synthesized protein can be measured by the number of amino acids it contains and by its total molecular mass , which is normally reported in units of daltons (synonymous with atomic mass units ), or

9894-472: The tertiary structure of the protein, which defines the binding site pocket, and by the chemical properties of the surrounding amino acids' side chains. Protein binding can be extraordinarily tight and specific; for example, the ribonuclease inhibitor protein binds to human angiogenin with a sub-femtomolar dissociation constant (<10 M) but does not bind at all to its amphibian homolog onconase (> 1 M). Extremely minor chemical changes such as

9996-414: The transmitter; however, in those neurons using norepinephrine (noradrenaline) or epinephrine (adrenaline) as transmitters, the enzyme dopamine β-hydroxylase (DBH), which converts dopamine to yield norepinephrine, is also present. In still other neurons in which epinephrine is the transmitter, a third enzyme phenylethanolamine N -methyltransferase (PNMT) converts norepinephrine into epinephrine. Thus,

10098-463: The uptake of monoamines and acetylcholine into vesicles developed due to the discovery of specific inhibitors which interfered with monoamine neurotransmission and also depleted monoamines in neuroendocrine tissues. VMAT1 and VMAT2 were first identified in rats upon cloning cDNAs for proteins which gave non-amine accumulating recipient cells the ability to sequester monoamines. Subsequently, human VMATs were cloned using human cDNA libraries with

10200-405: The urine metanephrines are used to confirm or exclude certain diseases when the doctor identifies signs of hypertension and tachycardia that don't adequately respond to treatment. Each of the tests measure the amount of adrenaline and noradrenaline metabolites, respectively called metanephrine and normetanephrine . Blood tests are also done to analyze the amount of catecholamines present in

10302-466: Was insulin , by Frederick Sanger , in 1949. Sanger correctly determined the amino acid sequence of insulin, thus conclusively demonstrating that proteins consisted of linear polymers of amino acids rather than branched chains, colloids , or cyclols . He won the Nobel Prize for this achievement in 1958. Christian Anfinsen 's studies of the oxidative folding process of ribonuclease A, for which he won

10404-581: Was not fully appreciated until 1926, when James B. Sumner showed that the enzyme urease was in fact a protein. Linus Pauling is credited with the successful prediction of regular protein secondary structures based on hydrogen bonding , an idea first put forth by William Astbury in 1933. Later work by Walter Kauzmann on denaturation , based partly on previous studies by Kaj Linderstrøm-Lang , contributed an understanding of protein folding and structure mediated by hydrophobic interactions . The first protein to have its amino acid chain sequenced

#926073