The cluster of differentiation (also known as cluster of designation or classification determinant and often abbreviated as CD ) is a protocol used for the identification and investigation of cell surface molecules providing targets for immunophenotyping of cells. In terms of physiology, CD molecules can act in numerous ways, often acting as receptors or ligands important to the cell. A signal cascade is usually initiated, altering the behavior of the cell (see cell signaling ). Some CD proteins do not play a role in cell signaling, but have other functions, such as cell adhesion . CD for humans is numbered up to 371 (as of 21 April 2016 ).
75-435: 1G1S 6404 20345 ENSG00000110876 ENSMUSG00000048163 Q14242 Q62170 NM_001206609 NM_003006 NM_009151 NP_001193538 NP_002997 n/a Selectin P ligand , also known as SELPLG or CD162 ( cluster of differentiation 162), is a human gene . SELPLG codes for PSGL-1, the high affinity counter-receptor for P-selectin on myeloid cells and stimulated T lymphocytes. As such, it plays
150-410: A chemokine receptor on the surface of a T helper cell to gain entry. The number of CD4 and CD8 T cells in blood is often used to monitor the progression of HIV infection . While CD molecules are very useful in defining leukocytes, they are not merely markers on the cell surface . Though only a fraction of known CD molecules have been thoroughly characterised, most of them have important functions. In
225-435: A CD4 , both CD8 and CD4 cells are now single positive cells. This process does not filter for thymocytes that may cause autoimmunity . The potentially autoimmune cells are removed by the following process of negative selection, which occurs in the thymic medulla. Negative selection removes thymocytes that are capable of strongly binding with "self" MHC molecules. Thymocytes that survive positive selection migrate towards
300-515: A DN4 cell (CD25 CD44 ). These cells then undergo a round of proliferation, and begin to re-arrange the TCRα locus during the double-positive stage. The process of positive selection takes 3 to 4 days and occurs in the thymic cortex. Double-positive thymocytes (CD4 /CD8 ) migrate deep into the thymic cortex , where they are presented with self- antigens . These self-antigens are expressed by thymic cortical epithelial cells on MHC molecules, which reside on
375-464: A T cell has been appropriately activated (i.e. has received signal one and signal two) it alters its cell surface expression of a variety of proteins. Markers of T cell activation include CD69, CD71 and CD25 (also a marker for Treg cells), and HLA-DR (a marker of human T cell activation). CTLA-4 expression is also up-regulated on activated T cells, which in turn outcompetes CD28 for binding to the B7 proteins. This
450-447: A co-stimulatory molecule (like CD28 , or ICOS ) on the T cell by the major histocompatibility complex (MHCII) peptide and co-stimulatory molecules on the APC . Both are required for production of an effective immune response; in the absence of co-stimulation , T cell receptor signalling alone results in anergy . The signalling pathways downstream from co-stimulatory molecules usually engages
525-526: A critical role in the tethering of these cells to activated platelets or endothelia expressing P-selectin. Naive and stimulated lymphocytes appear to use PSGL-1 for trafficking into and out of lymph nodes. The gene and structure of human PSGL-1 was first reported in 1993. The organization of the SELPLG gene closely resembles that of CD43 and the human platelet glycoprotein GpIb-alpha both of which have an intron in
600-522: A dramatic reduction in the growth of melanoma tumors as compared with wild-type mice treated with anti-PD-1 antibodies. Treatments with either soluble recombinant forms of PSGL-1 (PSGL-Ig) or monoclonal antibodies that bind and block PSGL-1 also reduce tumor growth in mouse models, especially when combined with anti-PD-1 monoclonal antibody treatments. This article incorporates text from the United States National Library of Medicine , which
675-440: A functional alpha chain. Once a working TCR has been produced, the cells then must test if their TCR will identify threats correctly, and to do this it is required to recognize the body’s major histocompatibility complex (MHC) in a process known as positive selection. The thymocyte must also ensure that it does not react adversely to "self" antigens , called negative selection. If both positive and negative selection are successful,
750-445: A role in T cell exhaustion are regulatory cells. Treg cells can be a source of IL-10 and TGF-β and therefore they can play a role in T cell exhaustion. Furthermore, T cell exhaustion is reverted after depletion of Treg cells and blockade of PD1. T cell exhaustion can also occur during sepsis as a result of cytokine storm. Later after the initial septic encounter anti-inflammatory cytokines and pro-apoptotic proteins take over to protect
825-547: A round of division and downregulate c-kit and are termed double-negative one (DN1) cells. To become T cells, the thymocytes must undergo multiple DN stages as well as positive selection and negative selection. Double negative thymocytes can be identified by the surface expression of CD2 , CD5 and CD7 . Still during the double negative stages, CD34 expression stops and CD1 is expressed. Expression of both CD4 and CD8 makes them double positive , and matures into either CD4 or CD8 cells. A critical step in T cell maturation
SECTION 10
#1733092671053900-569: A series of subsets based on their function. CD4 and CD8 T cells are selected in the thymus, but undergo further differentiation in the periphery to specialized cells which have different functions. T cell subsets were initially defined by function, but also have associated gene or protein expression patterns. T helper cells (T H cells) assist other lymphocytes, including the maturation of B cells into plasma cells and memory B cells , and activation of cytotoxic T cells and macrophages . These cells are also known as CD4 T cells as they express
975-755: Is CD28, so co-stimulation for these cells comes from the CD80 and CD86 proteins, which together constitute the B7 protein, (B7.1 and B7.2, respectively) on the APC. Other receptors are expressed upon activation of the T cell, such as OX40 and ICOS, but these largely depend upon CD28 for their expression. The second signal licenses the T cell to respond to an antigen. Without it, the T cell becomes anergic , and it becomes more difficult for it to activate in future. This mechanism prevents inappropriate responses to self, as self-peptides will not usually be presented with suitable co-stimulation. Once
1050-523: Is PKC-θ, critical for activating the transcription factors NF-κB and AP-1. IP3 is released from the membrane by PLC-γ and diffuses rapidly to activate calcium channel receptors on the ER , which induces the release of calcium into the cytosol. Low calcium in the endoplasmic reticulum causes STIM1 clustering on the ER membrane and leads to activation of cell membrane CRAC channels that allows additional calcium to flow into
1125-412: Is a checkpoint mechanism to prevent over activation of the T cell. Activated T cells also change their cell surface glycosylation profile. The T cell receptor exists as a complex of several proteins. The actual T cell receptor is composed of two separate peptide chains, which are produced from the independent T cell receptor alpha and beta ( TCRα and TCRβ ) genes. The other proteins in the complex are
1200-449: Is determined during positive selection. Double-positive cells (CD4 /CD8 ) that interact well with MHC class II molecules will eventually become CD4 "helper" cells, whereas thymocytes that interact well with MHC class I molecules mature into CD8 "killer" cells. A thymocyte becomes a CD4 cell by down-regulating expression of its CD8 cell surface receptors. If the cell does not lose its signal, it will continue downregulating CD8 and become
1275-587: Is followed by the loss of high proliferative capacity and cytotoxic potential, and eventually leads to their deletion. Exhausted T cells typically indicate higher levels of CD43 , CD69 and inhibitory receptors combined with lower expression of CD62L and CD127 . Exhaustion can develop during chronic infections, sepsis and cancer. Exhausted T cells preserve their functional exhaustion even after repeated antigen exposure. T cell exhaustion can be triggered by several factors like persistent antigen exposure and lack of CD4 T cell help. Antigen exposure also has effect on
1350-462: Is in the public domain . Cluster of differentiation The CD nomenclature was proposed and established in the 1st International Workshop and Conference on Human Leukocyte Differentiation Antigens (HLDA), held in Paris in 1982. This system was intended for the classification of the many monoclonal antibodies (mAbs) generated by different laboratories around the world against epitopes on
1425-1002: Is known as antigen discrimination. The molecular mechanisms that underlie this process are controversial. Causes of T cell deficiency include lymphocytopenia of T cells and/or defects on function of individual T cells. Complete insufficiency of T cell function can result from hereditary conditions such as severe combined immunodeficiency (SCID), Omenn syndrome , and cartilage–hair hypoplasia . Causes of partial insufficiencies of T cell function include acquired immune deficiency syndrome (AIDS), and hereditary conditions such as DiGeorge syndrome (DGS), chromosomal breakage syndromes (CBSs), and B cell and T cell combined disorders such as ataxia-telangiectasia (AT) and Wiskott–Aldrich syndrome (WAS). The main pathogens of concern in T cell deficiencies are intracellular pathogens , including Herpes simplex virus , Mycobacterium and Listeria . Also, fungal infections are also more common and severe in T cell deficiencies. Cancer of T cells
1500-481: Is making a functional T cell receptor (TCR). Each mature T cell will ultimately contain a unique TCR that reacts to a random pattern, allowing the immune system to recognize many different types of pathogens . This process is essential in developing immunity to threats that the immune system has not encountered before, since due to random variation there will always be at least one TCR to match any new pathogen. A thymocyte can only become an active T cell when it survives
1575-586: Is much less common in humans and mice (about 2% of total T cells) and are found mostly in the gut mucosa , within a population of intraepithelial lymphocytes . In rabbits, sheep, and chickens, the number of γδ T cells can be as high as 60% of total T cells. The antigenic molecules that activate γδ T cells are still mostly unknown. However, γδ T cells are not MHC-restricted and seem to be able to recognize whole proteins rather than requiring peptides to be presented by MHC molecules on APCs . Some murine γδ T cells recognize MHC class IB molecules. Human γδ T cells that use
SECTION 20
#17330926710531650-459: Is termed T-cell lymphoma , and accounts for perhaps one in ten cases of non-Hodgkin lymphoma . The main forms of T cell lymphoma are: T cell exhaustion is a poorly defined or ambiguous term. There are three approaches to its definition. "The first approach primarily defines as exhausted the cells that present the same cellular dysfunction (typically, the absence of an expected effector response). The second approach primarily defines as exhausted
1725-436: Is that they are long-lived and can quickly expand to large numbers of effector T cells upon re-exposure to their cognate antigen. By this mechanism they provide the immune system with "memory" against previously encountered pathogens. Memory T cells may be either CD4 or CD8 and usually express CD45RO . Memory T cell subtypes: Regulatory T cells are crucial for the maintenance of immunological tolerance . Their major role
1800-621: Is to shut down T cell–mediated immunity toward the end of an immune reaction and to suppress autoreactive T cells that escaped the process of negative selection in the thymus. Two major classes of CD4 T reg cells have been described—FOXP3 T reg cells and FOXP3 T reg cells. Regulatory T cells can develop either during normal development in the thymus, and are then known as thymic Treg cells, or can be induced peripherally and are called peripherally derived Treg cells. These two subsets were previously called "naturally occurring" and "adaptive" (or "induced"), respectively. Both subsets require
1875-635: Is uncommon (though a few examples exist), combining markers has allowed for cell types with very specific definitions within the immune system. CD molecules are utilized in cell sorting using various methods, including flow cytometry . Two commonly used CD molecules are CD4 and CD8 , which are, in general, used as markers for helper and cytotoxic T cells, respectively. These molecules are defined in combination with CD3+, as some other leukocytes also express these CD molecules (some macrophages express low levels of CD4; dendritic cells express high levels of CD8). Human immunodeficiency virus binds CD4 and
1950-632: Is used to designate the antibody. Cell populations are usually defined using a '+' or a '−' symbol to indicate whether a certain cell fraction expresses or lacks a CD molecule. For example, a " CD34 +, CD31 −" cell is one that expresses CD34 but not CD31. This CD combination typically corresponds to a stem cell , as opposed to a fully differentiated endothelial cell . Some cell populations can also be defined as , , or (alternatively, , , or ), indicating an overall variability in CD expression , particularly when compared to other cells being studied. A review of
2025-543: The CD3 proteins: CD3εγ and CD3εδ heterodimers and, most important, a CD3ζ homodimer, which has a total of six ITAM motifs. The ITAM motifs on the CD3ζ can be phosphorylated by Lck and in turn recruit ZAP-70 . Lck and/or ZAP-70 can also phosphorylate the tyrosines on many other molecules, not least CD28, LAT and SLP-76 , which allows the aggregation of signalling complexes around these proteins. Phosphorylated LAT recruits SLP-76 to
2100-714: The CD4 glycoprotein on their surfaces. Helper T cells become activated when they are presented with peptide antigens by MHC class II molecules, which are expressed on the surface of antigen-presenting cells (APCs). Once activated, they divide rapidly and secrete cytokines that regulate or assist the immune response. These cells can differentiate into one of several subtypes, which have different roles. Cytokines direct T cells into particular subtypes. Cytotoxic T cells (T C cells, CTLs, T-killer cells, killer T cells) destroy virus-infected cells and tumor cells, and are also implicated in transplant rejection. These cells are defined by
2175-636: The NF-κB pathway . DAG activates PKC-θ, which then phosphorylates CARMA1, causing it to unfold and function as a scaffold. The cytosolic domains bind an adapter BCL10 via CARD (Caspase activation and recruitment domains) domains; that then binds TRAF6, which is ubiquitinated at K63. This form of ubiquitination does not lead to degradation of target proteins. Rather, it serves to recruit NEMO, IKKα and -β, and TAB1-2/ TAK1. TAK 1 phosphorylates IKK-β, which then phosphorylates IκB allowing for K48 ubiquitination: leads to proteasomal degradation. Rel A and p50 can then enter
2250-528: The PI3K pathway generating PIP3 at the plasma membrane and recruiting PH domain containing signaling molecules like PDK1 that are essential for the activation of PKC-θ , and eventual IL-2 production. Optimal CD8 T cell response relies on CD4 signalling. CD4 cells are useful in the initial antigenic activation of naive CD8 T cells, and sustaining memory CD8 T cells in the aftermath of an acute infection. Therefore, activation of CD4 T cells can be beneficial to
2325-654: The T-Cell Activation in Space (TCAS) experiment was launched to the International Space Station on the SpaceX CRS-3 mission to study how "deficiencies in the human immune system are affected by a microgravity environment". T cell activation is modulated by reactive oxygen species . A unique feature of T cells is their ability to discriminate between healthy and abnormal (e.g. infected or cancerous) cells in
P-selectin glycoprotein ligand-1 - Misplaced Pages Continue
2400-483: The adaptive immune response and has a memory-like phenotype. Furthermore, MAIT cells are thought to play a role in autoimmune diseases , such as multiple sclerosis , arthritis and inflammatory bowel disease , although definitive evidence is yet to be published. Gamma delta T cells (γδ T cells) represent a small subset of T cells which possess a γδ TCR rather than the αβ TCR on the cell surface. The majority of T cells express αβ TCR chains. This group of T cells
2475-441: The endothelium of blood vessels. However, inflammation causes the expression of cell adhesion molecules (CAM) such as P-selectin on the surface of the blood vessel wall. White blood cells present in flowing blood can interact with CAM. The first step in this interaction process is carried out by PSGL-1 interacting with P-selectin and/or E-selectin on endothelial cells and adherent platelets. This interaction results in "rolling" of
2550-502: The thymus . After migration to the thymus, the precursor cells mature into several distinct types of T cells. T cell differentiation also continues after they have left the thymus. Groups of specific, differentiated T cell subtypes have a variety of important functions in controlling and shaping the immune response . One of these functions is immune-mediated cell death, and it is carried out by two major subtypes: CD8 "killer" (cytotoxic) and CD4 "helper" T cells. (These are named for
2625-464: The 5-prime-noncoding region, a long second exon containing the complete coding region, and TATA-less promoters. P-selectin glycoprotein ligand-1 ( PSGL-1 ) is a dimeric mucin-like glycoprotein found primarily on the surface of white blood cells cells. PSGL-1 can serve as a ligand for P-selectin (P stands for platelet ), which is one of a family of selectins that includes E-selectin (endothelial) and L-selectin (leukocyte). Selectins are part of
2700-565: The CD4 T cells, function as "helper cells". Unlike CD8 killer T cells, the CD4 helper T (T H ) cells function by further activating memory B cells and cytotoxic T cells, which leads to a larger immune response. The specific adaptive immune response regulated by the T H cell depends on its subtype (such as T-helper1, T-helper2, T-helper17, regulatory T-cell), which is distinguished by the types of cytokines they secrete. Regulatory T cells are yet another distinct population of T cells that provide
2775-627: The TCR becomes fully operational and the thymocyte becomes a T cell. At the DN2 stage (CD44 CD25 ), cells upregulate the recombination genes RAG1 and RAG2 and re-arrange the TCRβ locus, combining V-D-J recombination and constant region genes in an attempt to create a functional TCRβ chain. As the developing thymocyte progresses through to the DN3 stage (CD44 CD25 ), the thymocyte expresses an invariant α-chain called pre-Tα alongside
2850-446: The TCRβ gene. If the rearranged β-chain successfully pairs with the invariant α-chain, signals are produced which cease rearrangement of the β-chain (and silence the alternate allele). Although these signals require the pre-TCR at the cell surface, they are independent of ligand binding to the pre-TCR. If the chains successfully pair a pre-TCR forms, and the cell downregulates CD25 and is termed
2925-558: The Vγ9 and Vδ2 gene fragments constitute the major γδ T cell population in peripheral blood. These cells are unique in that they specifically and rapidly respond to a set of nonpeptidic phosphorylated isoprenoid precursors, collectively named phosphoantigens , which are produced by virtually all living cells. The most common phosphoantigens from animal and human cells (including cancer cells) are isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMPP). Many microbes produce
3000-497: The action of CD8 T cells. The first signal is provided by binding of the T cell receptor to its cognate peptide presented on MHCII on an APC. MHCII is restricted to so-called professional antigen-presenting cells , like dendritic cells, B cells, and macrophages, to name a few. The peptides presented to CD8 T cells by MHC class I molecules are 8–13 amino acids in length; the peptides presented to CD4 cells by MHC class II molecules are longer, usually 12–25 amino acids in length, as
3075-460: The active compound hydroxy-DMAPP ( HMB-PP ) and corresponding mononucleotide conjugates, in addition to IPP and DMAPP. Plant cells produce both types of phosphoantigens. Drugs activating human Vγ9/Vδ2 T cells comprise synthetic phosphoantigens and aminobisphosphonates , which upregulate endogenous IPP/DMAPP. Activation of CD4 T cells occurs through the simultaneous engagement of the T-cell receptor and
P-selectin glycoprotein ligand-1 - Misplaced Pages Continue
3150-529: The antagonsim of PSGL-1 engagement and signaling has been proposed as a promising target for future checkpoint inhibitor anti-cancer drugs. PSGL-1 has been shown to bind to VISTA (V-domain Ig suppressor of T cell activation) but this binding only occurs under acidic pH conditions (pH < 6.5) such as can be found in tumor microenvironments (TME). In mice, PSGL-1 seems to facilitate T cell exhaustion in tumors. PSGL-1 deficient mice treated with anti-PD-1 antibodies show
3225-413: The blood to the thymus, where they engraft: . Henceforth they are known as thymocytes , the immature stage of a T cell. The earliest cells which arrived in the thymus are commonly termed double-negative , as they express neither the CD4 nor CD8 co-receptor. The newly arrived CLP cells are CD4 CD8 CD44 CD25 ckit cells, and are termed early thymic progenitor (ETP) cells. These cells will then undergo
3300-525: The blood, liver, lungs, and mucosa , defending against microbial activity and infection. The MHC class I -like protein, MR1 , is responsible for presenting bacterially-produced vitamin B metabolites to MAIT cells. After the presentation of foreign antigen by MR1, MAIT cells secrete pro-inflammatory cytokines and are capable of lysing bacterially-infected cells. MAIT cells can also be activated through MR1-independent signaling. In addition to possessing innate-like functions, this T cell subset supports
3375-407: The body from damage. Sepsis also carries high antigen load and inflammation. In this stage of sepsis T cell exhaustion increases. Currently there are studies aiming to utilize inhibitory receptor blockades in treatment of sepsis. While during infection T cell exhaustion can develop following persistent antigen exposure after graft transplant similar situation arises with alloantigen presence. It
3450-533: The body. Healthy cells typically express a large number of self derived pMHC on their cell surface and although the T cell antigen receptor can interact with at least a subset of these self pMHC, the T cell generally ignores these healthy cells. However, when these very same cells contain even minute quantities of pathogen derived pMHC, T cells are able to become activated and initiate immune responses. The ability of T cells to ignore healthy cells but respond when these same cells contain pathogen (or cancer) derived pMHC
3525-408: The bone marrow. In some cases, the origin might be the foetal liver during embryonic development . The HSC then differentiate into multipotent progenitors (MPP) which retain the potential to become both myeloid and lymphoid cells . The process of differentiation then proceeds to a common lymphoid progenitor (CLP), which can only differentiate into T, B or NK cells. These CLP cells then migrate via
3600-779: The boundary of the cortex and medulla in the thymus. While in the medulla, they are again presented with a self-antigen presented on the MHC complex of medullary thymic epithelial cells (mTECs). mTECs must be Autoimmune regulator positive (AIRE ) to properly express tissue-specific antigens on their MHC class I peptides. Some mTECs are phagocytosed by thymic dendritic cells ; this makes them AIRE antigen presenting cells (APCs), allowing for presentation of self-antigens on MHC class II molecules (positively selected CD4 cells must interact with these MHC class II molecules, thus APCs, which possess MHC class II, must be present for CD4 T-cell negative selection). Thymocytes that interact too strongly with
3675-465: The broader family of cell adhesion molecules . PSGL-1 can bind to each of the three members of the family but binds best (with the highest affinity) to P-selectin. PSGL-1 protein requires two distinct posttranslational modifications to gain its selectin binding activity: PSGL-1 is expressed on all white blood cells and plays an important role in the recruitment of white blood cells into inflamed tissue: White blood cells normally do not interact with
3750-506: The cells that are produced by a given cause (typically, but not necessarily, chronic exposure to an antigen). Finally, the third approach primarily defines as exhausted the cells that present the same molecular markers (typically, programmed cell death protein 1 [PD-1])." Dysfunctional T cells are characterized by progressive loss of function, changes in transcriptional profiles and sustained expression of inhibitory receptors. At first, cells lose their ability to produce IL-2 and TNFα , which
3825-627: The context of an MHC molecule on the surface of a professional antigen presenting cell (e.g. a dendritic cell). Appropriate co-stimulation must be present at the time of antigen encounter for this process to occur. Historically, memory T cells were thought to belong to either the effector or central memory subtypes, each with their own distinguishing set of cell surface markers (see below). Subsequently, numerous new populations of memory T cells were discovered including tissue-resident memory T (Trm) cells, stem memory TSCM cells, and virtual memory T cells. The single unifying theme for all memory T cell subtypes
SECTION 50
#17330926710533900-941: The context of infections and cancer. Furthermore, these T cell subsets are being translated into many therapies against malignancies such as leukemia, for example. Natural killer T cells (NKT cells – not to be confused with natural killer cells of the innate immune system) bridge the adaptive immune system with the innate immune system . Unlike conventional T cells that recognize protein peptide antigens presented by major histocompatibility complex (MHC) molecules, NKT cells recognize glycolipid antigens presented by CD1d . Once activated, these cells can perform functions ascribed to both helper and cytotoxic T cells: cytokine production and release of cytolytic/cell killing molecules. They are also able to recognize and eliminate some tumor cells and cells infected with herpes viruses. Mucosal associated invariant T (MAIT) cells display innate , effector-like qualities. In humans, MAIT cells are found in
3975-525: The course of exhaustion because longer exposure time and higher viral load increases the severity of T cell exhaustion. At least 2–4 weeks exposure is needed to establish exhaustion. Another factor able to induce exhaustion are inhibitory receptors including programmed cell death protein 1 (PD1), CTLA-4 , T cell membrane protein-3 (TIM3), and lymphocyte activation gene 3 protein (LAG3). Soluble molecules such as cytokines IL-10 or TGF-β are also able to trigger exhaustion. Last known factors that can play
4050-552: The critical mechanism of tolerance , whereby immune cells are able to distinguish invading cells from "self". This prevents immune cells from inappropriately reacting against one's own cells, known as an " autoimmune " response. For this reason, these regulatory T cells have also been called "suppressor" T cells. These same regulatory T cells can also be co-opted by cancer cells to prevent the recognition of, and an immune response against, tumor cells. All T cells originate from c-kit Sca1 haematopoietic stem cells (HSC) which reside in
4125-426: The cytosol from the extracellular space. This aggregated cytosolic calcium binds calmodulin, which can then activate calcineurin . Calcineurin, in turn, activates NFAT , which then translocates to the nucleus. NFAT is a transcription factor that activates the transcription of a pleiotropic set of genes, most notable, IL-2, a cytokine that promotes long-term proliferation of activated T cells. PLC-γ can also initiate
4200-549: The development of T cells in the thymus uses this nomenclature to identify cells transitioning from CD4 /CD8 double-positive cells to CD4 /CD8 . Since 1982 there have been nine Human Leukocyte Differentiation Antigen Workshops culminating in a conference. The CD system is commonly used as cell markers in immunophenotyping , allowing cells to be defined based on what molecules are present on their surface. These markers are often used to associate cells with certain immune functions . While using one CD molecule to define populations
4275-407: The ends of the binding cleft of the MHC class II molecule are open. The second signal comes from co-stimulation, in which surface receptors on the APC are induced by a relatively small number of stimuli, usually products of pathogens, but sometimes breakdown products of cells, such as necrotic -bodies or heat shock proteins . The only co-stimulatory receptor expressed constitutively by naive T cells
4350-429: The example of CD4 and CD8, these molecules are critical in antigen recognition. Others (e.g., CD135 ) act as cell surface receptors for growth factors . Recently, the marker CD47 was found to have anti- phagocytic signals to macrophages and inhibit natural killer (NK) cells. This enabled researchers to apply CD47 as a potential target to attenuate immune rejection . T cell exhaustion T cells are one of
4425-596: The expression of the CD8 protein on their cell surface. Cytotoxic T cells recognize their targets by binding to short peptides (8-11 amino acids in length) associated with MHC class I molecules, present on the surface of all nucleated cells. Cytotoxic T cells also produce the key cytokines IL-2 and IFNγ. These cytokines influence the effector functions of other cells, in particular macrophages and NK cells. Antigen-naive T cells expand and differentiate into memory and effector T cells after they encounter their cognate antigen within
4500-810: The expression of the transcription factor FOXP3 which can be used to identify the cells. Mutations of the FOXP3 gene can prevent regulatory T cell development, causing the fatal autoimmune disease IPEX . Several other types of T cells have suppressive activity, but do not express FOXP3 constitutively. These include Tr1 and Th3 cells, which are thought to originate during an immune response and act by producing suppressive molecules. Tr1 cells are associated with IL-10, and Th3 cells are associated with TGF-beta . Recently, Th17 cells have been added to this list. Innate-like T cells or unconventional T cells represent some subsets of T cells that behave differently in immunity. They trigger rapid immune responses, regardless of
4575-407: The host. β-selection is the first checkpoint, where thymocytes that are able to form a functional pre-TCR (with an invariant alpha chain and a functional beta chain) are allowed to continue development in the thymus. Next, positive selection checks that thymocytes have successfully rearranged their TCRα locus and are capable of recognizing MHC molecules with appropriate affinity. Negative selection in
SECTION 60
#17330926710534650-438: The important types of white blood cells of the immune system and play a central role in the adaptive immune response . T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell surface . T cells are born from hematopoietic stem cells , found in the bone marrow . Developing T cells then migrate to the thymus gland to develop (or mature). T cells derive their name from
4725-419: The major histocompatibility complex (MHC) expression, unlike their conventional counterparts (CD4 T helper cells and CD8 cytotoxic T cells), which are dependent on the recognition of peptide antigens in the context of the MHC molecule. Overall, there are three large populations of unconventional T cells: NKT cells, MAIT cells, and gammadelta T cells. Now, their functional roles are already being well established in
4800-464: The medulla then eliminates thymocytes that bind too strongly to self-antigens expressed on MHC molecules. These selection processes allow for tolerance of self by the immune system. Typical naive T cells that leave the thymus (via the corticomedullary junction) are self-restricted, self-tolerant, and single positive. About 98% of thymocytes die during the development processes in the thymus by failing either positive selection or negative selection, whereas
4875-455: The membrane, where it can then bring in PLC-γ , VAV1 , Itk and potentially PI3K . PLC-γ cleaves PI(4,5)P2 on the inner leaflet of the membrane to create the active intermediaries diacylglycerol ( DAG ), inositol-1,4,5-trisphosphate ( IP3 ); PI3K also acts on PIP2, phosphorylating it to produce phosphatidlyinositol-3,4,5-trisphosphate (PIP3). DAG binds and activates some PKCs. Most important in T cells
4950-520: The nucleus and bind the NF-κB response element. This coupled with NFAT signaling allows for complete activation of the IL-2 gene. While in most cases activation is dependent on TCR recognition of antigen, alternative pathways for activation have been described. For example, cytotoxic T cells have been shown to become activated when targeted by other CD8 T cells leading to tolerization of the latter. In spring 2014,
5025-404: The other 2% survive and leave the thymus to become mature immunocompetent T cells. The thymus contributes fewer cells as a person ages. As the thymus shrinks by about 3% a year throughout middle age, a corresponding fall in the thymic production of naive T cells occurs, leaving peripheral T cell expansion and regeneration to play a greater role in protecting older people. T cells are grouped into
5100-400: The presence of the cell surface proteins CD8 or CD4 .) CD8 T cells, also known as "killer T cells", are cytotoxic – this means that they are able to directly kill virus-infected cells, as well as cancer cells. CD8 T cells are also able to use small signalling proteins, known as cytokines , to recruit other types of cells when mounting an immune response. A different population of T cells,
5175-415: The process of developing a functional TCR. The TCR consists of two major components, the alpha and beta chains. These both contain random elements designed to produce a wide variety of different TCRs, but due to this huge variety they must be tested to make sure they work at all. First, the thymocytes attempt to create a functional beta chain, testing it against a 'mock' alpha chain. Then they attempt to create
5250-427: The provisional indicator "w" (as in " CDw186 "). For instance, CD2 mAbs are reagents that react with a 50‐kDa transmembrane glycoprotein expressed on T cells . The CD designations were used to describe the recognized molecules but had to be clarified by attaching the term antigen or molecule to the designation (e.g., CD2 molecule). Currently, "CD2" is generally used to designate the molecule, and "CD2 antibody "
5325-416: The self-antigen receive an apoptotic signal that leads to cell death. However, some of these cells are selected to become Treg cells. The remaining cells exit the thymus as mature naive T cells , also known as recent thymic emigrants. This process is an important component of central tolerance and serves to prevent the formation of self-reactive T cells that are capable of inducing autoimmune diseases in
5400-410: The surface molecules of leukocytes (white blood cells). Since then, its use has expanded to many other cell types, and more than 370 CD unique clusters and subclusters have been identified. The proposed surface molecule is assigned a CD number once two specific monoclonal antibodies are shown to bind to the molecule. If the molecule has not been well characterized or has only one mAb, it is usually given
5475-539: The surface of cortical epithelial cells. Only thymocytes that interact well with MHC-I or MHC-II will receive a vital "survival signal", while those that cannot interact strongly enough will receive no signal and die from neglect . This process ensures that the surviving thymocytes will have an 'MHC affinity' that means they will exhibit stronger binding affinity for specific MHC alleles in that organism. The vast majority of developing thymocytes will not pass positive selection, and die during this process. A thymocyte's fate
5550-661: The white blood cell on the endothelial cell surface followed by stable adhesion and transmigration of the white blood cell into the inflamed tissue. The systemic administration of soluble recombinant forms of human PSGL-1 such as rPSGL-Ig or TSGL-Ig can prevent reperfusion injury caused by leukocyte influx after an ischemic insult to various types of vascularized tissues (IRI). The protective effects of soluble recombinant forms of PSGL-1, acting as pan-selectin antagonists, has been studied in multiple animal models of solid organ transplant and ARDS. In mice PSGL-1 acts as an immune factor regulating multiple T-cell checkpoints . Consequently,
5625-663: Was shown that T cell response diminishes over time after kidney transplant. These data suggest T cell exhaustion plays an important role in tolerance of a graft mainly by depletion of alloreactive CD8 T cells. Several studies showed positive effect of chronic infection on graft acceptance and its long-term survival mediated partly by T cell exhaustion. It was also shown that recipient T cell exhaustion provides sufficient conditions for NK cell transfer. While there are data showing that induction of T cell exhaustion can be beneficial for transplantation it also carries disadvantages among which can be counted increased number of infections and
#52947