Misplaced Pages

Richmond Basin

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Richmond Basin was one of the Eastern North America Rift Basins . It lies over Swift Creek Reservoir from Interstate 64 to the Appomattox River .

#303696

45-594: The Richmond Basin is a rift basin , making a north to south double pointed oval , with the eastern edge over the Swift Creek Reservoir , with the northern point at interstate 64, spanning the James River , with the southern point at the Appomattox River . The Richmond Basin is 205 to 245 million years old. Pangea divided and many small rifts split opened in the earth in addition to the large one that became

90-449: A lacustrine environment or in a restricted marine environment, although not all rifts contain such sequences. Reservoir rocks may be developed in pre-rift, syn-rift and post-rift sequences. Effective regional seals may be present within the post-rift sequence if mudstones or evaporites are deposited. Just over half of estimated oil reserves are found associated with rifts containing marine syn-rift and post-rift sequences, just under

135-403: A kind of orogeneses in extensional settings, which is referred as to rifting orogeny. Once rifting ceases, the mantle beneath the rift cools and this is accompanied by a broad area of post-rift subsidence. The amount of subsidence is directly related to the amount of thinning during the rifting phase calculated as the beta factor (initial crustal thickness divided by final crustal thickness), but

180-438: A mid-oceanic ridge and a set of conjugate margins separated by an oceanic basin. Rifting may be active, and controlled by mantle convection . It may also be passive, and driven by far-field tectonic forces that stretch the lithosphere. Margin architecture develops due to spatial and temporal relationships between extensional deformation phases. Margin segmentation eventually leads to the formation of rift domains with variations of

225-424: A quarter in rifts with a non-marine syn-rift and post-rift, and an eighth in non-marine syn-rift with a marine post-rift. Triple junction A triple junction is the point where the boundaries of three tectonic plates meet. At the triple junction each of the three boundaries will be one of three types – a ridge (R), trench (T) or transform fault (F) – and triple junctions can be described according to

270-468: A single basin-bounding fault. Segment lengths vary between rifts, depending on the elastic thickness of the lithosphere. Areas of thick colder lithosphere, such as the Baikal Rift have segment lengths in excess of 80 km, while in areas of warmer thin lithosphere, segment lengths may be less than 30 km. Along the axis of the rift the position, and in some cases the polarity (the dip direction), of

315-454: A single point, for the triple junction to exist stably. These lines necessarily are parallel to the plate boundaries as to remain on the plate boundaries the observer must either move along the plate boundary or remain stationary on it. The point at which these lines meet, J, gives the overall motion of the triple junction with respect to the Earth. Using these criteria it can easily be shown why

360-423: Is a linear zone where the lithosphere is being pulled apart and is an example of extensional tectonics . Typical rift features are a central linear downfaulted depression, called a graben , or more commonly a half-graben with normal faulting and rift-flank uplifts mainly on one side. Where rifts remain above sea level they form a rift valley , which may be filled by water forming a rift lake . The axis of

405-402: Is also affected by the degree to which the rift basin is filled at each stage, due to the greater density of sediments in contrast to water. The simple 'McKenzie model' of rifting, which considers the rifting stage to be instantaneous, provides a good first order estimate of the amount of crustal thinning from observations of the amount of post-rift subsidence. This has generally been replaced by

450-456: Is believed to have caused the formation of the Pacific plate about 190 million years ago. By assuming that plates are rigid and that the Earth is spherical, Leonhard Euler 's theorem of motion on a sphere can be used to reduce the stability assessment to determining boundaries and relative motions of the interacting plates. The rigid assumption holds very well in the case of oceanic crust , and

495-514: Is demonstrated below – as the perpendicular bisectors of the sides of a triangle always meet at a single point, the lines ab, bc and ca can always be made to meet regardless of relative velocities. RTF junctions are less common, an unstable junction of this type (an RTF(a)) is thought to have existed at roughly 12 Ma at the mouth of the Gulf of California where the East Pacific Rise currently meets

SECTION 10

#1733086228304

540-405: Is retained with time as the plates involved move. This places restrictions on relative velocities and plate boundary orientation. An unstable triple junction will change with time, either to become another form of triple junction (RRF junctions easily evolve to FFR junctions), will change geometry or are simply not feasible (as in the case of FFF junctions). The inherent instability of an FFF junction

585-622: The Atlantic Ocean . When Richmond rift opened and filled with swamps from water in the Pamunkey River , sediment filled in over the swamps and the sedimentary pressure converted organic plant material into coal . This weight is less pressure than coal deposits produced when the continents were pushing together and raising up mountains. Semi-anthracite and anthracite are often formed by such tectonic squeezing when continents push together. The Richmond Basin has Bituminous coal , formed by

630-592: The Mid-Atlantic Ridge , and an associated aulacogen , the Benue Trough , in the Niger Delta region of Africa. RRR junctions are also common as rifting along three fractures at 120° is the best way to relieve stresses from uplift at the surface of a sphere; on Earth, stresses similar to these are believed to be caused by the mantle hotspots thought to initiate rifting in continents. The stability of RRR junctions

675-469: The Moho topography, including proximal domain with fault-rotated crustal blocks, necking zone with thinning of crustal basement , distal domain with deep sag basins, ocean-continent transition and oceanic domain. Deformation and magmatism interact during rift evolution. Magma-rich and magma-poor rifted margins may be formed. Magma-rich margins include major volcanic features. Globally, volcanic margins represent

720-556: The San Andreas Fault zone. The Guadeloupe and Farallon microplates were previously being subducted under the North American plate and the northern end of this boundary met the San Andreas Fault . Material for this subduction was provided by a ridge equivalent to the modern East Pacific Rise slightly displaced to the west of the trench. As the ridge itself was subducted an RTF triple junction momentarily existed but subduction of

765-645: The 'flexural cantilever model', which takes into account the geometry of the rift faults and the flexural isostasy of the upper part of the crust. Some rifts show a complex and prolonged history of rifting, with several distinct phases. The North Sea rift shows evidence of several separate rift phases from the Permian through to the Earliest Cretaceous , a period of over 100 million years. Rifting may lead to continental breakup and formation of oceanic basins. Successful rifting leads to seafloor spreading along

810-558: The 1840s to the 1890s. The supply was not as great and as cheap to mine as the Pocahontas coalfield , however and mining the Richmond Basin was ended around 1890. Richmond and Petersburg grew economically because of manufacturing supported by the James River and Appomattox River waterpower, more than from coal brought out of Midlothian and Clover Hill." Rift basin In geology , a rift

855-488: The Euler poles are distant from the triple junction concerned. The definitions they used for R, T and F are as follows: For a triple junction between the plates A, B and C to exist, the following condition must be satisfied: where A v B is the relative motion of B with respect to A. This condition can be represented in velocity space by constructing a velocity triangle ABC where the lengths AB, BC and CA are proportional to

900-637: The FFF triple junction is not stable: the only case in which three lines lying along the sides of a triangle can meet at a point is the trivial case in which the triangle has sides lengths zero, corresponding to zero relative motion between the plates. As faults are required to be active for the purpose of this assessment, an FFF junction can never be stable. McKenzie and Morgan determined that there were 16 types of triple junction theoretically possible, though several of these are speculative and have not necessarily been seen on Earth. These junctions were classified firstly by

945-535: The RRF configuration could be stable under certain conditions. An RRR junction is always stable using these definitions and therefore very common on Earth, though in a geological sense ridge spreading is usually discontinued in one direction leaving a failed rift zone . There are many examples of these present both now and in the geological past such as the South Atlantic opening with ridges spreading North and South to form

SECTION 20

#1733086228304

990-469: The development of isolated basins. In subaerial rifts, for example, drainage at the onset of rifting is generally internal, with no element of through drainage. As the rift evolves, some of the individual fault segments grow, eventually becoming linked together to form the larger bounding faults. Subsequent extension becomes concentrated on these faults. The longer faults and wider fault spacing leads to more continuous areas of fault-related subsidence along

1035-410: The geological details but simply by defining the properties of the ridges , trenches and transform faults involved, making some simplifying assumptions and applying simple velocity calculations. This assessment can generalise to most actual triple junction settings provided the assumptions and definitions broadly apply to the real Earth. A stable junction is one at which the geometry of the junction

1080-425: The main rift bounding fault changes from segment to segment. Segment boundaries often have a more complex structure and generally cross the rift axis at a high angle. These segment boundary zones accommodate the differences in fault displacement between the segments and are therefore known as accommodation zones. Accommodation zones take various forms, from a simple relay ramp at the overlap between two major faults of

1125-567: The majority of passive continental margins. Magma-starved rifted margins are affected by large-scale faulting and crustal hyperextension. As a consequence, upper mantle peridotites and gabbros are commonly exposed and serpentinized along extensional detachments at the seafloor. Many rifts are the sites of at least minor magmatic activity , particularly in the early stages of rifting. Alkali basalts and bimodal volcanism are common products of rift-related magmatism. Recent studies indicate that post-collisional granites in collisional orogens are

1170-567: The other two continue spreading to form an ocean. The opening of the south Atlantic Ocean started at the south of the South American and African continents, reaching a triple junction in the present Gulf of Guinea , from where it continued to the west. The NE-trending Benue Trough is the failed arm of this junction. In the years since, the term triple-junction has come to refer to any point where three tectonic plates meet. The properties of triple junctions are most easily understood from

1215-404: The product of rifting magmatism at converged plate margins. The sedimentary rocks associated with continental rifts host important deposits of both minerals and hydrocarbons . SedEx mineral deposits are found mainly in continental rift settings. They form within post-rift sequences when hydrothermal fluids associated with magmatic activity are expelled at the seabed. Continental rifts are

1260-464: The purely kinematic point of view where the plates are rigid and moving over the surface of the Earth. No knowledge of the Earth's interior or the geological details of the crust are then needed. Another useful simplification is that the kinematics of triple junctions on a flat Earth are essentially the same as those on the surface of a sphere. On a sphere, plate motions are described as relative rotations about Euler poles (see Plate reconstruction ), and

1305-446: The radius of the Earth at the equator and poles only varies by a factor of roughly one part in 300 so the Earth approximates very well to a sphere. McKenzie and Morgan first analysed the stability of triple junctions using these assumptions with the additional assumption that the Euler poles describing the motions of the plates were such that they approximated to straight line motion on a flat surface. This simplification applies when

1350-518: The relative motion at every point along a plate boundary can be calculated from this rotation. But the area around a triple junction is small enough (relative to the size of the sphere) and (usually) far enough from the pole of rotation, that the relative motion across a boundary can be assumed to be constant along that boundary. Thus, analysis of triple junctions can usually be done on a flat surface with motions defined by vectors. Triple junctions may be described and their stability assessed without use of

1395-522: The ridge caused the subducted lithosphere to weaken and 'tear' from the point of the triple junction. The loss of slab pull caused by the detachment of this lithosphere ended the RTF junction giving the present day ridge – fault system. An RTF(a) is stable if ab goes through the point in velocity space C, or if ac and bc are colinear. A TTT(a) junction can be found in central Japan where the Eurasian plate overrides

Richmond Basin - Misplaced Pages Continue

1440-419: The rift area may contain volcanic rocks , and active volcanism is a part of many, but not all, active rift systems. Major rifts occur along the central axis of most mid-ocean ridges , where new oceanic crust and lithosphere is created along a divergent boundary between two tectonic plates . Failed rifts are the result of continental rifting that failed to continue to the point of break-up. Typically

1485-432: The rift axis. Significant uplift of the rift shoulders develops at this stage, strongly influencing drainage and sedimentation in the rift basins. During the climax of lithospheric rifting, as the crust is thinned, the Earth's surface subsides and the Moho becomes correspondingly raised. At the same time, the mantle lithosphere becomes thinned, causing a rise of the top of the asthenosphere. This brings high heat flow from

1530-636: The same polarity, to zones of high structural complexity, particularly where the segments have opposite polarity. Accommodation zones may be located where older crustal structures intersect the rift axis. In the Gulf of Suez rift, the Zaafarana accommodation zone is located where a shear zone in the Arabian-Nubian Shield meets the rift. Rift flanks or shoulders are elevated areas around rifts. Rift shoulders are typically about 70 km wide. Contrary to what

1575-436: The same velocity space diagrams in the following way. The lines ab, bc and ca join points in velocity space which will leave the geometry of AB, BC and CA unchanged. These lines are the same as those that join points in velocity space at which an observer could move at the given velocity and still remain on the plate boundary. When these are drawn onto the diagram containing the velocity triangle these lines must be able to meet at

1620-628: The sedimentary weight only. The coal deposits were on a thin shale and sandstone layer over the granite bedrock . Oolite or small round grains of calcium carbonate was over the coal. Some coke with and without sulphur was with the coal. To the northwest of the basin is the Goochland Terrane , and between them is the Boscobel complex . The Richmond Basin is located near Midlothian, Virginia , in Chesterfield County, Virginia . It

1665-464: The sites of significant oil and gas accumulations, such as the Viking Graben and the Gulf of Suez Rift . Thirty percent of giant oil and gas fields are found within such a setting. In 1999 it was estimated that there were 200 billion barrels of recoverable oil reserves hosted in rifts. Source rocks are often developed within the sediments filling the active rift ( syn-rift ), forming either in

1710-437: The transition from rifting to spreading develops at a triple junction where three converging rifts meet over a hotspot . Two of these evolve to the point of seafloor spreading, while the third ultimately fails, becoming an aulacogen . Most rifts consist of a series of separate segments that together form the linear zone characteristic of rifts. The individual rift segments have a dominantly half-graben geometry, controlled by

1755-491: The triple-junction concept was published in 1969 by Dan McKenzie and W. Jason Morgan . The term had traditionally been used for the intersection of three divergent boundaries or spreading ridges. These three divergent boundaries ideally meet at near 120° angles. In plate tectonics theory during the breakup of a continent, three divergent boundaries form, radiating out from a central point (the triple junction). One of these divergent plate boundaries fails (see aulacogen ) and

1800-499: The types of plate boundaries meeting – for example RRR, TTR, RRT, FFT etc. – and secondly by the relative motion directions of the plates involved. Some configurations such as RRR can only have one set of relative motions whereas TTT junctions may be classified into TTT(a) and TTT(b). These differences in motion direction affect the stability criteria. McKenzie and Morgan claimed that of these 16 types, 14 were stable with FFF and RRF configurations unstable, however, York later showed that

1845-485: The types of plate margin that meet at them (e.g. fault–fault–trench, ridge–ridge–ridge, or abbreviated F-F-T, R-R-R). Of the ten possible types of triple junctions only a few are stable through time ( stable in this context means that the geometrical configuration of the triple junction will not change through geologic time). The meeting of four or more plates is also theoretically possible, but junctions will only exist instantaneously. The first scientific paper detailing

Richmond Basin - Misplaced Pages Continue

1890-491: The upwelling asthenosphere into the thinning lithosphere, heating the orogenic lithosphere for dehydration melting, typically causing extreme metamorphism at high thermal gradients of greater than 30 °C. The metamorphic products are high to ultrahigh temperature granulites and their associated migmatite and granites in collisional orogens, with possible emplacement of metamorphic core complexes in continental rift zones but oceanic core complexes in spreading ridges. This leads to

1935-433: The velocities A v B , B v C and C v A respectively. Further conditions must also be met for the triple junction to exist stably – the plates must move in a way that leaves their individual geometries unchanged. Alternatively the triple junction must move in such a way that it remains on all three of the plate boundaries involved. McKenzie and Morgan demonstrated that these criteria can be represented on

1980-808: Was mined in the early 18th century. Coal was carried on the Chesterfield Railroad in gravity and mule-pulled carts to Manchester, Richmond, Virginia and Richmond, Virginia . Wood burning trains, such as the Clover Hill Railroad then the Brighthope Railway transported the coal found at Clover Hill in later years. The coal from Midlothian, Virginia was mainly used in Richmond, Virginia and Petersburg, Virginia . The Clover Hill Pits in Winterpock, Virginia were sold as far away as New York City from

2025-530: Was previously thought, elevated passive continental margins (EPCM) such as the Brazilian Highlands , the Scandinavian Mountains and India's Western Ghats , are not rift shoulders. The formation of rift basins and strain localization reflects rift maturity. At the onset of rifting, the upper part of the lithosphere starts to extend on a series of initially unconnected normal faults , leading to

#303696