Misplaced Pages

Rational number

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics , a rational number is a number that can be expressed as the quotient or fraction ⁠ p q {\displaystyle {\tfrac {p}{q}}} ⁠ of two integers , a numerator p and a non-zero denominator q . For example, ⁠ 3 7 {\displaystyle {\tfrac {3}{7}}} ⁠ is a rational number, as is every integer (for example, − 5 = − 5 1 {\displaystyle -5={\tfrac {-5}{1}}} ). The set of all rational numbers, also referred to as " the rationals ", the field of rationals or the field of rational numbers is usually denoted by boldface Q , or blackboard bold ⁠ Q . {\displaystyle \mathbb {Q} .} ⁠

#850149

109-398: A rational number is a real number . The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: 3/4 = 0.75 ), or eventually begins to repeat the same finite sequence of digits over and over (example: 9/44 = 0.20454545... ). This statement is true not only in base 10 , but also in every other integer base , such as

218-396: A , {\displaystyle {\tfrac {-b}{-a}},} ⁠ depending on the sign of a . If b, c, d are nonzero, the division rule is Thus, dividing ⁠ a b {\displaystyle {\tfrac {a}{b}}} ⁠ by ⁠ c d {\displaystyle {\tfrac {c}{d}}} ⁠ is equivalent to multiplying ⁠

327-426: A u {\displaystyle u} is called an upper bound of S . {\displaystyle S.} So, Dedekind completeness means that, if S is bounded above, it has an upper bound that is less than any other upper bound. Dedekind completeness implies other sorts of completeness (see below), but also has some important consequences. The last two properties are summarized by saying that

436-405: A n . {\displaystyle {\tfrac {-b^{n}}{-a^{n}}}.} ⁠ A finite continued fraction is an expression such as where a n are integers. Every rational number ⁠ a b {\displaystyle {\tfrac {a}{b}}} ⁠ can be represented as a finite continued fraction, whose coefficients a n can be determined by applying

545-440: A , {\displaystyle D_{n-1}+a_{n}/10^{n}\leq a,} and one sets D n = D n − 1 + a n / 10 n . {\displaystyle D_{n}=D_{n-1}+a_{n}/10^{n}.} One can use the defining properties of the real numbers to show that x is the least upper bound of the D n . {\displaystyle D_{n}.} So,

654-408: A b {\displaystyle {\tfrac {a}{b}}} ⁠ by the reciprocal of ⁠ c d : {\displaystyle {\tfrac {c}{d}}:} ⁠ If n is a non-negative integer, then The result is in canonical form if the same is true for ⁠ a b . {\displaystyle {\tfrac {a}{b}}.} ⁠ In particular, If

763-455: A b {\displaystyle {\tfrac {a}{b}}} ⁠ has a multiplicative inverse , also called its reciprocal , If ⁠ a b {\displaystyle {\tfrac {a}{b}}} ⁠ is in canonical form, then the canonical form of its reciprocal is either ⁠ b a {\displaystyle {\tfrac {b}{a}}} ⁠ or ⁠ − b −

872-568: A / b ⁠ . Equal quotients correspond to equal ratios. A statement expressing the equality of two ratios is called a proportion . Consequently, a ratio may be considered as an ordered pair of numbers, a fraction with the first number in the numerator and the second in the denominator, or as the value denoted by this fraction. Ratios of counts, given by (non-zero) natural numbers , are rational numbers , and may sometimes be natural numbers. A more specific definition adopted in physical sciences (especially in metrology ) for ratio

981-467: A and b are coprime integers and b > 0 . This is often called the canonical form of the rational number. Starting from a rational number ⁠ a b , {\displaystyle {\tfrac {a}{b}},} ⁠ its canonical form may be obtained by dividing a and b by their greatest common divisor , and, if b < 0 , changing the sign of the resulting numerator and denominator. Any integer n can be expressed as

1090-480: A decimal point , representing the infinite series For example, for the circle constant π = 3.14159 ⋯ , {\displaystyle \pi =3.14159\cdots ,} k is zero and b 0 = 3 , {\displaystyle b_{0}=3,} a 1 = 1 , {\displaystyle a_{1}=1,} a 2 = 4 , {\displaystyle a_{2}=4,} etc. More formally,

1199-406: A decimal representation for a nonnegative real number x consists of a nonnegative integer k and integers between zero and nine in the infinite sequence (If k > 0 , {\displaystyle k>0,} then by convention b k ≠ 0. {\displaystyle b_{k}\neq 0.} ) Such a decimal representation specifies the real number as

SECTION 10

#1732901196851

1308-552: A factor or multiplier . Ratios may also be established between incommensurable quantities (quantities whose ratio, as value of a fraction, amounts to an irrational number ). The earliest discovered example, found by the Pythagoreans , is the ratio of the length of the diagonal d to the length of a side s of a square , which is the square root of 2 , formally a : d = 1 : 2 . {\displaystyle a:d=1:{\sqrt {2}}.} Another example

1417-404: A field which contains the integers , and is contained in any field containing the integers. In other words, the field of rational numbers is a prime field , and a field has characteristic zero if and only if it contains the rational numbers as a subfield. Finite extensions of ⁠ Q {\displaystyle \mathbb {Q} } ⁠ are called algebraic number fields , and

1526-443: A line called the number line or real line , where the points corresponding to integers ( ..., −2, −1, 0, 1, 2, ... ) are equally spaced. Conversely, analytic geometry is the association of points on lines (especially axis lines ) to real numbers such that geometric displacements are proportional to differences between corresponding numbers. The informal descriptions above of the real numbers are not sufficient for ensuring

1635-424: A part of a quantity is another quantity that "measures" it and conversely, a multiple of a quantity is another quantity that it measures. In modern terminology, this means that a multiple of a quantity is that quantity multiplied by an integer greater than one—and a part of a quantity (meaning aliquot part ) is a part that, when multiplied by an integer greater than one, gives the quantity. Euclid does not define

1744-593: A power of ten , extending to finitely many positive powers of ten to the left and infinitely many negative powers of ten to the right. For a number x whose decimal representation extends k places to the left, the standard notation is the juxtaposition of the digits b k b k − 1 ⋯ b 0 . a 1 a 2 ⋯ , {\displaystyle b_{k}b_{k-1}\cdots b_{0}.a_{1}a_{2}\cdots ,} in descending order by power of ten, with non-negative and negative powers of ten separated by

1853-406: A rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational coefficients, although the term "polynomial over the rationals" is generally preferred, to avoid confusion between " rational expression " and " rational function " (a polynomial

1962-486: A total order that have the following properties. Many other properties can be deduced from the above ones. In particular: Several other operations are commonly used, which can be deduced from the above ones. The total order that is considered above is denoted a < b {\displaystyle a<b} and read as " a is less than b ". Three other order relations are also commonly used: The real numbers 0 and 1 are commonly identified with

2071-446: A ≠ 0 , then If ⁠ a b {\displaystyle {\tfrac {a}{b}}} ⁠ is in canonical form, the canonical form of the result is ⁠ b n a n {\displaystyle {\tfrac {b^{n}}{a^{n}}}} ⁠ if a > 0 or n is even. Otherwise, the canonical form of the result is ⁠ − b n −

2180-452: A characterization of the real numbers.) It is not true that R {\displaystyle \mathbb {R} } is the only uniformly complete ordered field, but it is the only uniformly complete Archimedean field , and indeed one often hears the phrase "complete Archimedean field" instead of "complete ordered field". Every uniformly complete Archimedean field must also be Dedekind-complete (and vice versa), justifying using "the" in

2289-412: A comparison of the quantities of a two-entity ratio can be expressed as a fraction derived from the ratio. For example, in a ratio of 2:3, the amount, size, volume, or quantity of the first entity is 2 3 {\displaystyle {\tfrac {2}{3}}} that of the second entity. If there are 2 oranges and 3 apples, the ratio of oranges to apples is 2:3, and the ratio of oranges to

SECTION 20

#1732901196851

2398-411: A comparison works only when values being compared are consistent, like always expressing width in relation to height. Ratios can be reduced (as fractions are) by dividing each quantity by the common factors of all the quantities. As for fractions, the simplest form is considered that in which the numbers in the ratio are the smallest possible integers. Thus, the ratio 40:60 is equivalent in meaning to

2507-412: A concentration of 3% w/v usually means 3 g of substance in every 100 mL of solution. This cannot be converted to a dimensionless ratio, as in weight/weight or volume/volume fractions. The locations of points relative to a triangle with vertices A , B , and C and sides AB , BC , and CA are often expressed in extended ratio form as triangular coordinates . In barycentric coordinates ,

2616-468: A dedicated ratio character, U+2236 ∶ RATIO . The numbers A and B are sometimes called terms of the ratio , with A being the antecedent and B being the consequent . A statement expressing the equality of two ratios A : B and C : D is called a proportion , written as A : B = C : D or A : B ∷ C : D . This latter form, when spoken or written in the English language,

2725-399: A large extent, identified with quotients and their prospective values. However, this is a comparatively recent development, as can be seen from the fact that modern geometry textbooks still use distinct terminology and notation for ratios and quotients. The reasons for this are twofold: first, there was the previously mentioned reluctance to accept irrational numbers as true numbers, and second,

2834-405: A limit, without computing it, and even without knowing it. For example, the standard series of the exponential function converges to a real number for every x , because the sums can be made arbitrarily small (independently of M ) by choosing N sufficiently large. This proves that the sequence is Cauchy, and thus converges, showing that e x {\displaystyle e^{x}}

2943-459: A nonnegative real number x , one can define a decimal representation of x by induction , as follows. Define b k ⋯ b 0 {\displaystyle b_{k}\cdots b_{0}} as decimal representation of the largest integer D 0 {\displaystyle D_{0}} such that D 0 ≤ x {\displaystyle D_{0}\leq x} (this integer exists because of

3052-507: A pair ( m, n ) is denoted ⁠ m n . {\displaystyle {\tfrac {m}{n}}.} ⁠ Two pairs ( m 1 , n 1 ) and ( m 2 , n 2 ) belong to the same equivalence class (that is are equivalent) if and only if This means that if and only if Every equivalence class ⁠ m n {\displaystyle {\tfrac {m}{n}}} ⁠ may be represented by infinitely many pairs, since Each equivalence class contains

3161-494: A point with coordinates x  : y  : z has perpendicular distances to side BC (across from vertex A ) and side CA (across from vertex B ) in the ratio x  : y , distances to side CA and side AB (across from C ) in the ratio y  : z , and therefore distances to sides BC and AB in the ratio x  : z . Since all information is expressed in terms of ratios (the individual numbers denoted by α, β, γ, x, y, and z have no meaning by themselves),

3270-414: A point with coordinates α, β, γ is the point upon which a weightless sheet of metal in the shape and size of the triangle would exactly balance if weights were put on the vertices, with the ratio of the weights at A and B being α  : β , the ratio of the weights at B and C being β  : γ , and therefore the ratio of weights at A and C being α  : γ . In trilinear coordinates ,

3379-405: A positive denominator—by changing the signs of both its numerator and denominator. Two fractions are added as follows: If both fractions are in canonical form, the result is in canonical form if and only if b, d are coprime integers . If both fractions are in canonical form, the result is in canonical form if and only if b, d are coprime integers . The rule for multiplication is: where

Rational number - Misplaced Pages Continue

3488-475: A ratio as between two quantities of the same type , so by this definition the ratios of two lengths or of two areas are defined, but not the ratio of a length and an area. Definition 4 makes this more rigorous. It states that a ratio of two quantities exists, when there is a multiple of each that exceeds the other. In modern notation, a ratio exists between quantities p and q , if there exist integers m and n such that mp > q and nq > p . This condition

3597-473: A rational number is an equivalence class of pairs of integers, and a real number is an equivalence class of Cauchy series), and are generally harmless. It is only in very specific situations, that one must avoid them and replace them by using explicitly the above homomorphisms. This is the case in constructive mathematics and computer programming . In the latter case, these homomorphisms are interpreted as type conversions that can often be done automatically by

3706-503: A unique canonical representative element . The canonical representative is the unique pair ( m, n ) in the equivalence class such that m and n are coprime , and n > 0 . It is called the representation in lowest terms of the rational number. The integers may be considered to be rational numbers identifying the integer n with the rational number ⁠ n 1 . {\displaystyle {\tfrac {n}{1}}.} ⁠ A total order may be defined on

3815-458: Is uncountable , almost all real numbers are irrational. Rational numbers can be formally defined as equivalence classes of pairs of integers ( p, q ) with q ≠ 0 , using the equivalence relation defined as follows: The fraction ⁠ p q {\displaystyle {\tfrac {p}{q}}} ⁠ then denotes the equivalence class of ( p, q ) . Rational numbers together with addition and multiplication form

3924-407: Is a rational expression and defines a rational function, even if its coefficients are not rational numbers). However, a rational curve is not a curve defined over the rationals, but a curve which can be parameterized by rational functions. Although nowadays rational numbers are defined in terms of ratios , the term rational is not a derivation of ratio . On the contrary, it is ratio that

4033-409: Is based on the ideas present in definition 5. In modern notation it says that given quantities p , q , r and s , p : q > r : s if there are positive integers m and n so that np > mq and nr ≤ ms . As with definition 3, definition 8 is regarded by some as being a later insertion by Euclid's editors. It defines three terms p , q and r to be in proportion when p : q ∷ q : r . This

4142-440: Is derived from rational : the first use of ratio with its modern meaning was attested in English about 1660, while the use of rational for qualifying numbers appeared almost a century earlier, in 1570. This meaning of rational came from the mathematical meaning of irrational , which was first used in 1551, and it was used in "translations of Euclid (following his peculiar use of ἄλογος )". This unusual history originated in

4251-447: Is extended to four terms p , q , r and s as p : q ∷ q : r ∷ r : s , and so on. Sequences that have the property that the ratios of consecutive terms are equal are called geometric progressions . Definitions 9 and 10 apply this, saying that if p , q and r are in proportion then p : r is the duplicate ratio of p : q and if p , q , r and s are in proportion then p : s is the triplicate ratio of p : q . In general,

4360-804: Is known as the Archimedes property . Definition 5 is the most complex and difficult. It defines what it means for two ratios to be equal. Today, this can be done by simply stating that ratios are equal when the quotients of the terms are equal, but such a definition would have been meaningless to Euclid. In modern notation, Euclid's definition of equality is that given quantities p , q , r and s , p : q ∷ r  : s if and only if, for any positive integers m and n , np < mq , np = mq , or np > mq according as nr < ms , nr = ms , or nr > ms , respectively. This definition has affinities with Dedekind cuts as, with n and q both positive, np stands to mq as ⁠ p / q ⁠ stands to

4469-435: Is less than ε for all n and m that are both greater than N . This definition, originally provided by Cauchy , formalizes the fact that the x n eventually come and remain arbitrarily close to each other. A sequence ( x n ) converges to the limit x if its elements eventually come and remain arbitrarily close to x , that is, if for any ε > 0 there exists an integer N (possibly depending on ε) such that

Rational number - Misplaced Pages Continue

4578-400: Is often expressed as A , B , C and D are called the terms of the proportion. A and D are called its extremes , and B and C are called its means . The equality of three or more ratios, like A : B = C : D = E : F , is called a continued proportion . Ratios are sometimes used with three or even more terms, e.g., the proportion for the edge lengths of a " two by four " that

4687-482: Is so that many sequences have limits . More formally, the reals are complete (in the sense of metric spaces or uniform spaces , which is a different sense than the Dedekind completeness of the order in the previous section): A sequence ( x n ) of real numbers is called a Cauchy sequence if for any ε > 0 there exists an integer N (possibly depending on ε) such that the distance | x n − x m |

4796-400: Is ten inches long is therefore a good concrete mix (in volume units) is sometimes quoted as For a (rather dry) mixture of 4/1 parts in volume of cement to water, it could be said that the ratio of cement to water is 4:1, that there is 4 times as much cement as water, or that there is a quarter (1/4) as much water as cement. The meaning of such a proportion of ratios with more than two terms

4905-506: Is that the ratio of any two terms on the left-hand side is equal to the ratio of the corresponding two terms on the right-hand side. It is possible to trace the origin of the word "ratio" to the Ancient Greek λόγος ( logos ). Early translators rendered this into Latin as ratio ("reason"; as in the word "rational"). A more modern interpretation of Euclid's meaning is more akin to computation or reckoning. Medieval writers used

5014-452: Is the dimensionless quotient between two physical quantities measured with the same unit . A quotient of two quantities that are measured with different units may be called a rate . The ratio of numbers A and B can be expressed as: When a ratio is written in the form A : B , the two-dot character is sometimes the colon punctuation mark. In Unicode , this is U+003A : COLON , although Unicode also provides

5123-501: Is the defined as the quotient set by this equivalence relation, ⁠ ( Z × ( Z ∖ { 0 } ) ) / ∼ , {\displaystyle (\mathbb {Z} \times (\mathbb {Z} \backslash \{0\}))/\sim ,} ⁠ equipped with the addition and the multiplication induced by the above operations. (This construction can be carried out with any integral domain and produces its field of fractions .) The equivalence class of

5232-417: Is the ratio of a circle 's circumference to its diameter, which is called π , and is not just an irrational number , but a transcendental number . Also well known is the golden ratio of two (mostly) lengths a and b , which is defined by the proportion Taking the ratios as fractions and a : b {\displaystyle a:b} as having the value x , yields the equation which has

5341-411: Is usual either to reduce terms to the lowest common denominator , or to express them in parts per hundred ( percent ). If a mixture contains substances A, B, C and D in the ratio 5:9:4:2 then there are 5 parts of A for every 9 parts of B, 4 parts of C and 2 parts of D. As 5+9+4+2=20, the total mixture contains 5/20 of A (5 parts out of 20), 9/20 of B, 4/20 of C, and 2/20 of D. If we divide all numbers by

5450-458: Is well defined for every x . The real numbers are often described as "the complete ordered field", a phrase that can be interpreted in several ways. First, an order can be lattice-complete . It is easy to see that no ordered field can be lattice-complete, because it can have no largest element (given any element z , z + 1 is larger). Additionally, an order can be Dedekind-complete, see § Axiomatic approach . The uniqueness result at

5559-495: Is what mathematicians and physicists did during several centuries before the first formal definitions were provided in the second half of the 19th century. See Construction of the real numbers for details about these formal definitions and the proof of their equivalence. The real numbers form an ordered field . Intuitively, this means that methods and rules of elementary arithmetic apply to them. More precisely, there are two binary operations , addition and multiplication , and

SECTION 50

#1732901196851

5668-455: The Euclidean algorithm to ( a, b ) . are different ways to represent the same rational value. The rational numbers may be built as equivalence classes of ordered pairs of integers . More precisely, let ⁠ ( Z × ( Z ∖ { 0 } ) ) {\displaystyle (\mathbb {Z} \times (\mathbb {Z} \setminus \{0\}))} ⁠ be

5777-401: The algebraic closure of ⁠ Q {\displaystyle \mathbb {Q} } ⁠ is the field of algebraic numbers . In mathematical analysis , the rational numbers form a dense subset of the real numbers. The real numbers can be constructed from the rational numbers by completion , using Cauchy sequences , Dedekind cuts , or infinite decimals (see Construction of

5886-414: The binary and hexadecimal ones (see Repeating decimal § Extension to other bases ). A real number that is not rational is called irrational . Irrational numbers include the square root of 2 ( ⁠ 2 {\displaystyle {\sqrt {2}}} ⁠ ), π , e , and the golden ratio ( φ ). Since the set of rational numbers is countable , and the set of real numbers

5995-640: The compiler . Previous properties do not distinguish real numbers from rational numbers . This distinction is provided by Dedekind completeness , which states that every set of real numbers with an upper bound admits a least upper bound . This means the following. A set of real numbers S {\displaystyle S} is bounded above if there is a real number u {\displaystyle u} such that s ≤ u {\displaystyle s\leq u} for all s ∈ S {\displaystyle s\in S} ; such

6104-422: The natural numbers 0 and 1 . This allows identifying any natural number n with the sum of n real numbers equal to 1 . This identification can be pursued by identifying a negative integer − n {\displaystyle -n} (where n {\displaystyle n} is a natural number) with the additive inverse − n {\displaystyle -n} of

6213-570: The square roots of −1 . The real numbers include the rational numbers , such as the integer −5 and the fraction 4 / 3 . The rest of the real numbers are called irrational numbers . Some irrational numbers (as well as all the rationals) are the root of a polynomial with integer coefficients, such as the square root √2 = 1.414... ; these are called algebraic numbers . There are also real numbers which are not, such as π = 3.1415... ; these are called transcendental numbers . Real numbers can be thought of as all points on

6322-505: The Archimedean property). Then, supposing by induction that the decimal fraction D i {\displaystyle D_{i}} has been defined for i < n , {\displaystyle i<n,} one defines a n {\displaystyle a_{n}} as the largest digit such that D n − 1 + a n / 10 n ≤

6431-476: The amount of orange juice concentrate is 1/5 of the total liquid. In both ratios and fractions, it is important to be clear what is being compared to what, and beginners often make mistakes for this reason. Fractions can also be inferred from ratios with more than two entities; however, a ratio with more than two entities cannot be completely converted into a single fraction, because a fraction can only compare two quantities. A separate fraction can be used to compare

6540-529: The axiomatic definition and are thus equivalent. Real numbers are completely characterized by their fundamental properties that can be summarized by saying that they form an ordered field that is Dedekind complete . Here, "completely characterized" means that there is a unique isomorphism between any two Dedekind complete ordered fields, and thus that their elements have exactly the same properties. This implies that one can manipulate real numbers and compute with them, without knowing how they can be defined; this

6649-441: The axioms of Zermelo–Fraenkel set theory including the axiom of choice (ZFC)—the standard foundation of modern mathematics. In fact, some models of ZFC satisfy CH, while others violate it. As a topological space, the real numbers are separable . This is because the set of rationals, which is countable, is dense in the real numbers. The irrational numbers are also dense in the real numbers, however they are uncountable and have

SECTION 60

#1732901196851

6758-420: The cardinality of the power set of the set of the natural numbers. The statement that there is no subset of the reals with cardinality strictly greater than ℵ 0 {\displaystyle \aleph _{0}} and strictly smaller than c {\displaystyle {\mathfrak {c}}} is known as the continuum hypothesis (CH). It is neither provable nor refutable using

6867-411: The classical definitions of limits , continuity and derivatives . The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold R , often using blackboard bold , ⁠ R {\displaystyle \mathbb {R} } ⁠ . The adjective real , used in the 17th century by René Descartes , distinguishes real numbers from imaginary numbers such as

6976-439: The construction of the reals from surreal numbers , since that construction starts with a proper class that contains every ordered field (the surreals) and then selects from it the largest Archimedean subfield. The set of all real numbers is uncountable , in the sense that while both the set of all natural numbers {1, 2, 3, 4, ...} and the set of all real numbers are infinite sets , there exists no one-to-one function from

7085-652: The correctness of proofs of theorems involving real numbers. The realization that a better definition was needed, and the elaboration of such a definition was a major development of 19th-century mathematics and is the foundation of real analysis , the study of real functions and real-valued sequences . A current axiomatic definition is that real numbers form the unique ( up to an isomorphism ) Dedekind-complete ordered field . Other common definitions of real numbers include equivalence classes of Cauchy sequences (of rational numbers), Dedekind cuts , and infinite decimal representations . All these definitions satisfy

7194-417: The distance | x n − x | is less than ε for n greater than N . Every convergent sequence is a Cauchy sequence, and the converse is true for real numbers, and this means that the topological space of the real numbers is complete. The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of

7303-487: The end of that section justifies using the word "the" in the phrase "complete ordered field" when this is the sense of "complete" that is meant. This sense of completeness is most closely related to the construction of the reals from Dedekind cuts, since that construction starts from an ordered field (the rationals) and then forms the Dedekind-completion of it in a standard way. These two notions of completeness ignore

7412-486: The fact that ancient Greeks "avoided heresy by forbidding themselves from thinking of those [irrational] lengths as numbers". So such lengths were irrational , in the sense of illogical , that is "not to be spoken about" ( ἄλογος in Greek). Every rational number may be expressed in a unique way as an irreducible fraction ⁠ a b , {\displaystyle {\tfrac {a}{b}},} ⁠ where

7521-427: The field structure. However, an ordered group (in this case, the additive group of the field) defines a uniform structure, and uniform structures have a notion of completeness ; the description in § Completeness is a special case. (We refer to the notion of completeness in uniform spaces rather than the related and better known notion for metric spaces , since the definition of metric space relies on already having

7630-800: The first decimal representation, all a n {\displaystyle a_{n}} are zero for n > h , {\displaystyle n>h,} and, in the second representation, all a n {\displaystyle a_{n}} 9. (see 0.999... for details). In summary, there is a bijection between the real numbers and the decimal representations that do not end with infinitely many trailing 9. The preceding considerations apply directly for every numeral base B ≥ 2 , {\displaystyle B\geq 2,} simply by replacing 10 with B {\displaystyle B} and 9 with B − 1. {\displaystyle B-1.} A main reason for using real numbers

7739-422: The form 1: x or x :1, where x is not necessarily an integer, to enable comparisons of different ratios. For example, the ratio 4:5 can be written as 1:1.25 (dividing both sides by 4) Alternatively, it can be written as 0.8:1 (dividing both sides by 5). Where the context makes the meaning clear, a ratio in this form is sometimes written without the 1 and the ratio symbol (:), though, mathematically, this makes it

7848-556: The identification of natural numbers with some real numbers is justified by the fact that Peano axioms are satisfied by these real numbers, with the addition with 1 taken as the successor function . Formally, one has an injective homomorphism of ordered monoids from the natural numbers N {\displaystyle \mathbb {N} } to the integers Z , {\displaystyle \mathbb {Z} ,} an injective homomorphism of ordered rings from Z {\displaystyle \mathbb {Z} } to

7957-433: The identity. (A field automorphism must fix 0 and 1; as it must fix the sum and the difference of two fixed elements, it must fix every integer; as it must fix the quotient of two fixed elements, it must fix every rational number, and is thus the identity.) ⁠ Q {\displaystyle \mathbb {Q} } ⁠ is a prime field , which is a field that has no subfield other than itself. The rationals are

8066-400: The lack of a widely used symbolism to replace the already established terminology of ratios delayed the full acceptance of fractions as alternative until the 16th century. Book V of Euclid's Elements has 18 definitions, all of which relate to ratios. In addition, Euclid uses ideas that were in such common usage that he did not include definitions for them. The first two definitions say that

8175-408: The least upper bound of the decimal fractions that are obtained by truncating the sequence: given a positive integer n , the truncation of the sequence at the place n is the finite partial sum The real number x defined by the sequence is the least upper bound of the D n , {\displaystyle D_{n},} which exists by Dedekind completeness. Conversely, given

8284-408: The limit of the sequence of these rational ratios is the irrational golden ratio. Similarly, the silver ratio of a and b is defined by the proportion This equation has the positive, irrational solution x = a b = 1 + 2 , {\displaystyle x={\tfrac {a}{b}}=1+{\sqrt {2}},} so again at least one of the two quantities a and b in

8393-605: The metric topology as epsilon-balls. The Dedekind cuts construction uses the order topology presentation, while the Cauchy sequences construction uses the metric topology presentation. The reals form a contractible (hence connected and simply connected ), separable and complete metric space of Hausdorff dimension  1. The real numbers are locally compact but not compact . There are various properties that uniquely specify them; for instance, all unbounded, connected, and separable order topologies are necessarily homeomorphic to

8502-464: The phrase "the complete Archimedean field". This sense of completeness is most closely related to the construction of the reals from Cauchy sequences (the construction carried out in full in this article), since it starts with an Archimedean field (the rationals) and forms the uniform completion of it in a standard way. But the original use of the phrase "complete Archimedean field" was by David Hilbert , who meant still something else by it. He meant that

8611-399: The positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2). The completeness property of the reals is the basis on which calculus , and more generally mathematical analysis , are built. In particular, the test that a sequence is a Cauchy sequence allows proving that a sequence has

8720-509: The positive, irrational solution x = a b = 1 + 5 2 . {\displaystyle x={\tfrac {a}{b}}={\tfrac {1+{\sqrt {5}}}{2}}.} Thus at least one of a and b has to be irrational for them to be in the golden ratio. An example of an occurrence of the golden ratio in math is as the limiting value of the ratio of two consecutive Fibonacci numbers : even though all these ratios are ratios of two integers and hence are rational,

8829-405: The quantities of any two of the entities covered by the ratio: for example, from a ratio of 2:3:7 we can infer that the quantity of the second entity is 3 7 {\displaystyle {\tfrac {3}{7}}} that of the third entity. If we multiply all quantities involved in a ratio by the same number, the ratio remains valid. For example, a ratio of 3:2 is the same as 12:8. It

8938-408: The ratio 2:3, the latter being obtained from the former by dividing both quantities by 20. Mathematically, we write 40:60 = 2:3, or equivalently 40:60∷2:3. The verbal equivalent is "40 is to 60 as 2 is to 3." A ratio that has integers for both quantities and that cannot be reduced any further (using integers) is said to be in simplest form or lowest terms. Sometimes it is useful to write a ratio in

9047-447: The rational number ⁠ m / n ⁠ (dividing both terms by nq ). Definition 6 says that quantities that have the same ratio are proportional or in proportion . Euclid uses the Greek ἀναλόγον (analogon), this has the same root as λόγος and is related to the English word "analog". Definition 7 defines what it means for one ratio to be less than or greater than another and

9156-466: The rational number ⁠ n 1 , {\displaystyle {\tfrac {n}{1}},} ⁠ which is its canonical form as a rational number. If both fractions are in canonical form, then: If both denominators are positive (particularly if both fractions are in canonical form): On the other hand, if either denominator is negative, then each fraction with a negative denominator must first be converted into an equivalent form with

9265-492: The rational numbers Q , {\displaystyle \mathbb {Q} ,} and an injective homomorphism of ordered fields from Q {\displaystyle \mathbb {Q} } to the real numbers R . {\displaystyle \mathbb {R} .} The identifications consist of not distinguishing the source and the image of each injective homomorphism, and thus to write These identifications are formally abuses of notation (since, formally,

9374-533: The rational numbers an ordered subfield of the real numbers R . {\displaystyle \mathbb {R} .} The Dedekind completeness described below implies that some real numbers, such as 2 , {\displaystyle {\sqrt {2}},} are not rational numbers; they are called irrational numbers . The above identifications make sense, since natural numbers, integers and real numbers are generally not defined by their individual nature, but by defining properties ( axioms ). So,

9483-400: The rational numbers, that extends the natural order of the integers. One has If The set ⁠ Q {\displaystyle \mathbb {Q} } ⁠ of all rational numbers, together with the addition and multiplication operations shown above, forms a field . ⁠ Q {\displaystyle \mathbb {Q} } ⁠ has no field automorphism other than

9592-464: The real number identified with n . {\displaystyle n.} Similarly a rational number p / q {\displaystyle p/q} (where p and q are integers and q ≠ 0 {\displaystyle q\neq 0} ) is identified with the division of the real numbers identified with p and q . These identifications make the set Q {\displaystyle \mathbb {Q} } of

9701-407: The real numbers ). The term rational in reference to the set ⁠ Q {\displaystyle \mathbb {Q} } ⁠ refers to the fact that a rational number represents a ratio of two integers. In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example,

9810-436: The real numbers form a real closed field . This implies the real version of the fundamental theorem of algebra , namely that every polynomial with real coefficients can be factored into polynomials with real coefficients of degree at most two. The most common way of describing a real number is via its decimal representation , a sequence of decimal digits each representing the product of an integer between zero and nine times

9919-417: The real numbers form the largest Archimedean field in the sense that every other Archimedean field is a subfield of R {\displaystyle \mathbb {R} } . Thus R {\displaystyle \mathbb {R} } is "complete" in the sense that nothing further can be added to it without making it no longer an Archimedean field. This sense of completeness is most closely related to

10028-429: The real numbers to the natural numbers. The cardinality of the set of all real numbers is denoted by c . {\displaystyle {\mathfrak {c}}.} and called the cardinality of the continuum . It is strictly greater than the cardinality of the set of all natural numbers (denoted ℵ 0 {\displaystyle \aleph _{0}} and called 'aleph-naught' ), and equals

10137-409: The reals. Ratio In mathematics , a ratio ( / ˈ r eɪ ʃ ( i ) oʊ / ) shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3). Similarly, the ratio of lemons to oranges is 6:8 (or 3:4) and the ratio of oranges to

10246-460: The result may be a reducible fraction —even if both original fractions are in canonical form. Every rational number ⁠ a b {\displaystyle {\tfrac {a}{b}}} ⁠ has an additive inverse , often called its opposite , If ⁠ a b {\displaystyle {\tfrac {a}{b}}} ⁠ is in canonical form, the same is true for its opposite. A nonzero rational number ⁠

10355-496: The resulting sequence of digits is called a decimal representation of x . Another decimal representation can be obtained by replacing ≤ x {\displaystyle \leq x} with < x {\displaystyle <x} in the preceding construction. These two representations are identical, unless x is a decimal fraction of the form m 10 h . {\textstyle {\frac {m}{10^{h}}}.} In this case, in

10464-554: The same dimension , even if their units of measurement are initially different. For example, the ratio one minute : 40 seconds can be reduced by changing the first value to 60 seconds, so the ratio becomes 60 seconds : 40 seconds . Once the units are the same, they can be omitted, and the ratio can be reduced to 3:2. On the other hand, there are non-dimensionless quotients, also known as rates (sometimes also as ratios). In chemistry, mass concentration ratios are usually expressed as weight/volume fractions. For example,

10573-425: The same cardinality as the reals. The real numbers form a metric space : the distance between x and y is defined as the absolute value | x − y | . By virtue of being a totally ordered set, they also carry an order topology ; the topology arising from the metric and the one arising from the order are identical, but yield different presentations for the topology—in the order topology as ordered intervals, in

10682-660: The sense that every ordered field contains a unique subfield isomorphic to ⁠ Q . {\displaystyle \mathbb {Q} .} ⁠ Real number In mathematics , a real number is a number that can be used to measure a continuous one- dimensional quantity such as a distance , duration or temperature . Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion . The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in

10791-427: The set of the pairs ( m, n ) of integers such n ≠ 0 . An equivalence relation is defined on this set by Addition and multiplication can be defined by the following rules: This equivalence relation is a congruence relation , which means that it is compatible with the addition and multiplication defined above; the set of rational numbers ⁠ Q {\displaystyle \mathbb {Q} } ⁠

10900-429: The silver ratio must be irrational. Odds (as in gambling) are expressed as a ratio. For example, odds of "7 to 3 against" (7:3) mean that there are seven chances that the event will not happen to every three chances that it will happen. The probability of success is 30%. In every ten trials, there are expected to be three wins and seven losses. Ratios may be unitless , as in the case they relate quantities in units of

11009-414: The smallest field with characteristic zero. Every field of characteristic zero contains a unique subfield isomorphic to ⁠ Q . {\displaystyle \mathbb {Q} .} ⁠ With the order defined above, ⁠ Q {\displaystyle \mathbb {Q} } ⁠ is an ordered field that has no subfield other than itself, and is the smallest ordered field, in

11118-507: The term "measure" as used here, However, one may infer that if a quantity is taken as a unit of measurement, and a second quantity is given as an integral number of these units, then the first quantity measures the second. These definitions are repeated, nearly word for word, as definitions 3 and 5 in book VII. Definition 3 describes what a ratio is in a general way. It is not rigorous in a mathematical sense and some have ascribed it to Euclid's editors rather than Euclid himself. Euclid defines

11227-420: The total amount of fruit is 8:14 (or 4:7). The numbers in a ratio may be quantities of any kind, such as counts of people or objects, or such as measurements of lengths, weights, time, etc. In most contexts, both numbers are restricted to be positive . A ratio may be specified either by giving both constituting numbers, written as " a to b " or " a:b ", or by giving just the value of their quotient ⁠

11336-548: The total and multiply by 100, we have converted to percentages : 25% A, 45% B, 20% C, and 10% D (equivalent to writing the ratio as 25:45:20:10). If the two or more ratio quantities encompass all of the quantities in a particular situation, it is said that "the whole" contains the sum of the parts: for example, a fruit basket containing two apples and three oranges and no other fruit is made up of two parts apples and three parts oranges. In this case, 2 5 {\displaystyle {\tfrac {2}{5}}} , or 40% of

11445-417: The total number of pieces of fruit is 2:5. These ratios can also be expressed in fraction form: there are 2/3 as many oranges as apples, and 2/5 of the pieces of fruit are oranges. If orange juice concentrate is to be diluted with water in the ratio 1:4, then one part of concentrate is mixed with four parts of water, giving five parts total; the amount of orange juice concentrate is 1/4 the amount of water, while

11554-601: The validity of the theory in geometry where, as the Pythagoreans also discovered, incommensurable ratios (corresponding to irrational numbers ) exist. The discovery of a theory of ratios that does not assume commensurability is probably due to Eudoxus of Cnidus . The exposition of the theory of proportions that appears in Book VII of The Elements reflects the earlier theory of ratios of commensurables. The existence of multiple theories seems unnecessarily complex since ratios are, to

11663-408: The whole is apples and 3 5 {\displaystyle {\tfrac {3}{5}}} , or 60% of the whole is oranges. This comparison of a specific quantity to "the whole" is called a proportion. If the ratio consists of only two values, it can be represented as a fraction, in particular as a decimal fraction. For example, older televisions have a 4:3 aspect ratio , which means that

11772-433: The width is 4/3 of the height (this can also be expressed as 1.33:1 or just 1.33 rounded to two decimal places). More recent widescreen TVs have a 16:9 aspect ratio, or 1.78 rounded to two decimal places. One of the popular widescreen movie formats is 2.35:1 or simply 2.35. Representing ratios as decimal fractions simplifies their comparison. When comparing 1.33, 1.78 and 2.35, it is obvious which format offers wider image. Such

11881-466: The word proportio ("proportion") to indicate ratio and proportionalitas ("proportionality") for the equality of ratios. Euclid collected the results appearing in the Elements from earlier sources. The Pythagoreans developed a theory of ratio and proportion as applied to numbers. The Pythagoreans' conception of number included only what would today be called rational numbers, casting doubt on

#850149