Mavica ( Magnetic Video Camera ) is a discontinued brand of Sony cameras which use removable disks as the main recording medium. On August 25, 1981, Sony unveiled a prototype of the Sony Mavica as the world's first electronic still video camera .
136-509: As with all Mavica cameras until the early 1990s (including later models sold commercially) this first model was not digital. Its CCD sensor produced an analog video signal in the NTSC format at a resolution of 570 × 490 pixels. Mavipak 2.0" disks (later adopted industry-wide as the Video Floppy and labelled "VF") were used to write 50 still frames onto tracks on disk. The pictures could be shown on
272-402: A Hermitian operator . In 1924, Satyendra Nath Bose derived Planck's law of black-body radiation without using any electromagnetism, but rather by using a modification of coarse-grained counting of phase space . Einstein showed that this modification is equivalent to assuming that photons are rigorously identical and that it implied a "mysterious non-local interaction", now understood as
408-423: A charge amplifier , which converts the charge into a voltage . By repeating this process, the controlling circuit converts the entire contents of the array in the semiconductor to a sequence of voltages. In a digital device, these voltages are then sampled, digitized, and usually stored in memory; in an analog device (such as an analog video camera), they are processed into a continuous analog signal (e.g. by feeding
544-521: A point-like particle since it is absorbed or emitted as a whole by arbitrarily small systems, including systems much smaller than its wavelength, such as an atomic nucleus (≈10 m across) or even the point-like electron . While many introductory texts treat photons using the mathematical techniques of non-relativistic quantum mechanics, this is in some ways an awkward oversimplification, as photons are by nature intrinsically relativistic. Because photons have zero rest mass , no wave function defined for
680-481: A shift register . The essence of the design was the ability to transfer charge along the surface of a semiconductor from one storage capacitor to the next. The concept was similar in principle to the bucket-brigade device (BBD), which was developed at Philips Research Labs during the late 1960s. The first experimental device demonstrating the principle was a row of closely spaced metal squares on an oxidized silicon surface electrically accessed by wire bonds. It
816-482: A CCD is the higher cost: the cell area is basically doubled, and more complex control electronics are needed. An intensified charge-coupled device (ICCD) is a CCD that is optically connected to an image intensifier that is mounted in front of the CCD. An image intensifier includes three functional elements: a photocathode , a micro-channel plate (MCP) and a phosphor screen. These three elements are mounted one close behind
952-744: A certain symmetry at every point in spacetime . The intrinsic properties of particles, such as charge , mass , and spin , are determined by gauge symmetry . The photon concept has led to momentous advances in experimental and theoretical physics, including lasers , Bose–Einstein condensation , quantum field theory , and the probabilistic interpretation of quantum mechanics. It has been applied to photochemistry , high-resolution microscopy , and measurements of molecular distances . Moreover, photons have been studied as elements of quantum computers , and for applications in optical imaging and optical communication such as quantum cryptography . The word quanta (singular quantum, Latin for how much )
1088-588: A certain threshold; light of frequency lower than the threshold, no matter how intense, does not initiate the reaction. Similarly, electrons can be ejected from a metal plate by shining light of sufficiently high frequency on it (the photoelectric effect ); the energy of the ejected electron is related only to the light's frequency, not to its intensity. At the same time, investigations of black-body radiation carried out over four decades (1860–1900) by various researchers culminated in Max Planck 's hypothesis that
1224-513: A charge is accelerated it emits synchrotron radiation . During a molecular , atomic or nuclear transition to a lower energy level , photons of various energy will be emitted, ranging from radio waves to gamma rays . Photons can also be emitted when a particle and its corresponding antiparticle are annihilated (for example, electron–positron annihilation ). In empty space, the photon moves at c (the speed of light ) and its energy and momentum are related by E = pc , where p
1360-467: A choice of measuring either one of two "canonically conjugate" quantities, like the position and the momentum of a particle. According to the uncertainty principle, no matter how the particle is prepared, it is not possible to make a precise prediction for both of the two alternative measurements: if the outcome of the position measurement is made more certain, the outcome of the momentum measurement becomes less so, and vice versa. A coherent state minimizes
1496-665: A cooling system—using either thermoelectric cooling or liquid nitrogen—to cool the chip down to temperatures in the range of −65 to −95 °C (−85 to −139 °F). This cooling system adds additional costs to the EMCCD imaging system and may yield condensation problems in the application. However, high-end EMCCD cameras are equipped with a permanent hermetic vacuum system confining the chip to avoid condensation issues. The low-light capabilities of EMCCDs find use in astronomy and biomedical research, among other fields. In particular, their low noise at high readout speeds makes them very useful for
SECTION 10
#17330850886501632-472: A dedicated Memory Stick slot), and a new CD Mavica series—which used 8 cm (3") CD-R / CD-RW media—was released in 2000. The first CD-based Mavica (MVC-CD1000), notable also for its 10× optical zoom, could only write to CD-R discs, but it was able to use its USB interface to read images from CDs not finalized (CDs with incomplete sessions). Subsequent models are more compact, with a reduced optical zoom, and are able to write to CD-RW discs. A couple of
1768-428: A factor of 2–3 compared to the surface-channel CCD. The gate oxide, i.e. the capacitor dielectric , is grown on top of the epitaxial layer and substrate. Later in the process, polysilicon gates are deposited by chemical vapor deposition , patterned with photolithography , and etched in such a way that the separately phased gates lie perpendicular to the channels. The channels are further defined by utilization of
1904-530: A feature that made them very popular in the North American market. With the evolution of consumer digital camera resolution ( megapixels ), the advent of the USB interface and the rise of high-capacity storage media, Mavicas started to offer other alternatives for recording images: the floppy-disk (FD) Mavicas began to be Memory Stick compatible (initially through a Memory Stick Floppy Disk adapter, but ultimately through
2040-555: A few percent. That image can then be read out slowly from the storage region while a new image is integrating or exposing in the active area. Frame-transfer devices typically do not require a mechanical shutter and were a common architecture for early solid-state broadcast cameras. The downside to the frame-transfer architecture is that it requires twice the silicon real estate of an equivalent full-frame device; hence, it costs roughly twice as much. The interline architecture extends this concept one step further and masks every other column of
2176-429: A full-frame device, all of the image area is active, and there is no electronic shutter. A mechanical shutter must be added to this type of sensor or the image smears as the device is clocked or read out. With a frame-transfer CCD, half of the silicon area is covered by an opaque mask (typically aluminum). The image can be quickly transferred from the image area to the opaque area or storage region with acceptable smear of
2312-592: A gain register is placed between the shift register and the output amplifier. The gain register is split up into a large number of stages. In each stage, the electrons are multiplied by impact ionization in a similar way to an avalanche diode . The gain probability at every stage of the register is small ( P < 2%), but as the number of elements is large (N > 500), the overall gain can be very high ( g = ( 1 + P ) N {\displaystyle g=(1+P)^{N}} ), with single input electrons giving many thousands of output electrons. Reading
2448-495: A gauge boson , below.) Einstein's 1905 predictions were verified experimentally in several ways in the first two decades of the 20th century, as recounted in Robert Millikan 's Nobel lecture. However, before Compton's experiment showed that photons carried momentum proportional to their wave number (1922), most physicists were reluctant to believe that electromagnetic radiation itself might be particulate. (See, for example,
2584-512: A geometric sum. However, Debye's approach failed to give the correct formula for the energy fluctuations of black-body radiation, which were derived by Einstein in 1909. In 1925, Born , Heisenberg and Jordan reinterpreted Debye's concept in a key way. As may be shown classically, the Fourier modes of the electromagnetic field —a complete set of electromagnetic plane waves indexed by their wave vector k and polarization state—are equivalent to
2720-475: A higher energy E i {\displaystyle E_{i}} is proportional to the number N j {\displaystyle N_{j}} of atoms with energy E j {\displaystyle E_{j}} and to the energy density ρ ( ν ) {\displaystyle \rho (\nu )} of ambient photons of that frequency, where B j i {\displaystyle B_{ji}}
2856-504: A higher energy E i {\displaystyle E_{i}} to a lower energy E j {\displaystyle E_{j}} is where A i j {\displaystyle A_{ij}} is the rate constant for emitting a photon spontaneously , and B i j {\displaystyle B_{ij}} is the rate constant for emissions in response to ambient photons ( induced or stimulated emission ). In thermodynamic equilibrium,
SECTION 20
#17330850886502992-401: A large lateral electric field from one gate to the next. This provides an additional driving force to aid in transfer of the charge packets. The CCD image sensors can be implemented in several different architectures. The most common are full-frame, frame-transfer, and interline. The distinguishing characteristic of each of these architectures is their approach to the problem of shuttering. In
3128-455: A light beam may have mixtures of these two values; a linearly polarized light beam will act as if it were composed of equal numbers of the two possible angular momenta. The spin angular momentum of light does not depend on its frequency, and was experimentally verified by C. V. Raman and S. Bhagavantam in 1931. The collision of a particle with its antiparticle can create photons. In free space at least two photons must be created since, in
3264-399: A non-equilibrium state called deep depletion. Then, when electron–hole pairs are generated in the depletion region, they are separated by the electric field, the electrons move toward the surface, and the holes move toward the substrate. Four pair-generation processes can be identified: The last three processes are known as dark-current generation, and add noise to the image; they can limit
3400-417: A p+ doped region underlying them, providing a further barrier to the electrons in the charge packets (this discussion of the physics of CCD devices assumes an electron transfer device, though hole transfer is possible). The clocking of the gates, alternately high and low, will forward and reverse bias the diode that is provided by the buried channel (n-doped) and the epitaxial layer (p-doped). This will cause
3536-590: A paper in which he proposed that many light-related phenomena—including black-body radiation and the photoelectric effect —would be better explained by modelling electromagnetic waves as consisting of spatially localized, discrete energy quanta. He called these a light quantum (German: ein Lichtquant ). The name photon derives from the Greek word for light, φῶς (transliterated phôs ). Arthur Compton used photon in 1928, referring to Gilbert N. Lewis , who coined
3672-459: A photon can have all the properties familiar from wave functions in non-relativistic quantum mechanics. In order to avoid these difficulties, physicists employ the second-quantized theory of photons described below, quantum electrodynamics , in which photons are quantized excitations of electromagnetic modes. Another difficulty is finding the proper analogue for the uncertainty principle , an idea frequently attributed to Heisenberg, who introduced
3808-399: A photon is calculated by equations that describe waves. This combination of aspects is known as wave–particle duality . For example, the probability distribution for the location at which a photon might be detected displays clearly wave-like phenomena such as diffraction and interference . A single photon passing through a double slit has its energy received at a point on the screen with
3944-402: A probability distribution given by its interference pattern determined by Maxwell's wave equations . However, experiments confirm that the photon is not a short pulse of electromagnetic radiation; a photon's Maxwell waves will diffract, but photon energy does not spread out as it propagates, nor does this energy divide when it encounters a beam splitter . Rather, the received photon acts like
4080-409: A reflective material such as aluminium. When the exposure time is up, the cells are transferred very rapidly to the hidden area. Here, safe from any incoming light, cells can be read out at any speed one deems necessary to correctly measure the cells' charge. At the same time, the exposed part of the CCD is collecting light again, so no delay occurs between successive exposures. The disadvantage of such
4216-410: A relatively simple assumption. He decomposed the electromagnetic field in a cavity into its Fourier modes , and assumed that the energy in any mode was an integer multiple of h ν {\displaystyle h\nu } , where ν {\displaystyle \nu } is the frequency of the electromagnetic mode. Planck's law of black-body radiation follows immediately as
Sony Mavica - Misplaced Pages Continue
4352-497: A semi-classical, statistical treatment of photons and atoms, which implies a link between the rates at which atoms emit and absorb photons. The condition follows from the assumption that functions of the emission and absorption of radiation by the atoms are independent of each other, and that thermal equilibrium is made by way of the radiation's interaction with the atoms. Consider a cavity in thermal equilibrium with all parts of itself and filled with electromagnetic radiation and that
4488-450: A semiclassical approach, and, in 1927, succeeded in deriving all the rate constants from first principles within the framework of quantum theory. Dirac's work was the foundation of quantum electrodynamics, i.e., the quantization of the electromagnetic field itself. Dirac's approach is also called second quantization or quantum field theory ; earlier quantum mechanical treatments only treat material particles as quantum mechanical, not
4624-460: A set of uncoupled simple harmonic oscillators . Treated quantum mechanically, the energy levels of such oscillators are known to be E = n h ν {\displaystyle E=nh\nu } , where ν {\displaystyle \nu } is the oscillator frequency. The key new step was to identify an electromagnetic mode with energy E = n h ν {\displaystyle E=nh\nu } as
4760-445: A signal from a CCD gives a noise background, typically a few electrons. In an EMCCD, this noise is superimposed on many thousands of electrons rather than a single electron; the devices' primary advantage is thus their negligible readout noise. The use of avalanche breakdown for amplification of photo charges had already been described in the U.S. patent 3,761,744 in 1973 by George E. Smith/Bell Telephone Laboratories. EMCCDs show
4896-422: A similar sensitivity to intensified CCDs (ICCDs). However, as with ICCDs, the gain that is applied in the gain register is stochastic and the exact gain that has been applied to a pixel's charge is impossible to know. At high gains (> 30), this uncertainty has the same effect on the signal-to-noise ratio (SNR) as halving the quantum efficiency (QE) with respect to operation with a gain of unity. This effect
5032-416: A single slice of the image, whereas a two-dimensional array, used in video and still cameras, captures a two-dimensional picture corresponding to the scene projected onto the focal plane of the sensor. Once the array has been exposed to the image, a control circuit causes each capacitor to transfer its contents to its neighbor (operating as a shift register). The last capacitor in the array dumps its charge into
5168-399: A state with n {\displaystyle n} photons, each of energy h ν {\displaystyle h\nu } . This approach gives the correct energy fluctuation formula. Dirac took this one step further. He treated the interaction between a charge and an electromagnetic field as a small perturbation that induces transitions in the photon states, changing
5304-518: A television screen, using a "special playback viewer unit" plugged into the television set. During the late 1990s and early 2000s, Sony reused the Mavica name for a number of digital (rather than analog) cameras that used standard 3.5" floppy disk or 8 cm CD-R media for storage. The initial prototype demonstrated in 1981 supported video capture at ten pictures per second, and hopes were expressed that this could be increased to sixty pictures per second before
5440-424: A time. During the readout phase, cells are shifted down the entire area of the CCD. While they are shifted, they continue to collect light. Thus, if the shifting is not fast enough, errors can result from light that falls on a cell holding charge during the transfer. These errors are referred to as "vertical smear" and cause a strong light source to create a vertical line above and below its exact location. In addition,
5576-414: A unit related to the illumination of the eye and the resulting sensation of light and was used later in a physiological context. Although Wolfers's and Lewis's theories were contradicted by many experiments and never accepted, the new name was adopted by most physicists very soon after Compton used it. In physics, a photon is usually denoted by the symbol γ (the Greek letter gamma ). This symbol for
Sony Mavica - Misplaced Pages Continue
5712-464: A variety of astronomical applications involving low light sources and transient events such as lucky imaging of faint stars, high speed photon counting photometry, Fabry-Pérot spectroscopy and high-resolution spectroscopy. More recently, these types of CCDs have broken into the field of biomedical research in low-light applications including small animal imaging , single-molecule imaging , Raman spectroscopy , super resolution microscopy as well as
5848-429: A wide variety of modern fluorescence microscopy techniques thanks to greater SNR in low-light conditions in comparison with traditional CCDs and ICCDs. Photon A photon (from Ancient Greek φῶς , φωτός ( phôs, phōtós ) 'light') is an elementary particle that is a quantum of the electromagnetic field , including electromagnetic radiation such as light and radio waves , and
5984-410: Is a photoactive region (an epitaxial layer of silicon), and a transmission region made out of a shift register (the CCD, properly speaking). An image is projected through a lens onto the capacitor array (the photoactive region), causing each capacitor to accumulate an electric charge proportional to the light intensity at that location. A one-dimensional array, used in line-scan cameras, captures
6120-432: Is a specialized CCD, often used in astronomy and some professional video cameras , designed for high exposure efficiency and correctness. The normal functioning of a CCD, astronomical or otherwise, can be divided into two phases: exposure and readout. During the first phase, the CCD passively collects incoming photons , storing electrons in its cells. After the exposure time is passed, the cells are read out one line at
6256-402: Is an integrated circuit containing an array of linked, or coupled, capacitors . Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a major technology used in digital imaging . In a CCD image sensor , pixels are represented by p-doped metal–oxide–semiconductor (MOS) capacitors . These MOS capacitors ,
6392-483: Is not quantized, but matter appears to obey the laws of quantum mechanics . Although the evidence from chemical and physical experiments for the existence of photons was overwhelming by the 1970s, this evidence could not be considered as absolutely definitive; since it relied on the interaction of light with matter, and a sufficiently complete theory of matter could in principle account for the evidence. Nevertheless, all semiclassical theories were refuted definitively in
6528-557: Is one of the major advantages of the ICCD over the EMCCD cameras. The highest performing ICCD cameras enable shutter times as short as 200 picoseconds . ICCD cameras are in general somewhat higher in price than EMCCD cameras because they need the expensive image intensifier. On the other hand, EMCCD cameras need a cooling system to cool the EMCCD chip down to temperatures around 170 K (−103 °C ). This cooling system adds additional costs to
6664-555: Is referred to as the Excess Noise Factor (ENF). However, at very low light levels (where the quantum efficiency is most important), it can be assumed that a pixel either contains an electron—or not. This removes the noise associated with the stochastic multiplication at the risk of counting multiple electrons in the same pixel as a single electron. To avoid multiple counts in one pixel due to coincident photons in this mode of operation, high frame rates are essential. The dispersion in
6800-505: Is the gauge boson for electromagnetism , and therefore all other quantum numbers of the photon (such as lepton number , baryon number , and flavour quantum numbers ) are zero. Also, the photon obeys Bose–Einstein statistics , and not Fermi–Dirac statistics . That is, they do not obey the Pauli exclusion principle and more than one can occupy the same bound quantum state. Photons are emitted in many natural processes. For example, when
6936-414: Is the magnitude of the momentum vector p . This derives from the following relativistic relation, with m = 0 : The energy and momentum of a photon depend only on its frequency ( ν {\displaystyle \nu } ) or inversely, its wavelength ( λ ): where k is the wave vector , where Since p {\displaystyle {\boldsymbol {p}}} points in
SECTION 50
#17330850886507072-512: Is the rate constant for absorption. For the reverse process, there are two possibilities: spontaneous emission of a photon, or the emission of a photon initiated by the interaction of the atom with a passing photon and the return of the atom to the lower-energy state. Following Einstein's approach, the corresponding rate R i j {\displaystyle R_{ij}} for the emission of photons of frequency ν {\displaystyle \nu } and transition from
7208-427: Is the photon's frequency . The photon has no electric charge , is generally considered to have zero rest mass and is a stable particle . The experimental upper limit on the photon mass is very small, on the order of 10 kg; its lifetime would be more than 10 years. For comparison the age of the universe is about 1.38 × 10 years. In a vacuum, a photon has two possible polarization states. The photon
7344-512: Is the probability of getting n output electrons given m input electrons and a total mean multiplication register gain of g . For very large numbers of input electrons, this complex distribution function converges towards a Gaussian. Because of the lower costs and better resolution, EMCCDs are capable of replacing ICCDs in many applications. ICCDs still have the advantage that they can be gated very fast and thus are useful in applications like range-gated imaging . EMCCD cameras indispensably need
7480-422: Is the right choice. Consumer snap-shot cameras have used interline devices. On the other hand, for those applications that require the best possible light collection and issues of money, power and time are less important, the full-frame device is the right choice. Astronomers tend to prefer full-frame devices. The frame-transfer falls in between and was a common choice before the fill-factor issue of interline devices
7616-405: Is used in the construction of interline-transfer devices. Another version of CCD is called a peristaltic CCD. In a peristaltic charge-coupled device, the charge-packet transfer operation is analogous to the peristaltic contraction and dilation of the digestive system . The peristaltic CCD has an additional implant that keeps the charge away from the silicon/ silicon dioxide interface and generates
7752-671: The Kodak Apparatus Division, invented a digital still camera using this same Fairchild 100 × 100 CCD in 1975. The interline transfer (ILT) CCD device was proposed by L. Walsh and R. Dyck at Fairchild in 1973 to reduce smear and eliminate a mechanical shutter . To further reduce smear from bright light sources, the frame-interline-transfer (FIT) CCD architecture was developed by K. Horii, T. Kuroda and T. Kunii at Matsushita (now Panasonic) in 1981. The first KH-11 KENNEN reconnaissance satellite equipped with charge-coupled device array ( 800 × 800 pixels) technology for imaging
7888-558: The LOCOS process to produce the channel stop region. Channel stops are thermally grown oxides that serve to isolate the charge packets in one column from those in another. These channel stops are produced before the polysilicon gates are, as the LOCOS process utilizes a high-temperature step that would destroy the gate material. The channel stops are parallel to, and exclusive of, the channel, or "charge carrying", regions. Channel stops often have
8024-499: The center of momentum frame , the colliding antiparticles have no net momentum, whereas a single photon always has momentum (determined by the photon's frequency or wavelength, which cannot be zero). Hence, conservation of momentum (or equivalently, translational invariance ) requires that at least two photons are created, with zero net momentum. The energy of the two photons, or, equivalently, their frequency, may be determined from conservation of four-momentum . Seen another way,
8160-458: The degeneracy of the state i {\displaystyle i} and that of j {\displaystyle j} , respectively, E i {\displaystyle E_{i}} and E j {\displaystyle E_{j}} their energies, k {\displaystyle k} the Boltzmann constant and T {\displaystyle T}
8296-423: The energy of a Maxwellian light wave were localized into point-like quanta that move independently of one another, even if the wave itself is spread continuously over space. In 1909 and 1916, Einstein showed that, if Planck's law regarding black-body radiation is accepted, the energy quanta must also carry momentum p = h / λ , making them full-fledged particles. This photon momentum
SECTION 60
#17330850886508432-439: The force carrier for the electromagnetic force . Photons are massless particles that always move at the speed of light measured in vacuum. The photon belongs to the class of boson particles. As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality , their behavior featuring properties of both waves and particles . The modern photon concept originated during
8568-473: The photodiode to the CCD. This led to their invention of the pinned photodiode, a photodetector structure with low lag, low noise , high quantum efficiency and low dark current . It was first publicly reported by Teranishi and Ishihara with A. Kohono, E. Oda and K. Arai in 1982, with the addition of an anti-blooming structure. The new photodetector structure invented at NEC was given the name "pinned photodiode" (PPD) by B.C. Burkey at Kodak in 1984. In 1987,
8704-476: The photoelectric effect , Einstein introduced the idea that light itself is made of discrete units of energy. In 1926, Gilbert N. Lewis popularized the term photon for these energy units. Subsequently, many other experiments validated Einstein's approach. In the Standard Model of particle physics , photons and other elementary particles are described as a necessary consequence of physical laws having
8840-407: The probability amplitude of observable events is calculated by summing over all possible intermediate steps, even ones that are unphysical; hence, virtual photons are not constrained to satisfy E = p c {\displaystyle E=pc} , and may have extra polarization states; depending on the gauge used, virtual photons may have three or four polarization states, instead of
8976-415: The 1970s and 1980s by photon-correlation experiments. Hence, Einstein's hypothesis that quantization is a property of light itself is considered to be proven. Photons obey the laws of quantum mechanics, and so their behavior has both wave-like and particle-like aspects. When a photon is detected by a measuring instrument, it is registered as a single, particulate unit. However, the probability of detecting
9112-399: The CCD cannot be used to collect light while it is being read out. A faster shifting requires a faster readout, and a faster readout can introduce errors in the cell charge measurement, leading to a higher noise level. A frame transfer CCD solves both problems: it has a shielded, not light sensitive, area containing as many cells as the area exposed to light. Typically, this area is covered by
9248-402: The CCD concept. Michael Tompsett was awarded the 2010 National Medal of Technology and Innovation , for pioneering work and electronic technologies including the design and development of the first CCD imagers. He was also awarded the 2012 IEEE Edison Medal for "pioneering contributions to imaging devices including CCD Imagers, cameras and thermal imagers". In a CCD for capturing images, there
9384-545: The CCD to deplete, near the p–n junction and will collect and move the charge packets beneath the gates—and within the channels—of the device. CCD manufacturing and operation can be optimized for different uses. The above process describes a frame transfer CCD. While CCDs may be manufactured on a heavily doped p++ wafer it is also possible to manufacture a device inside p-wells that have been placed on an n-wafer. This second method, reportedly, reduces smear, dark current , and infrared and red response. This method of manufacture
9520-473: The CCD-G5, was released by Sony in 1983, based on a prototype developed by Yoshiaki Hagiwara in 1981. Early CCD sensors suffered from shutter lag . This was largely resolved with the invention of the pinned photodiode (PPD). It was invented by Nobukazu Teranishi , Hiromitsu Shiraki and Yasuo Ishihara at NEC in 1980. They recognized that lag can be eliminated if the signal carriers could be transferred from
9656-404: The EMCCD camera and often yields heavy condensation problems in the application. ICCDs are used in night vision devices and in various scientific applications. An electron-multiplying CCD (EMCCD, also known as an L3Vision CCD, a product commercialized by e2v Ltd., GB, L3CCD or Impactron CCD, a now-discontinued product offered in the past by Texas Instruments) is a charge-coupled device in which
9792-625: The Mavigraph, employing cyan, magenta, yellow and black dye-transfer sheets and capable of producing prints of up to 120mm x 160mm on A5 paper, made up of the 480 lines from the captured images, in a five-minute process. The unreleased original MAVICA as well as the later ProMavica MVC-5000 and MVC-7000 were designed as single-lens reflex systems with interchangeable lenses. At least the ProMavica MVC-7000 also featured lens mount adapters for Nikon and Canon lenses. The VF format soon evolved into
9928-543: The Maxwell theory of light allows for all possible energies of electromagnetic radiation, most physicists assumed initially that the energy quantization resulted from some unknown constraint on the matter that absorbs or emits the radiation. In 1905, Einstein was the first to propose that energy quantization was a property of electromagnetic radiation itself. Although he accepted the validity of Maxwell's theory, Einstein pointed out that many anomalous experiments could be explained if
10064-466: The Nobel lectures of Wien , Planck and Millikan.) Instead, there was a widespread belief that energy quantization resulted from some unknown constraint on the matter that absorbed or emitted radiation. Attitudes changed over time. In part, the change can be traced to experiments such as those revealing Compton scattering , where it was much more difficult not to ascribe quantization to light itself to explain
10200-593: The PPD began to be incorporated into most CCD devices, becoming a fixture in consumer electronic video cameras and then digital still cameras . Since then, the PPD has been used in nearly all CCD sensors and then CMOS sensors . In January 2006, Boyle and Smith were awarded the National Academy of Engineering Charles Stark Draper Prize , and in 2009 they were awarded the Nobel Prize for Physics for their invention of
10336-451: The array's dark current , improving the sensitivity of the CCD to low light intensities, even for ultraviolet and visible wavelengths. Professional observatories often cool their detectors with liquid nitrogen to reduce the dark current, and therefore the thermal noise , to negligible levels. The frame transfer CCD imager was the first imaging structure proposed for CCD Imaging by Michael Tompsett at Bell Laboratories. A frame transfer CCD
10472-438: The atoms can emit and absorb that radiation. Thermal equilibrium requires that the energy density ρ ( ν ) {\displaystyle \rho (\nu )} of photons with frequency ν {\displaystyle \nu } (which is proportional to their number density ) is, on average, constant in time; hence, the rate at which photons of any particular frequency are emitted must equal
10608-527: The average across many interactions between matter and radiation. However, refined Compton experiments showed that the conservation laws hold for individual interactions. Accordingly, Bohr and his co-workers gave their model "as honorable a funeral as possible". Nevertheless, the failures of the BKS model inspired Werner Heisenberg in his development of matrix mechanics . A few physicists persisted in developing semiclassical models in which electromagnetic radiation
10744-460: The backward-compatible Hi-VF format, supported by the ProMavica MVC-7000 and the Hi-Band Mavica models. From the late 1990s on, Sony released a number of cameras based on digital (rather than analog) technology under the "Digital Mavica", "FD Mavica" and "CD Mavica" brands. The earliest of these digital models recorded onto 3.5" 1.4 MiB 2HD floppy disks in computer-readable DOS FAT12 format,
10880-692: The basic building blocks of a CCD, are biased above the threshold for inversion when image acquisition begins, allowing the conversion of incoming photons into electron charges at the semiconductor-oxide interface; the CCD is then used to read out these charges. Although CCDs are not the only technology to allow for light detection, CCD image sensors are widely used in professional, medical, and scientific applications where high-quality image data are required. In applications with less exacting quality demands, such as consumer and professional digital cameras , active pixel sensors , also known as CMOS sensors (complementary MOS sensors), are generally used. However,
11016-426: The channel in which the photogenerated charge packets will travel. Simon Sze details the advantages of a buried-channel device: This thin layer (= 0.2–0.3 micron) is fully depleted and the accumulated photogenerated charge is kept away from the surface. This structure has the advantages of higher transfer efficiency and lower dark current, from reduced surface recombination. The penalty is smaller charge capacity, by
11152-447: The charge could be stepped along from one to the next. This led to the invention of the charge-coupled device by Boyle and Smith in 1969. They conceived of the design of what they termed, in their notebook, "Charge 'Bubble' Devices". The initial paper describing the concept in April 1970 listed possible uses as memory , a delay line, and an imaging device. The device could also be used as
11288-486: The coefficients A i j {\displaystyle A_{ij}} , B j i {\displaystyle B_{ji}} and B i j {\displaystyle B_{ij}} once physicists had obtained "mechanics and electrodynamics modified to accommodate the quantum hypothesis". Not long thereafter, in 1926, Paul Dirac derived the B i j {\displaystyle B_{ij}} rate constants by using
11424-418: The concept in analyzing a thought experiment involving an electron and a high-energy photon . However, Heisenberg did not give precise mathematical definitions of what the "uncertainty" in these measurements meant. The precise mathematical statement of the position–momentum uncertainty principle is due to Kennard , Pauli , and Weyl . The uncertainty principle applies to situations where an experimenter has
11560-466: The direction of the photon's propagation, the magnitude of its momentum is The photon also carries spin angular momentum , which is related to photon polarization . (Beams of light also exhibit properties described as orbital angular momentum of light ). The angular momentum of the photon has two possible values, either +ħ or −ħ . These two possible values correspond to the two possible pure states of circular polarization . Collections of photons in
11696-484: The electric field of an atomic nucleus. The classical formulae for the energy and momentum of electromagnetic radiation can be re-expressed in terms of photon events. For example, the pressure of electromagnetic radiation on an object derives from the transfer of photon momentum per unit time and unit area to that object, since pressure is force per unit area and force is the change in momentum per unit time. Current commonly accepted physical theories imply or assume
11832-450: The electromagnetic field. Einstein was troubled by the fact that his theory seemed incomplete, since it did not determine the direction of a spontaneously emitted photon. A probabilistic nature of light-particle motion was first considered by Newton in his treatment of birefringence and, more generally, of the splitting of light beams at interfaces into a transmitted beam and a reflected beam. Newton hypothesized that hidden variables in
11968-487: The electromagnetic wave, Δ N {\displaystyle \Delta N} , and the uncertainty in the phase of the wave, Δ ϕ {\displaystyle \Delta \phi } . However, this cannot be an uncertainty relation of the Kennard–Pauli–Weyl type, since unlike position and momentum, the phase ϕ {\displaystyle \phi } cannot be represented by
12104-441: The energy of any system that absorbs or emits electromagnetic radiation of frequency ν is an integer multiple of an energy quantum E = hν . As shown by Albert Einstein , some form of energy quantization must be assumed to account for the thermal equilibrium observed between matter and electromagnetic radiation ; for this explanation of the photoelectric effect, Einstein received the 1921 Nobel Prize in physics. Since
12240-501: The final blow to particle models of light. The Maxwell wave theory , however, does not account for all properties of light. The Maxwell theory predicts that the energy of a light wave depends only on its intensity , not on its frequency ; nevertheless, several independent types of experiments show that the energy imparted by light to atoms depends only on the light's frequency, not on its intensity. For example, some chemical reactions are provoked only by light of frequency higher than
12376-411: The first two decades of the 20th century with the work of Albert Einstein , who built upon the research of Max Planck . While Planck was trying to explain how matter and electromagnetic radiation could be in thermal equilibrium with one another, he proposed that the energy stored within a material object should be regarded as composed of an integer number of discrete, equal-sized parts. To explain
12512-819: The gain is shown in the graph on the right. For multiplication registers with many elements and large gains it is well modelled by the equation: P ( n ) = ( n − m + 1 ) m − 1 ( m − 1 ) ! ( g − 1 + 1 m ) m exp ( − n − m + 1 g − 1 + 1 m ) if n ≥ m {\displaystyle P\left(n\right)={\frac {\left(n-m+1\right)^{m-1}}{\left(m-1\right)!\left(g-1+{\frac {1}{m}}\right)^{m}}}\exp \left(-{\frac {n-m+1}{g-1+{\frac {1}{m}}}}\right)\quad {\text{ if }}n\geq m} where P
12648-418: The galactic vector potential . Although the galactic vector potential is large because the galactic magnetic field exists on great length scales, only the magnetic field would be observable if the photon is massless. In the case that the photon has mass, the mass term 1 / 2 m A μ A would affect the galactic plasma. The fact that no such effects are seen implies an upper bound on
12784-657: The galactic vector potential have been shown to be model-dependent. If the photon mass is generated via the Higgs mechanism then the upper limit of m ≲ 10 eV/ c from the test of Coulomb's law is valid. In most theories up to the eighteenth century, light was pictured as being made of particles. Since particle models cannot easily account for the refraction , diffraction and birefringence of light, wave theories of light were proposed by René Descartes (1637), Robert Hooke (1665), and Christiaan Huygens (1678); however, particle models remained dominant, chiefly due to
12920-506: The image sensor for storage. In this device, only one pixel shift has to occur to transfer from image area to storage area; thus, shutter times can be less than a microsecond and smear is essentially eliminated. The advantage is not free, however, as the imaging area is now covered by opaque strips dropping the fill factor to approximately 50 percent and the effective quantum efficiency by an equivalent amount. Modern designs have addressed this deleterious characteristic by adding microlenses on
13056-497: The incident light. Most common types of CCDs are sensitive to near-infrared light, which allows infrared photography , night-vision devices, and zero lux (or near zero lux) video-recording/photography. For normal silicon-based detectors, the sensitivity is limited to 1.1 μm. One other consequence of their sensitivity to infrared is that infrared from remote controls often appears on CCD-based digital cameras or camcorders if they do not have infrared blockers. Cooling reduces
13192-404: The influence of Isaac Newton . In the early 19th century, Thomas Young and August Fresnel clearly demonstrated the interference and diffraction of light, and by 1850 wave models were generally accepted. James Clerk Maxwell 's 1865 prediction that light was an electromagnetic wave – which was confirmed experimentally in 1888 by Heinrich Hertz 's detection of radio waves – seemed to be
13328-467: The invention and began development programs. Fairchild's effort, led by ex-Bell researcher Gil Amelio, was the first with commercial devices, and by 1974 had a linear 500-element device and a 2D 100 × 100 pixel device. Peter Dillon, a scientist at Kodak Research Labs, invented the first color CCD image sensor by overlaying a color filter array on this Fairchild 100 x 100 pixel Interline CCD starting in 1974. Steven Sasson , an electrical engineer working for
13464-431: The large quality advantage CCDs enjoyed early on has narrowed over time and since the late 2010s CMOS sensors are the dominant technology, having largely if not completely replaced CCD image sensors. The basis for the CCD is the metal–oxide–semiconductor (MOS) structure, with MOS capacitors being the basic building blocks of a CCD, and a depleted MOS structure used as the photodetector in early CCD devices. In
13600-411: The late 1960s, Willard Boyle and George E. Smith at Bell Labs were researching MOS technology while working on semiconductor bubble memory . They realized that an electric charge was the analogy of the magnetic bubble and that it could be stored on a tiny MOS capacitor. As it was fairly straightforward to fabricate a series of MOS capacitors in a row, they connected a suitable voltage to them so that
13736-455: The light particle determined which of the two paths a single photon would take. Similarly, Einstein hoped for a more complete theory that would leave nothing to chance, beginning his separation from quantum mechanics. Ironically, Max Born 's probabilistic interpretation of the wave function was inspired by Einstein's later work searching for a more complete theory. In 1910, Peter Debye derived Planck's law of black-body radiation from
13872-567: The models were formed with a single lens reflex component combined with an interchangeable lens. And to give them flexibility, one or two versions also had lens mount adapters. The Mavica line has been discontinued. Sony continues to produce digital cameras in the Cyber-shot and Alpha series, which use Memory Stick and other flash card technologies for storage. There were other digital cameras that used disk storage as memory media: Charge-coupled device A charge-coupled device ( CCD )
14008-464: The multiplied electrons back to photons which are guided to the CCD by a fiber optic or a lens. An image intensifier inherently includes a shutter functionality: If the control voltage between the photocathode and the MCP is reversed, the emitted photoelectrons are not accelerated towards the MCP but return to the photocathode. Thus, no electrons are multiplied and emitted by the MCP, no electrons are going to
14144-418: The number of atoms in state i {\displaystyle i} and those in state j {\displaystyle j} must, on average, be constant; hence, the rates R j i {\displaystyle R_{ji}} and R i j {\displaystyle R_{ij}} must be equal. Also, by arguments analogous to the derivation of Boltzmann statistics ,
14280-509: The numbers of photons in the modes, while conserving energy and momentum overall. Dirac was able to derive Einstein's A i j {\displaystyle A_{ij}} and B i j {\displaystyle B_{ij}} coefficients from first principles, and showed that the Bose–Einstein statistics of photons is a natural consequence of quantizing the electromagnetic field correctly (Bose's reasoning went in
14416-470: The observed results. Even after Compton's experiment, Niels Bohr , Hendrik Kramers and John Slater made one last attempt to preserve the Maxwellian continuous electromagnetic field model of light, the so-called BKS theory . An important feature of the BKS theory is how it treated the conservation of energy and the conservation of momentum . In the BKS theory, energy and momentum are only conserved on
14552-472: The opposite direction; he derived Planck's law of black-body radiation by assuming B–E statistics). In Dirac's time, it was not yet known that all bosons, including photons, must obey Bose–Einstein statistics. Dirac's second-order perturbation theory can involve virtual photons , transient intermediate states of the electromagnetic field; the static electric and magnetic interactions are mediated by such virtual photons. In such quantum field theories ,
14688-413: The other in the mentioned sequence. The photons which are coming from the light source fall onto the photocathode, thereby generating photoelectrons. The photoelectrons are accelerated towards the MCP by an electrical control voltage, applied between photocathode and MCP. The electrons are multiplied inside of the MCP and thereafter accelerated towards the phosphor screen. The phosphor screen finally converts
14824-491: The output of the CCD, and this must be taken into consideration in satellites using CCDs. The photoactive region of a CCD is, generally, an epitaxial layer of silicon . It is lightly p doped (usually with boron ) and is grown upon a substrate material, often p++. In buried-channel devices, the type of design utilized in most modern CCDs, certain areas of the surface of the silicon are ion implanted with phosphorus , giving them an n-doped designation. This region defines
14960-447: The output of the charge amplifier into a low-pass filter), which is then processed and fed out to other circuits for transmission, recording, or other processing. Before the MOS capacitors are exposed to light, they are biased into the depletion region; in n-channel CCDs, the silicon under the bias gate is slightly p -doped or intrinsic. The gate is then biased at a positive potential, above
15096-405: The overall uncertainty as far as quantum mechanics allows. Quantum optics makes use of coherent states for modes of the electromagnetic field. There is a tradeoff, reminiscent of the position–momentum uncertainty relation, between measurements of an electromagnetic wave's amplitude and its phase. This is sometimes informally expressed in terms of the uncertainty in the number of photons present in
15232-407: The phosphor screen and no light is emitted from the image intensifier. In this case no light falls onto the CCD, which means that the shutter is closed. The process of reversing the control voltage at the photocathode is called gating and therefore ICCDs are also called gateable CCD cameras. Besides the extremely high sensitivity of ICCD cameras, which enable single photon detection, the gateability
15368-400: The photon can be considered as its own antiparticle (thus an "antiphoton" is simply a normal photon with opposite momentum, equal polarization, and 180° out of phase). The reverse process, pair production , is the dominant mechanism by which high-energy photons such as gamma rays lose energy while passing through matter. That process is the reverse of "annihilation to one photon" allowed in
15504-463: The photon mass of m < 3 × 10 eV/ c . The galactic vector potential can also be probed directly by measuring the torque exerted on a magnetized ring. Such methods were used to obtain the sharper upper limit of 1.07 × 10 eV/ c (the equivalent of 10 daltons ) given by the Particle Data Group . These sharp limits from the non-observation of the effects caused by
15640-463: The photon probably derives from gamma rays , which were discovered in 1900 by Paul Villard , named by Ernest Rutherford in 1903, and shown to be a form of electromagnetic radiation in 1914 by Rutherford and Edward Andrade . In chemistry and optical engineering , photons are usually symbolized by hν , which is the photon energy , where h is the Planck constant and the Greek letter ν ( nu )
15776-473: The photon to be strictly massless. If photons were not purely massless, their speeds would vary with frequency, with lower-energy (redder) photons moving slightly slower than higher-energy photons. Relativity would be unaffected by this; the so-called speed of light, c , would then not be the actual speed at which light moves, but a constant of nature which is the upper bound on speed that any object could theoretically attain in spacetime. Thus, it would still be
15912-410: The product was launched. Despite the lower image quality compared to traditional film, Japanese news professionals had reportedly been "plaguing the firm with requests for the camera" according to Sony, anticipating the potential convenience of handling pictures in a form that would be readily compatible with computing and telecommunications devices. Sony also demonstrated a thermal transfer printer called
16048-444: The rate at which they are absorbed . Einstein began by postulating simple proportionality relations for the different reaction rates involved. In his model, the rate R j i {\displaystyle R_{ji}} for a system to absorb a photon of frequency ν {\displaystyle \nu } and transition from a lower energy E j {\displaystyle E_{j}} to
16184-524: The ratio of N i {\displaystyle N_{i}} and N j {\displaystyle N_{j}} is g i / g j exp ( E j − E i ) / ( k T ) , {\displaystyle g_{i}/g_{j}\exp {(E_{j}-E_{i})/(kT)},} where g i {\displaystyle g_{i}} and g j {\displaystyle g_{j}} are
16320-405: The requirement for a symmetric quantum mechanical state . This work led to the concept of coherent states and the development of the laser. In the same papers, Einstein extended Bose's formalism to material particles (bosons) and predicted that they would condense into their lowest quantum state at low enough temperatures; this Bose–Einstein condensation was observed experimentally in 1995. It
16456-465: The speed of light. If Coulomb's law is not exactly valid, then that would allow the presence of an electric field to exist within a hollow conductor when it is subjected to an external electric field. This provides a means for precision tests of Coulomb's law . A null result of such an experiment has set a limit of m ≲ 10 eV/ c . Sharper upper limits on the mass of light have been obtained in experiments designed to detect effects caused by
16592-412: The speed of spacetime ripples ( gravitational waves and gravitons ), but it would not be the speed of photons. If a photon did have non-zero mass, there would be other effects as well. Coulomb's law would be modified and the electromagnetic field would have an extra physical degree of freedom . These effects yield more sensitive experimental probes of the photon mass than the frequency dependence of
16728-489: The summation as well; for example, two photons may interact indirectly through virtual electron – positron pairs . Such photon–photon scattering (see two-photon physics ), as well as electron–photon scattering, is meant to be one of the modes of operations of the planned particle accelerator, the International Linear Collider . In modern physics notation, the quantum state of the electromagnetic field
16864-406: The surface of the device to direct light away from the opaque regions and on the active area. Microlenses can bring the fill factor back up to 90 percent or more depending on pixel size and the overall system's optical design. The choice of architecture comes down to one of utility. If the application cannot tolerate an expensive, failure-prone, power-intensive mechanical shutter, an interline device
17000-582: The system's temperature . From this, it is readily derived that g i B i j = g j B j i {\displaystyle g_{i}B_{ij}=g_{j}B_{ji}} and The A i j {\displaystyle A_{ij}} and B i j {\displaystyle B_{ij}} are collectively known as the Einstein coefficients . Einstein could not fully justify his rate equations, but claimed that it should be possible to calculate
17136-565: The term in a letter to Nature on 18 December 1926. The same name was used earlier but was never widely adopted before Lewis: in 1916 by the American physicist and psychologist Leonard T. Troland , in 1921 by the Irish physicist John Joly , in 1924 by the French physiologist René Wurmser (1890–1993), and in 1926 by the French physicist Frithiof Wolfers (1891–1971). The name was suggested initially as
17272-407: The threshold for strong inversion, which will eventually result in the creation of an n channel below the gate as in a MOSFET . However, it takes time to reach this thermal equilibrium: up to hours in high-end scientific cameras cooled at low temperature. Initially after biasing, the holes are pushed far into the substrate, and no mobile electrons are at or near the surface; the CCD thus operates in
17408-456: The total usable integration time. The accumulation of electrons at or near the surface can proceed either until image integration is over and charge begins to be transferred, or thermal equilibrium is reached. In this case, the well is said to be full. The maximum capacity of each well is known as the well depth, typically about 10 electrons per pixel. CCDs are normally susceptible to ionizing radiation and energetic particles which causes noise in
17544-423: The two states of real photons. Although these transient virtual photons can never be observed, they contribute measurably to the probabilities of observable events. Indeed, such second-order and higher-order perturbation calculations can give apparently infinite contributions to the sum. Such unphysical results are corrected for using the technique of renormalization . Other virtual particles may contribute to
17680-550: Was a simple 8-bit shift register, reported by Tompsett, Amelio and Smith in August 1970. This device had input and output circuits and was used to demonstrate its use as a shift register and as a crude eight pixel linear imaging device. Development of the device progressed at a rapid rate. By 1971, Bell researchers led by Michael Tompsett were able to capture images with simple linear devices. Several companies, including Fairchild Semiconductor , RCA and Texas Instruments , picked up on
17816-479: Was addressed. Today, frame-transfer is usually chosen when an interline architecture is not available, such as in a back-illuminated device. CCDs containing grids of pixels are used in digital cameras , optical scanners , and video cameras as light-sensing devices. They commonly respond to 70 percent of the incident light (meaning a quantum efficiency of about 70 percent) making them far more efficient than photographic film , which captures only about 2 percent of
17952-450: Was demonstrated by Gil Amelio , Michael Francis Tompsett and George Smith in April 1970. This was the first experimental application of the CCD in image sensor technology, and used a depleted MOS structure as the photodetector. The first patent ( U.S. patent 4,085,456 ) on the application of CCDs to imaging was assigned to Tompsett, who filed the application in 1971. The first working CCD made with integrated circuit technology
18088-441: Was later used by Lene Hau to slow, and then completely stop, light in 1999 and 2001. The modern view on this is that photons are, by virtue of their integer spin, bosons (as opposed to fermions with half-integer spin). By the spin-statistics theorem , all bosons obey Bose–Einstein statistics (whereas all fermions obey Fermi–Dirac statistics ). In 1916, Albert Einstein showed that Planck's radiation law could be derived from
18224-466: Was launched in December 1976. Under the leadership of Kazuo Iwama , Sony started a large development effort on CCDs involving a significant investment. Eventually, Sony managed to mass-produce CCDs for their camcorders . Before this happened, Iwama died in August 1982. Subsequently, a CCD chip was placed on his tombstone to acknowledge his contribution. The first mass-produced consumer CCD video camera ,
18360-493: Was observed experimentally by Arthur Compton , for which he received the Nobel Prize in 1927. The pivotal question then, was how to unify Maxwell's wave theory of light with its experimentally observed particle nature. The answer to this question occupied Albert Einstein for the rest of his life, and was solved in quantum electrodynamics and its successor, the Standard Model . (See § Quantum field theory and § As
18496-533: Was used before 1900 to mean particles or amounts of different quantities , including electricity . In 1900, the German physicist Max Planck was studying black-body radiation , and he suggested that the experimental observations, specifically at shorter wavelengths , would be explained if the energy stored within a molecule was a "discrete quantity composed of an integral number of finite equal parts", which he called "energy elements". In 1905, Albert Einstein published
#649350