The Climate Action Plan is an environmental plan by Barack Obama , the 44th President of the United States, that proposed a reduction in carbon dioxide emissions . It included preserving forests, encouraging alternate fuels, and increasing the study of climate change . The plan was first prepared in 2008 and was then updated every two years.
101-572: President Obama's last Climate Action Plan, issued in June 2013, included regulations for the industry with the ultimate goal of cutting domestic carbon emission, preparing the U.S. for impending effects of climate change , and working internationally to address climate change . Among the regulations outlined in the plan were initiatives to increase natural disaster preparedness , create and improve existing hospitals, and modernize infrastructure to withstand better extreme weather . The plan would have supported
202-464: A rise in sea levels due to the expansion of water as it warms and the melting ice sheets on land. Other effects on oceans include sea ice decline , reducing pH values and oxygen levels , as well as increased ocean stratification . All this can lead to changes of ocean currents , for example a weakening of the Atlantic meridional overturning circulation (AMOC). The main cause of these changes are
303-711: A sink or a source of carbon, depending on the specific wetland. If they function as a carbon sink, they can help with climate change mitigation . However, wetlands can also be a significant source of methane emissions due to anaerobic decomposition of soaked detritus , and some are also emitters of nitrous oxide . Humans are disturbing and damaging wetlands in many ways, including oil and gas extraction , building infrastructure, overgrazing of livestock , overfishing , alteration of wetlands including dredging and draining, nutrient pollution , and water pollution . Wetlands are more threatened by environmental degradation than any other ecosystem on Earth, according to
404-482: A bigger impact. The impacts of climate change on nature are likely to become bigger in the next few decades. The stresses caused by climate change, combine with other stresses on ecological systems such as land conversion, land degradation , harvesting, and pollution. They threaten substantial damage to unique ecosystems. They can even result in their complete loss and the extinction of species. This can disrupt key interactions between species within ecosystems. This
505-517: A cascade of effects. This remains a possibility even well below 2 °C (3.6 °F) of warming. A 2018 study states that 45% of environmental problems, including those caused by climate change, are interconnected. This increases the risk of a domino effect . Further impacts may be irreversible, at least over the timescale of many human generations. This includes warming of the deep ocean and acidification. These are set to continue even when global temperatures stop rising. In biological systems,
606-480: A fire starts in an area with very dry vegetation, it can spread rapidly. Higher temperatures can also lengthen the fire season. This is the time of year in which severe wildfires are most likely, particularly in regions where snow is disappearing. Weather conditions are raising the risks of wildfires. But the total area burnt by wildfires has decreased. This is mostly because savanna has been converted to cropland , so there are fewer trees to burn. Prescribed burning
707-402: A frequency and duration to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally included swamps, marshes, bogs, and similar areas.' For each of these definitions and others, regardless of the purpose, hydrology is emphasized (shallow waters, water-logged soils). The soil characteristics and
808-870: A high risk at 2.5 °C (4.5 °F). It is possible that some tipping points are close or have already been crossed. Examples are the West Antarctic and Greenland ice sheets, the Amazon rainforest, and warm-water coral reefs. Tipping points are perhaps the most dangerous aspect of future climate change, potentially leading to irreversible impacts on society. A collapse of the Atlantic meridional overturning circulation would likely halve rainfall in India and lead to severe drops in temperature in Northern Europe. Many tipping points are interlinked such that triggering one may lead to
909-525: A lot year by year. This makes it difficult to determine a trend, and record highs and record lows have been observed between 2013 and 2023. The general trend since 1979, the start of the satellite measurements , has been roughly flat. Between 2015 and 2023, there has been a decline in sea ice, but due to the high variability, this does not correspond to a significant trend. Globally, permafrost warmed by about 0.3 °C between 2007 and 2016. The extent of permafrost has been falling for decades. More decline
1010-1248: A polar climate, wetland temperatures can be as low as −50 °C (−58 °F). Peatlands in arctic and subarctic regions insulate the permafrost , thus delaying or preventing its thawing during summer, as well as inducing its formation. The amount of precipitation a wetland receives varies widely according to its area. Wetlands in Wales , Scotland , and western Ireland typically receive about 1,500 mm (59 in) per year. In some places in Southeast Asia , where heavy rains occur, they can receive up to 10,000 mm (390 in). In some drier regions, wetlands exist where as little as 180 mm (7.1 in) precipitation occurs each year. Temporal variation: Surface flow may occur in some segments, with subsurface flow in other segments. Wetlands vary widely due to local and regional differences in topography , hydrology , vegetation , and other factors, including human involvement. Other important factors include fertility, natural disturbance, competition, herbivory , burial and salinity. When peat accumulates, bogs and fens arise. The most important factor producing wetlands
1111-540: A portion of the overall water cycle, which also includes atmospheric water (precipitation) and groundwater . Many wetlands are directly linked to groundwater and they can be a crucial regulator of both the quantity and quality of water found below the ground. Wetlands that have permeable substrates like limestone or occur in areas with highly variable and fluctuating water tables have especially important roles in groundwater replenishment or water recharge. Substrates that are porous allow water to filter down through
SECTION 10
#17328730191901212-581: A range of activities around the world that seek to ameliorate these issues or prevent them from happening. The effects of climate change vary in timing and location. Up until now the Arctic has warmed faster than most other regions due to climate change feedbacks . Surface air temperatures over land have also increased at about twice the rate they do over the ocean, causing intense heat waves . These temperatures would stabilize if greenhouse gas emissions were brought under control . Ice sheets and oceans absorb
1313-463: A rate of decline of 4.7% per decade. It has declined over 50% since the first satellite records. Ice-free summers are expected to be rare at 1.5 °C (2.7 °F) degrees of warming. They are set to occur at least once every decade with a warming level of 2 °C (3.6 °F). The Arctic will likely become ice-free at the end of some summers before 2050. Sea ice extent in Antarctica varies
1414-422: A strong influence on wetland water chemistry, particularly in coastal wetlands and in arid and semiarid regions with large precipitation deficits. Natural salinity is regulated by interactions between ground and surface water, which may be influenced by human activity. Carbon is the major nutrient cycled within wetlands. Most nutrients, such as sulfur , phosphorus , carbon , and nitrogen are found within
1515-469: A thousand years, 20% to 30% of human-emitted CO 2 would remain in the atmosphere. The ocean and land would not have taken them. This would commit the climate to a warmer state long after emissions have stopped. With current mitigation policies the temperature will be about 2.7 °C (2.0–3.6 °C) above pre-industrial levels by 2100. It would rise by 2.4 °C (4.3 °F) if governments achieved all their unconditional pledges and targets. If all
1616-410: A unique kind of wetland where lush plant growth and slow decay of dead plants (under anoxic conditions) results in organic peat accumulating; bogs, fens, and mires are different names for peatlands. Variations of names for wetland systems: Some wetlands have localized names unique to a region such as the prairie potholes of North America's northern plain, pocosins , Carolina bays and baygalls of
1717-508: A wetland is "an ecosystem that arises when inundation by water produces soils dominated by anaerobic and aerobic processes, which, in turn, forces the biota, particularly rooted plants, to adapt to flooding". Sometimes a precise legal definition of a wetland is required. The definition used for regulation by the United States government is: 'The term "wetlands" means those areas that are inundated or saturated by surface or ground water at
1818-422: A wetland system includes its plants ( flora ) and animals ( fauna ) and microbes (bacteria, fungi). The most important factor is the wetland's duration of flooding. Other important factors include fertility and salinity of the water or soils. The chemistry of water flowing into wetlands depends on the source of water, the geological material that it flows through and the nutrients discharged from organic matter in
1919-403: A wetland) affects hydro-periods (temporal fluctuations in water levels) by controlling the water balance and water storage within a wetland. Landscape characteristics control wetland hydrology and water chemistry. The O 2 and CO 2 concentrations of water depend upon temperature , atmospheric pressure and mixing with the air (from winds or water flows). Water chemistry within wetlands
2020-558: A whole. To replace these wetland ecosystem services , enormous amounts of money would need to be spent on water purification plants, dams, levees, and other hard infrastructure, and many of the services are impossible to replace. Floodplains and closed-depression wetlands can provide the functions of storage reservoirs and flood protection. The wetland system of floodplains is formed from major rivers downstream from their headwaters . "The floodplains of major rivers act as natural storage reservoirs, enabling excess water to spread out over
2121-577: A wide area, which reduces its depth and speed. Wetlands close to the headwaters of streams and rivers can slow down rainwater runoff and spring snowmelt so that it does not run straight off the land into water courses. This can help prevent sudden, damaging floods downstream." Notable river systems that produce wide floodplains include the Nile River , the Niger river inland delta, the Zambezi River flood plain,
SECTION 20
#17328730191902222-452: Is a greenhouse gas, so this process is a self-reinforcing feedback . The excess water vapour also gets caught up in storms. This makes them more intense, larger, and potentially longer-lasting. This in turn causes rain and snow events to become stronger and leads to increased risk of flooding. Extra drying worsens natural dry spells and droughts. This increases risk of heat waves and wildfires. Scientists have identified human activities as
2323-478: Is a mean annual temperature below 29 °C. As of May 2023, 60 million people lived outside this niche. With every additional 0.1 degree of warming, 140 million people will be pushed out of it. Wetlands A wetland is a distinct semi-aquatic ecosystem whose groundcovers are flooded or saturated in water , either permanently, for years or decades, or only seasonally. Flooding results in oxygen -poor ( anoxic ) processes taking place, especially in
2424-458: Is a self-reinforcing feedback of climate change. Large-scale measurements of sea ice have only been possible since satellites came into use. Sea ice in the Arctic has declined in recent decades in area and volume due to climate change. It has been melting more in summer than it refreezes in winter. The decline of sea ice in the Arctic has been accelerating during the early twenty-first century. It has
2525-602: Is an indigenous practice in the US and Australia. It can reduce wildfire burning. The carbon released from wildfires adds to carbon dioxide in Earth's atmosphere and therefore contributes to the greenhouse effect . Climate models do not yet fully reflect this climate change feedback . There are many effects of climate change on oceans . One of the most important is an increase in ocean temperatures . More frequent marine heatwaves are linked to this. The rising temperature contributes to
2626-483: Is approximately 1600 gigatons. This is twice the atmospheric pool. Recent warming has had a big effect on natural biological systems. Species worldwide are moving poleward to colder areas. On land, species may move to higher elevations. Marine species find colder water at greater depths. Climate change had the third biggest impact on nature out of various factors in the five decades up to 2020. Only change in land use and sea use and direct exploitation of organisms had
2727-776: Is because species from one location do not leave the warming habitat at the same rate. The result is rapid changes in the way the ecosystem functions. Impacts include changes in regional rainfall patterns. Another is earlier leafing of trees and plants over many regions. Movements of species to higher latitudes and altitudes, changes in bird migrations, and shifting of the oceans' plankton and fish from cold- to warm-adapted communities are other impacts. These changes of land and ocean ecosystems have direct effects on human well-being. For instance, ocean ecosystems help with coastal protection and provide food. Freshwater and land ecosystems can provide water for human consumption. Furthermore, these ecosystems can store carbon. This helps to stabilize
2828-440: Is determined by the pH , salinity , nutrients, conductivity , soil composition, hardness , and the sources of water. Water chemistry varies across landscapes and climatic regions. Wetlands are generally minerotrophic (waters contain dissolved materials from soils) with the exception of ombrotrophic bogs that are fed only by water from precipitation. Because bogs receive most of their water from precipitation and humidity from
2929-629: Is either freshwater , brackish or saltwater . The main types of wetland are defined based on the dominant plants and the source of the water. For example, marshes are wetlands dominated by emergent herbaceous vegetation such as reeds , cattails and sedges . Swamps are dominated by woody vegetation such as trees and shrubs (although reed swamps in Europe are dominated by reeds, not trees). Mangrove forest are wetlands with mangroves , halophytic woody plants that have evolved to tolerate salty water . Examples of wetlands classified by
3030-413: Is expected in the future. Permafrost thaw makes the ground weaker and unstable. The thaw can seriously damage human infrastructure in permafrost areas such as railways, settlements and pipelines. Thawing soil can also release methane and CO 2 from decomposing microbes. This can generate a strong feedback loop to global warming . Some scientists believe that carbon storage in permafrost globally
3131-497: Is expected to become rarer. This depends on several factors. These include changes in rain and snowmelt, but also soil moisture . Climate change leaves soils drier in some areas, so they may absorb rainfall more quickly. This leads to less flooding. Dry soils can also become harder. In this case heavy rainfall runs off into rivers and lakes. This increases risks of flooding. Climate change affects many factors associated with droughts . These include how much rain falls and how fast
Presidential Climate Action Plan - Misplaced Pages Continue
3232-412: Is hydrology, or flooding . The duration of flooding or prolonged soil saturation by groundwater determines whether the resulting wetland has aquatic, marsh or swamp vegetation . Other important factors include soil fertility, natural disturbance, competition, herbivory , burial, and salinity. When peat from dead plants accumulates, bogs and fens develop. Wetland hydrology is associated with
3333-460: Is limited evidence for its importance. A partial collapse of the ice sheet would lead to rapid sea level rise and a local decrease in ocean salinity. It would be irreversible for decades and possibly even millennia. The complete loss of the West Antarctic ice sheet would cause over 5 metres (16 ft) of sea level rise. In contrast to the West Antarctic ice sheet, melt of the Greenland ice sheet
3434-458: Is projected to take place more gradually over millennia. Sustained warming between 1 °C (1.8 °F) (low confidence) and 4 °C (7.2 °F) (medium confidence) would lead to a complete loss of the ice sheet. This would contribute 7 m (23 ft) to sea levels globally. The ice loss could become irreversible due to a further self-enhancing feedback. This is called the elevation-surface mass balance feedback. When ice melts on top of
3535-467: Is related to temperature. It also increases if humidity is higher. The wet-bulb temperature measures both temperature and humidity. Humans cannot adapt to a wet-bulb temperature above 35 °C (95 °F). This heat stress can kill people. If global warming is kept below 1.5 or 2 °C (2.7 or 3.6 °F), it will probably be possible to avoid this deadly heat and humidity in most of the tropics. But there may still be negative health impacts. There
3636-478: Is some evidence climate change is leading to a weakening of the polar vortex . This would make the jet stream more wavy. This would lead to outbursts of very cold winter weather across parts of Eurasia and North America and incursions of very warm air into the Arctic. Warming increases global average precipitation . Precipitation is when water vapour condenses out of clouds, such as rain and snow. Higher temperatures increase evaporation and surface drying. As
3737-451: Is the only place in the world where both crocodiles and alligators coexist. The saltwater crocodile inhabits estuaries and mangroves. Snapping turtles also inhabit wetlands. Birds , particularly waterfowl and waders use wetlands extensively. Mammals of wetlands include numerous small and medium-sized species such as voles , bats , muskrats and platypus in addition to large herbivorous and apex predator species such as
3838-563: Is to investigate past natural changes in climate. To assess changes in Earth's past climate scientists have studied tree rings , ice cores , corals , and ocean and lake sediments . These show that recent temperatures have surpassed anything in the last 2,000 years. By the end of the 21st century, temperatures may increase to a level last seen in the mid-Pliocene . This was around 3 million years ago. At that time, mean global temperatures were about 2–4 °C (3.6–7.2 °F) warmer than pre-industrial temperatures. The global mean sea level
3939-545: Is usually saturated with water". More precisely, wetlands are areas where "water covers the soil , or is present either at or near the surface of the soil all year or for varying periods of time during the year, including during the growing season". A patch of land that develops pools of water after a rain storm would not necessarily be considered a "wetland", even though the land is wet. Wetlands have unique characteristics: they are generally distinguished from other water bodies or landforms based on their water level and on
4040-786: The Amazon Rainforest . At 2 °C (3.6 °F) of warming, around 10% of species on land would become critically endangered. Humans are vulnerable to climate change in many ways. Sources of food and fresh water can be threatened by environmental changes. Human health can be impacted by weather extremes or by ripple effects like the spread of infectious diseases . Economic impacts include changes to agriculture , fisheries , and forestry . Higher temperatures will increasingly prevent outdoor labor in tropical latitudes due to heat stress . Island nations and coastal cities may be inundated by rising sea levels. Some groups of people may be particularly at risk from climate change, such as
4141-451: The Amazon rainforest is recycled when it evaporates back into the atmosphere instead of running off away from the rainforest. This water is essential for sustaining the rainforest. Due to deforestation the rainforest is losing this ability. This effect is even worse because climate change brings more frequent droughts to the area. The higher frequency of droughts in the first two decades of
Presidential Climate Action Plan - Misplaced Pages Continue
4242-492: The Millennium Ecosystem Assessment from 2005. Methods exist for assessing wetland ecological health . These methods have contributed to wetland conservation by raising public awareness of the functions that wetlands can provide. Since 1971, work under an international treaty seeks to identify and protect " wetlands of international importance ." A simplified definition of wetland is "an area of land that
4343-666: The Pantanal in South America, and the Sundarbans in the Ganges - Brahmaputra delta. Wetlands contribute many ecosystem services that benefit people. These include for example water purification , stabilization of shorelines, storm protection and flood control . In addition, wetlands also process and condense carbon (in processes called carbon fixation and sequestration ), and other nutrients and water pollutants . Wetlands can act as
4444-444: The atmosphere , their water usually has low mineral ionic composition. In contrast, wetlands fed by groundwater or tides have a higher concentration of dissolved nutrients and minerals. Fen peatlands receive water both from precipitation and ground water in varying amounts so their water chemistry ranges from acidic with low levels of dissolved minerals to alkaline with high accumulation of calcium and magnesium . Salinity has
4545-576: The beavers , coypu , swamp rabbit , Florida panther , jaguar , and moose . Wetlands attract many mammals due to abundant seeds, berries, and other vegetation as food for herbivores, as well as abundant populations of invertebrates, small reptiles and amphibians as prey for predators. Invertebrates of wetlands include aquatic insects such as dragonflies , aquatic bugs and beetles , midges, mosquitos , crustaceans such as crabs, crayfish, shrimps, microcrustaceans, mollusks like clams, mussels, snails and worms. Invertebrates comprise more than half of
4646-418: The climate system include an overall warming trend , changes to precipitation patterns , and more extreme weather . As the climate changes it impacts the natural environment with effects such as more intense forest fires , thawing permafrost , and desertification . These changes impact ecosystems and societies, and can become irreversible once tipping points are crossed. Climate activists are engaged in
4747-415: The emissions of greenhouse gases from human activities, mainly burning of fossil fuels and deforestation . Carbon dioxide and methane are examples of greenhouse gases. The additional greenhouse effect leads to ocean warming because the ocean takes up most of the additional heat in the climate system . The ocean also absorbs some of the extra carbon dioxide that is in the atmosphere . This causes
4848-415: The outlet glaciers . Future melt of the West Antarctic ice sheet is potentially abrupt under a high emission scenario, as a consequence of a partial collapse. Part of the ice sheet is grounded on bedrock below sea level. This makes it possibly vulnerable to the self-enhancing process of marine ice sheet instability . Marine ice cliff instability could also contribute to a partial collapse. But there
4949-415: The pH value of the seawater to drop . Scientists estimate that the ocean absorbs about 25% of all human-caused CO 2 emissions. The various layers of the oceans have different temperatures. For example, the water is colder towards the bottom of the ocean. This temperature stratification will increase as the ocean surface warms due to rising air temperatures. Connected to this is a decline in mixing of
5050-468: The poor , children , and indigenous peoples . Industrialised countries , which have emitted the vast majority of CO 2 , have more resources to adapt to global warming than developing nations do. Cumulative effects and extreme weather events can lead to displacement and migration . Global warming affects all parts of Earth's climate system . Global surface temperatures have risen by 1.1 °C (2.0 °F). Scientists say they will rise further in
5151-607: The soils . Wetlands form a transitional zone between waterbodies and dry lands , and are different from other terrestrial or aquatic ecosystems due to their vegetation 's roots having adapted to oxygen-poor waterlogged soils . They are considered among the most biologically diverse of all ecosystems, serving as habitats to a wide range of aquatic and semi-aquatic plants and animals , with often improved water quality due to plant removal of excess nutrients such as nitrates and phosphorus . Wetlands exist on every continent , except Antarctica . The water in wetlands
SECTION 50
#17328730191905252-410: The 21st century and other data signal that a tipping point from rainforest to savanna might be close. A 2019 study concluded that this ecosystem could begin a 50-year-long collapse to a savanna around 2021. After that it would become increasingly and disproportionally more difficult to prevent or reverse this shift. Marine heatwaves are happening more often. They have widespread impacts on life in
5353-443: The 21st century the hotter the world will be by 2100. For a doubling of greenhouse gas concentrations, the global mean temperature would rise by about 2.5–4 °C (4.5–7.2 °F). If emissions of CO 2 stopped abruptly and there was no use of negative emission technologies , the Earth's climate would not start moving back to its pre-industrial state. Temperatures would stay at the same high level for several centuries. After about
5454-579: The Himalayas in Asia, the retreat of glaciers could impact water supply. The melting of those glaciers could also cause landslides or glacial lake outburst floods . The melting of the Greenland and West Antarctic ice sheets will continue to contribute to sea level rise over long time-scales. The Greenland ice sheet loss is mainly driven by melt from the top. Antarctic ice loss is driven by warm ocean water melting
5555-670: The Inauguration Day of U.S. president Joe Biden , Trump's executive order was revoked by the executive order "Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis", thereby reinstating the Obama Climate Action Plan. Effects of climate change Effects of climate change are well documented and growing for Earth's natural environment and human societies. Changes to
5656-619: The Okavango River inland delta, the Kafue River flood plain, the Lake Bangweulu flood plain (Africa), Mississippi River (US), Amazon River (South America), Yangtze River (China), Danube River (Central Europe) and Murray-Darling River (Australia). Groundwater replenishment can be achieved for example by marsh , swamp , and subterranean karst and cave hydrological systems. The surface water visibly seen in wetlands only represents
5757-511: The Southeastern US, mallines of Argentina, Mediterranean seasonal ponds of Europe and California, turloughs of Ireland, billabongs of Australia, among many others. Wetlands are found throughout the world in different climates. Temperatures vary greatly depending on the location of the wetland. Many of the world's wetlands are in the temperate zones , midway between the North or South Poles and
5858-449: The US, the best known classifications are the Cowardin classification system and the hydrogeomorphic (HGM) classification system. The Cowardin system includes five main types of wetlands: marine (ocean-associated), estuarine (mixed ocean- and river-associated), riverine (within river channels), lacustrine (lake-associated) and palustrine (inland nontidal habitats). Peatlands are
5959-610: The United States' commercial fish and shellfish stocks depend solely on estuaries to survive. Amphibians such as frogs and salamanders need both terrestrial and aquatic habitats in which to reproduce and feed. Because amphibians often inhabit depressional wetlands like prairie potholes and Carolina bays, the connectivity among these isolated wetlands is an important control of regional populations. While tadpoles feed on algae, adult frogs forage on insects. Frogs are sometimes used as an indicator of ecosystem health because their thin skin permits absorption of nutrients and toxins from
6060-451: The air warms it can hold more water. For every degree Celsius it can hold 7% more water vapour . Scientists have observed changes in the amount, intensity, frequency, and type of precipitation. Overall, climate change is causing longer hot dry spells, broken by more intense rainfall. Climate change has increased contrasts in rainfall amounts between wet and dry seasons. Wet seasons are getting wetter and dry seasons are getting drier. In
6161-508: The atmosphere. The ecosystems most immediately threatened by climate change are in the mountains , coral reefs , and the Arctic . Excess heat is causing environmental changes in those locations that exceed the ability of animals to adapt. Species are escaping heat by migrating towards the poles and to higher ground when they can. Sea level rise threatens coastal wetlands with flooding . Decreases in soil moisture in certain locations can cause desertification and damage ecosystems like
SECTION 60
#17328730191906262-456: The cause of recent climate trends. They are now able to estimate the impact of climate change on extreme weather events using a process called extreme event attribution . For instance such research can look at historical data for a region and conclude that a specific heat wave was more intense due to climate change. In addition , the time shifts of the season onsets, changes in the length of the season durations have been reported in many regions of
6363-601: The climate system. Climate change is a major driver of biodiversity loss in different land types. These include cool conifer forests, savannas , mediterranean-climate systems, tropical forests , and the Arctic tundra . In other ecosystems, land-use change may be a stronger driver of biodiversity loss, at least in the near term. Beyond 2050, climate change may be the major cause of biodiversity loss globally. Climate change interacts with other pressures. These include habitat modification, pollution and invasive species . Through this interaction, climate change increases
6464-410: The conservation of land and water resources and developed actionable climate science, and encouraged other countries to take action to address climate change, including reducing deforestation and lowering subsidies that increase the use of fossil fuels . The plan specifically mentioned methane, building efficiency, wind, solar and hydroelectricity. White House staff members who were directly tasked with
6565-465: The countries that have set or are considering net-zero targets achieve them, the temperature will rise by around 1.8 °C (3.2 °F). There is a big gap between national plans and commitments and the actions that governments have taken around the world. The lower and middle atmosphere, where nearly all weather occurs, are heating due to the greenhouse effect . Evaporation and atmospheric moisture content increase as temperatures rise. Water vapour
6666-622: The equator. In these zones, summers are warm and winters are cold, but temperatures are not extreme. In subtropical zone wetlands, such as along the Gulf of Mexico , average temperatures might be 11 °C (52 °F). Wetlands in the tropics are subjected to much higher temperatures for a large portion of the year. Temperatures for wetlands on the Arabian Peninsula can exceed 50 °C (122 °F) and these habitats would therefore be subject to rapid evaporation. In northeastern Siberia , which has
6767-415: The extinction of species would be an irreversible impact. In social systems, unique cultures may be lost. Climate change could make it more likely that endangered languages disappear. Humans have a climate niche. This is a certain range of temperatures in which they flourish. Outside that niche, conditions are less favourable. This leads to negative effects on health, food security and more. This niche
6868-555: The far western Sahel. Storms become wetter under climate change. These include tropical cyclones and extratropical cyclones . Both the maximum and mean rainfall rates increase. This more extreme rainfall is also true for thunderstorms in some regions. Furthermore, tropical cyclones and storm tracks are moving towards the poles. This means some regions will see large changes in maximum wind speeds. Scientists expect there will be fewer tropical cyclones. But they expect their strength to increase. There has probably been an increase in
6969-494: The following areas: According to the Ramsar Convention: The economic worth of the ecosystem services provided to society by intact, naturally functioning wetlands is frequently much greater than the perceived benefits of converting them to 'more valuable' intensive land use – particularly as the profits from unsustainable use often go to relatively few individuals or corporations, rather than being shared by society as
7070-442: The future. The changes in climate are not uniform across the Earth. In particular, most land areas have warmed faster than most ocean areas. The Arctic is warming faster than most other regions. Night-time temperatures have increased faster than daytime temperatures. The impact on nature and people depends on how much more the Earth warms. Scientists use several methods to predict the effects of human-caused climate change. One
7171-429: The ice sheet, the elevation drops. Air temperature is higher at lower altitudes, so this promotes further melting. Sea ice reflects 50% to 70% of the incoming solar radiation back into space. Only 6% of incoming solar energy is reflected by the ocean. As the climate warms, the area covered by snow or sea ice decreases. After sea ice melts, more energy is absorbed by the ocean, so it warms up. This ice-albedo feedback
7272-731: The impact of acidification. Warm-water coral reefs are very sensitive to global warming and ocean acidification. Coral reefs provide a habitat for thousands of species. They provide ecosystem services such as coastal protection and food. But 70–90% of today's warm-water coral reefs will disappear even if warming is kept to 1.5 °C (2.7 °F). Coral reefs are framework organisms. They build physical structures that form habitats for other sea creatures. Other framework organisms are also at risk from climate change. Mangroves and seagrass are considered to be at moderate risk from lower levels of global warming. The climate system exhibits "threshold behavior" or tipping points when parts of
7373-486: The implementation of the plan included Heather Zichal and Michelle Patron . On the first day of the presidency of Donald Trump , the White House website announced that Obama's Climate Action Plan would be eliminated, stating it is "harmful and unnecessary". In March 2017, Trump signed an executive order to officially nullify Obama's Clean Power Plan in an effort, it said, of reviving the coal industry. In January 2021, on
7474-472: The intensity of individual heat waves to global warming. Some extreme events would have been nearly impossible without human influence on the climate system. A heatwave that would occur once every ten years before global warming started now occurs 2.8 times as often. Under further warming, heatwaves are set to become more frequent. An event that would occur every ten years would occur every other year if global warming reaches 2 °C (3.6 °F). Heat stress
7575-464: The interface between truly terrestrial ecosystems and aquatic systems, making them inherently different from each other, yet highly dependent on both." In environmental decision-making, there are subsets of definitions that are agreed upon to make regulatory and policy decisions. Under the Ramsar international wetland conservation treaty , wetlands are defined as follows: An ecological definition of
7676-462: The known animal species in wetlands, and are considered the primary food web link between plants and higher animals (such as fish and birds). Depending on a wetland's geographic and topographic location, the functions it performs can support multiple ecosystem services , values, or benefits. United Nations Millennium Ecosystem Assessment and Ramsar Convention described wetlands as a whole to be of biosphere significance and societal importance in
7777-463: The largest declines have been observed in the spring. During the 21st century, snow cover is projected to continue its retreat in almost all regions. Since the beginning of the twentieth century, there has been a widespread retreat of glaciers . Those glaciers that are not associated with the polar ice sheets lost around 8% of their mass between 1971 and 2019. In the Andes in South America and in
7878-494: The natural environment enter into a new state. Examples are the runaway loss of ice sheets or the dieback of forests. Tipping behavior is found in all parts of the climate system. These include ecosystems, ice sheets, and the circulation of the ocean and atmosphere. Tipping points are studied using data from Earth's distant past and by physical modeling. There is already moderate risk of global tipping points at 1 °C (1.8 °F) above pre-industrial temperatures. That becomes
7979-468: The northern high latitudes , warming has also caused an increase in the amount of snow and rain. In the Southern Hemisphere, the rain associated with the storm tracks has shifted south. Changes in monsoons vary a lot. More monsoon systems are becoming wetter than drier. In Asia summer monsoons are getting wetter. The West African monsoon is getting wetter over the central Sahel , and drier in
8080-649: The number of tropical cyclones that intensify rapidly. Meteorological and seismological data indicate a widespread increase in wind-driven global ocean wave energy in recent decades that has been attributed to an increase in storm intensity over the oceans due to climate change. Atmospheric turbulence dangerous for aviation (hard to predict or that cannot be avoided by flying higher) probably increases due to climate change. Due to an increase in heavy rainfall events, floods are likely to become more severe when they do occur. The interactions between rainfall and flooding are complex. There are some regions in which flooding
8181-423: The ocean layers, so that warm water stabilises near the surface. A reduction of cold, deep water circulation follows. The reduced vertical mixing makes it harder for the ocean to absorb heat. So a larger share of future warming goes into the atmosphere and land. One result is an increase in the amount of energy available for tropical cyclones and other storms. Another result is a decrease in nutrients for fish in
8282-615: The oceans. These include mass dying events and coral bleaching . Harmful algae blooms have increased. This is in response to warming waters, loss of oxygen and eutrophication . Melting sea ice destroys habitat, including for algae that grows on its underside. Ocean acidification can harm marine organisms in various ways. Shell-forming organisms like oysters are particularly vulnerable. Some phytoplankton and seagrass species may benefit. However, some of these are toxic to fish phytoplankton species. Their spread poses risks to fisheries and aquaculture . Fighting pollution can reduce
8383-521: The past 3,000 years. The rate accelerated to 4.62 mm (0.182 in)/yr for the decade 2013–2022. Climate change due to human activities is the main cause. Between 1993 and 2018, melting ice sheets and glaciers accounted for 44% of sea level rise , with another 42% resulting from thermal expansion of water . The cryosphere , the area of the Earth covered by snow or ice, is extremely sensitive to changes in global climate. There has been an extensive loss of snow on land since 1981. Some of
8484-580: The past. Several impacts make their impacts worse. These are increased water demand, population growth and urban expansion in many areas. Land restoration can help reduce the impact of droughts. One example of this is agroforestry . Climate change promotes the type of weather that makes wildfires more likely. In some areas, an increase of wildfires has been attributed directly to climate change. Evidence from Earth's past also shows more fire in warmer periods. Climate change increases evapotranspiration . This can cause vegetation and soils to dry out. When
8585-832: The plants and animals controlled by the wetland hydrology are often additional components of the definitions. Wetlands can be tidal (inundated by tides) or non-tidal. The water in wetlands is either freshwater , brackish , saline , or alkaline . There are four main kinds of wetlands – marsh , swamp , bog , and fen (bogs and fens being types of peatlands or mires ). Some experts also recognize wet meadows and aquatic ecosystems as additional wetland types. Sub-types include mangrove forests , carrs , pocosins , floodplains , peatlands, vernal pools , sinks , and many others. The following three groups are used within Australia to classify wetland by type: Marine and coastal zone wetlands, inland wetlands and human-made wetlands. In
8686-589: The rain evaporates again. Warming over land increases the severity and frequency of droughts around much of the world. In some tropical and subtropical regions of the world, there will probably be less rain due to global warming. This will make them more prone to drought. Droughts are set to worsen in many regions of the world. These include Central America, the Amazon and south-western South America. They also include West and Southern Africa. The Mediterranean and south-western Australia are also some of these regions. Higher temperatures increase evaporation. This dries
8787-406: The risk of extinction for many terrestrial and freshwater species. At 1.2 °C (2.2 °F) of warming (around 2023 ) some ecosystems are threatened by mass die-offs of trees and from heatwaves. At 2 °C (3.6 °F) of warming, around 10% of species on land would become critically endangered. This differs by group. For instance insects and salamanders are more vulnerable. Rainfall on
8888-445: The soil and increases plant stress . Agriculture suffers as a result. This means even regions where overall rainfall is expected to remain relatively stable will experience these impacts. These regions include central and northern Europe. Without climate change mitigation, around one third of land areas are likely to experience moderate or more severe drought by 2100. Due to global warming droughts are more frequent and intense than in
8989-429: The soil and underlying rock into aquifers which are the source of much of the world's drinking water . Wetlands can also act as recharge areas when the surrounding water table is low and as a discharge zone when it is high. Mangroves , coral reefs , salt marsh can help with shoreline stabilization and storm protection. Tidal and inter-tidal wetland systems protect and stabilize coastal zones. Coral reefs provide
9090-537: The soil of wetlands. Anaerobic and aerobic respiration in the soil influences the nutrient cycling of carbon, hydrogen, oxygen, and nitrogen, and the solubility of phosphorus thus contributing to the chemical variations in its water. Wetlands with low pH and saline conductivity may reflect the presence of acid sulfates and wetlands with average salinity levels can be heavily influenced by calcium or magnesium. Biogeochemical processes in wetlands are determined by soils with low redox potential. The life forms of
9191-412: The soils and plants at higher elevations. Plants and animals may vary within a wetland seasonally or in response to flood regimes. There are four main groups of hydrophytes that are found in wetland systems throughout the world. Submerged wetland vegetation can grow in saline and fresh-water conditions. Some species have underwater flowers, while others have long stems to allow the flowers to reach
9292-515: The sources of water include tidal wetlands , where the water source is ocean tides ); estuaries , water source is mixed tidal and river waters; floodplains , water source is excess water from overflowed rivers or lakes; and bogs and vernal ponds , water source is rainfall or meltwater . The world's largest wetlands include the Amazon River basin , the West Siberian Plain ,
9393-406: The spatial and temporal dispersion, flow, and physio-chemical attributes of surface and ground waters. Sources of hydrological flows into wetlands are predominantly precipitation , surface water (saltwater or freshwater), and groundwater. Water flows out of wetlands by evapotranspiration , surface flows and tides , and subsurface water outflow. Hydrodynamics (the movement of water through and from
9494-661: The surface of the water. When trees and shrubs comprise much of the plant cover in saturated soils, those areas in most cases are called swamps . The upland boundary of swamps is determined partly by water levels. This can be affected by dams Some swamps can be dominated by a single species, such as silver maple swamps around the Great Lakes . Others, like those of the Amazon basin , have large numbers of different tree species. Other examples include cypress ( Taxodium ) and mangrove swamps. Many species of fish are highly dependent on wetland ecosystems. Seventy-five percent of
9595-490: The surface. Submerged species provide a food source for native fauna, habitat for invertebrates, and also possess filtration capabilities. Examples include seagrasses and eelgrass . Floating water plants or floating vegetation are usually small, like those in the Lemnoideae subfamily (duckweeds). Emergent vegetation like the cattails ( Typha spp.), sedges ( Carex spp.) and arrow arum ( Peltandra virginica ) rise above
9696-457: The surrounding environment resulting in increased extinction rates in unfavorable and polluted environmental conditions. Reptiles such as snakes , lizards , turtles , alligators and crocodiles are common in wetlands of some regions. In freshwater wetlands of the Southeastern US, alligators are common and a freshwater species of crocodile occurs in South Florida. The Florida Everglades
9797-440: The types of plants that live within them. Specifically, wetlands are characterized as having a water table that stands at or near the land surface for a long enough period each year to support aquatic plants . A more concise definition is a community composed of hydric soil and hydrophytes . Wetlands have also been described as ecotones , providing a transition between dry land and water bodies. Wetlands exist "...at
9898-440: The upper ocean layers. These changes also reduce the ocean's capacity to store carbon . At the same time, contrasts in salinity are increasing. Salty areas are becoming saltier and fresher areas less salty. Between 1901 and 2018, the average sea level rose by 15–25 cm (6–10 in), with an increase of 2.3 mm (0.091 in) per year since the 1970s. This was faster than the sea level had ever risen over at least
9999-430: The vast majority of excess heat in the atmosphere, delaying effects there but causing them to accelerate and then continue after surface temperatures stabilize. Sea level rise is a particular long term concern as a result. The effects of ocean warming also include marine heatwaves , ocean stratification , deoxygenation , and changes to ocean currents . The ocean is also acidifying as it absorbs carbon dioxide from
10100-584: The world. As a result, the timing of extreme weather events, such as heavy precipitation and heat waves, is changing to coincide more closely with changes in seasonal patterns. Heatwaves over land have become more frequent and more intense in almost all world regions since the 1950s, due to climate change . Heat waves are more likely to occur simultaneously with droughts. Marine heatwaves are twice as likely as they were in 1980. Climate change will lead to more very hot days and fewer very cold days. There are fewer cold waves . Experts can often attribute
10201-404: Was up to 25 metres (82 ft) higher than it is today. The modern observed rise in temperature and CO 2 concentrations has been rapid. Even abrupt geophysical events in Earth's history do not approach current rates. How much the world warms depends on human greenhouse gas emissions and on how sensitive the climate is to greenhouse gases . The more carbon dioxide (CO 2 ) is emitted in
#189810