78-597: The Philippsburg Nuclear Power Plant is located in Philippsburg , Karlsruhe (district) , Germany. The plant was operated by EnBW Kernkraft GmbH . As part of Germany's phase out of nuclear energy (Atomausstieg), unit 1 was shut down in 2011 and unit 2 in 2019. Demolition of conventional structures began in January 2020. The process of decommissioning is underway as of January 2020 beginning with defueling and dismantling of primary coolant lines. The plants operator EnBW expects
156-403: A neutron hits the nucleus of a uranium-235 or plutonium atom, it can split the nucleus into two smaller nuclei, which is a nuclear fission reaction. The reaction releases energy and neutrons. The released neutrons can hit other uranium or plutonium nuclei, causing new fission reactions, which release more energy and more neutrons. This is called a chain reaction . In most commercial reactors,
234-493: A nuclear renaissance , an increase in the construction of new reactors, due to concerns about carbon dioxide emissions . During this period, newer generation III reactors , such as the EPR began construction. Prospects of a nuclear renaissance were delayed by another nuclear accident. The 2011 Fukushima Daiichi nuclear accident was caused by the Tōhoku earthquake and tsunami , one of
312-410: A low-level waste disposal site. In countries with nuclear power, radioactive wastes account for less than 1% of total industrial toxic wastes, much of which remains hazardous for long periods. Overall, nuclear power produces far less waste material by volume than fossil-fuel based power plants. Coal-burning plants, in particular, produce large amounts of toxic and mildly radioactive ash resulting from
390-533: A reactor. Spent thorium fuel, although more difficult to handle than spent uranium fuel, may present somewhat lower proliferation risks. The nuclear industry also produces a large volume of low-level waste , with low radioactivity, in the form of contaminated items like clothing, hand tools, water purifier resins, and (upon decommissioning) the materials of which the reactor itself is built. Low-level waste can be stored on-site until radiation levels are low enough to be disposed of as ordinary waste, or it can be sent to
468-453: A research and isotope production plant only. According to Lev Kotchetkov, who was there at the time: "Although utilisation of generated heat was going on, and production of isotopes was even enhanced, the main task was to carry out experimental studies on 17 test loops installed in the reactor." The technology perfected in the Obninsk pilot plant was later employed on a much larger scale in
546-1087: A shortage near the end of the century. A 2017 study by researchers from MIT and WHOI found that "at the current consumption rate, global conventional reserves of terrestrial uranium (approximately 7.6 million tonnes) could be depleted in a little over a century". Limited uranium-235 supply may inhibit substantial expansion with the current nuclear technology. While various ways to reduce dependence on such resources are being explored, new nuclear technologies are considered to not be available in time for climate change mitigation purposes or competition with alternatives of renewables in addition to being more expensive and require costly research and development. A study found it to be uncertain whether identified resources will be developed quickly enough to provide uninterrupted fuel supply to expanded nuclear facilities and various forms of mining may be challenged by ecological barriers, costs, and land requirements. Researchers also report considerable import dependence of nuclear energy. Unconventional uranium resources also exist. Uranium
624-405: A significant effect on countries, such as France and Japan , which had relied more heavily on oil for electric generation to invest in nuclear power. France would construct 25 nuclear power plants over the next 15 years, and as of 2019, 71% of French electricity was generated by nuclear power, the highest percentage by any nation in the world. Some local opposition to nuclear power emerged in
702-425: A typical nuclear power station are often stored on site in dry cask storage vessels. Presently, waste is mainly stored at individual reactor sites and there are over 430 locations around the world where radioactive material continues to accumulate. Disposal of nuclear waste is often considered the most politically divisive aspect in the lifecycle of a nuclear power facility. The lack of movement of nuclear waste in
780-490: Is high-level radioactive waste . While its radioactivity decreases exponentially, it must be isolated from the biosphere for hundreds of thousands of years, though newer technologies (like fast reactors ) have the potential to significantly reduce this. Because the spent fuel is still mostly fissionable material, some countries (e.g. France and Russia ) reprocess their spent fuel by extracting fissile and fertile elements for fabrication into new fuel, although this process
858-408: Is spent nuclear fuel , which is considered high-level waste . For Light Water Reactors (LWRs), spent fuel is typically composed of 95% uranium, 4% fission products , and about 1% transuranic actinides (mostly plutonium , neptunium and americium ). The fission products are responsible for the bulk of the short-term radioactivity, whereas the plutonium and other transuranics are responsible for
SECTION 10
#1733086159809936-721: Is 89%. Most new reactors under construction are generation III reactors in Asia. Proponents contend that nuclear power is a safe, sustainable energy source that reduces carbon emissions . This is because nuclear power generation causes one of the lowest levels of fatalities per unit of energy generated compared to other energy sources. Coal, petroleum, natural gas and hydroelectricity have each caused more fatalities per unit of energy due to air pollution and accidents . Nuclear power plants also emit no greenhouse gases and result in less life-cycle carbon emissions than common "renewables". The radiological hazards associated with nuclear power are
1014-482: Is a fairly common element in the Earth's crust: it is approximately as common as tin or germanium , and is about 40 times more common than silver . Uranium is present in trace concentrations in most rocks, dirt, and ocean water, but is generally economically extracted only where it is present in relatively high concentrations. Uranium mining can be underground, open-pit , or in-situ leach mining. An increasing number of
1092-461: Is also produced during plant decommissioning. There are two broad categories of nuclear waste: low-level waste and high-level waste. The first has low radioactivity and includes contaminated items such as clothing, which poses limited threat. High-level waste is mainly the spent fuel from nuclear reactors, which is very radioactive and must be cooled and then safely disposed of or reprocessed. The most important waste stream from nuclear power reactors
1170-489: Is also safer in terms of nuclear proliferation potential. Reprocessing has the potential to recover up to 95% of the uranium and plutonium fuel in spent nuclear fuel, as well as reduce long-term radioactivity within the remaining waste. However, reprocessing has been politically controversial because of the potential for nuclear proliferation and varied perceptions of increasing the vulnerability to nuclear terrorism . Reprocessing also leads to higher fuel cost compared to
1248-490: Is considered the worst nuclear disaster in history both in total casualties, with 56 direct deaths, and financially, with the cleanup and the cost estimated at 18 billion Rbls (US$ 68 billion in 2019, adjusted for inflation). The international organization to promote safety awareness and the professional development of operators in nuclear facilities, the World Association of Nuclear Operators (WANO),
1326-410: Is contained within sixteen casks. It is estimated that to produce a lifetime supply of energy for a person at a western standard of living (approximately 3 GWh ) would require on the order of the volume of a soda can of low enriched uranium , resulting in a similar volume of spent fuel generated. Following interim storage in a spent fuel pool , the bundles of used fuel rod assemblies of
1404-603: Is currently done in France, the United Kingdom, Russia, Japan, and India. In the United States, spent nuclear fuel is currently not reprocessed. The La Hague reprocessing facility in France has operated commercially since 1976 and is responsible for half the world's reprocessing as of 2010. It produces MOX fuel from spent fuel derived from several countries. More than 32,000 tonnes of spent fuel had been reprocessed as of 2015, with
1482-405: Is in the commissioning phase, with plans to build more. Another alternative to fast-neutron breeders are thermal-neutron breeder reactors that use uranium-233 bred from thorium as fission fuel in the thorium fuel cycle . Thorium is about 3.5 times more common than uranium in the Earth's crust, and has different geographic characteristics. India's three-stage nuclear power programme features
1560-424: Is more expensive than producing new fuel from mined uranium . All reactors breed some plutonium-239 , which is found in the spent fuel, and because Pu-239 is the preferred material for nuclear weapons , reprocessing is seen as a weapon proliferation risk. The first nuclear power plant was built in the 1950s. The global installed nuclear capacity grew to 100 GW in the late 1970s, and then expanded during
1638-521: Is much less radioactive than spent nuclear fuel by weight, coal ash is produced in much higher quantities per unit of energy generated. It is also released directly into the environment as fly ash , whereas nuclear plants use shielding to protect the environment from radioactive materials. Nuclear waste volume is small compared to the energy produced. For example, at Yankee Rowe Nuclear Power Station , which generated 44 billion kilowatt hours of electricity when in service, its complete spent fuel inventory
SECTION 20
#17330861598091716-478: Is naturally present in seawater at a concentration of about 3 micrograms per liter, with 4.4 billion tons of uranium considered present in seawater at any time. In 2014 it was suggested that it would be economically competitive to produce nuclear fuel from seawater if the process was implemented at large scale. Like fossil fuels, over geological timescales, uranium extracted on an industrial scale from seawater would be replenished by both river erosion of rocks and
1794-405: Is produced by nuclear fission of uranium and plutonium in nuclear power plants . Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators in some space probes such as Voyager 2 . Reactors producing controlled fusion power have been operated since 1958, but have yet to generate net power and are not expected to be commercially available in
1872-617: Is the reactor-grade plutonium (RGPu) that is extracted from spent fuel. It is mixed with uranium oxide and fabricated into mixed-oxide or MOX fuel . Because thermal LWRs remain the most common reactor worldwide, this type of recycling is the most common. It is considered to increase the sustainability of the nuclear fuel cycle, reduce the attractiveness of spent fuel to theft, and lower the volume of high level nuclear waste. Spent MOX fuel cannot generally be recycled for use in thermal-neutron reactors. This issue does not affect fast-neutron reactors , which are therefore preferred in order to achieve
1950-458: Is then converted into a compact ore concentrate form, known as yellowcake (U 3 O 8 ), to facilitate transport. Fission reactors generally need uranium-235 , a fissile isotope of uranium . The concentration of uranium-235 in natural uranium is low (about 0.7%). Some reactors can use this natural uranium as fuel, depending on their neutron economy . These reactors generally have graphite or heavy water moderators. For light water reactors,
2028-524: The Onkalo spent nuclear fuel repository of the Olkiluoto Nuclear Power Plant was under construction as of 2015. Most thermal-neutron reactors run on a once-through nuclear fuel cycle , mainly due to the low price of fresh uranium. However, many reactors are also fueled with recycled fissionable materials that remain in spent nuclear fuel. The most common fissionable material that is recycled
2106-591: The RBMK reactors. The single reactor unit at the plant, AM-1 (" Атом Мирный ", Atom Mirny , Russian for " Peaceful Atom "), had a total electrical capacity of 6 MW and a net capacity of around 5 MWe. Thermal output was 30 MW. It was a prototype design using a graphite moderator and water coolant. This reactor was a forerunner of the RBMK reactors. The Obninsk reactor used 5% enriched uranium; this percentage would be lowered for subsequent reactors. Construction started on 31 December 1950. First criticality
2184-439: The integral fast reactor and molten salt reactors , can use as fuel the plutonium and other actinides in spent fuel from light water reactors, thanks to their fast fission spectrum. This offers a potentially more attractive alternative to deep geological disposal. The thorium fuel cycle results in similar fission products, though creates a much smaller proportion of transuranic elements from neutron capture events within
2262-422: The thermal energy released from nuclear fission . A fission nuclear power plant is generally composed of: a nuclear reactor , in which the nuclear reactions generating heat take place; a cooling system, which removes the heat from inside the reactor; a steam turbine , which transforms the heat into mechanical energy ; an electric generator , which transforms the mechanical energy into electrical energy. When
2340-629: The 1980s, reaching 300 GW by 1990. The 1979 Three Mile Island accident in the United States and the 1986 Chernobyl disaster in the Soviet Union resulted in increased regulation and public opposition to nuclear power plants. These factors, along with high cost of construction, resulted in the global installed capacity only increasing to 392 GW by 2023. These plants supplied 2,602 terawatt hours (TWh) of electricity in 2023, equivalent to about 9% of global electricity generation , and were
2418-757: The 2 billion year old natural nuclear fission reactors in Oklo , Gabon is cited as "a source of essential information today." Experts suggest that centralized underground repositories which are well-managed, guarded, and monitored, would be a vast improvement. There is an "international consensus on the advisability of storing nuclear waste in deep geological repositories ". With the advent of new technologies, other methods including horizontal drillhole disposal into geologically inactive areas have been proposed. There are no commercial scale purpose built underground high-level waste repositories in operation. However, in Finland
Philippsburg Nuclear Power Plant - Misplaced Pages Continue
2496-503: The 2011 disaster. Kishida is also pushing for research and construction of new safer nuclear plants to safeguard Japanese consumers from the fluctuating price of the fossil fuel market and reduce Japan's greenhouse gas emissions. Kishida intends to have Japan become a significant exporter of nuclear energy and technology to developing countries around the world. By 2015, the IAEA's outlook for nuclear energy had become more promising, recognizing
2574-604: The PWR being the reactor of choice also for power generation, thus having a lasting impact on the civilian electricity market in the years to come. On June 27, 1954, the Obninsk Nuclear Power Plant in the USSR became the world's first nuclear power plant to generate electricity for a power grid , producing around 5 megawatts of electric power. The world's first commercial nuclear power station, Calder Hall at Windscale, England
2652-581: The United States in the early 1960s. In the late 1960s, some members of the scientific community began to express pointed concerns. These anti-nuclear concerns related to nuclear accidents , nuclear proliferation , nuclear terrorism and radioactive waste disposal . In the early 1970s, there were large protests about a proposed nuclear power plant in Wyhl , Germany. The project was cancelled in 1975. The anti-nuclear success at Wyhl inspired opposition to nuclear power in other parts of Europe and North America. By
2730-401: The United States, over 120 Light Water Reactor proposals were ultimately cancelled and the construction of new reactors ground to a halt. The 1979 accident at Three Mile Island with no fatalities, played a major part in the reduction in the number of new plant constructions in many countries. During the 1980s one new nuclear reactor started up every 17 days on average. By the end of
2808-632: The actinides (the most active and dangerous components) in the present inventory of nuclear waste, while also producing power and creating additional quantities of fuel for more reactors via the breeding process. As of 2017, there are two breeders producing commercial power, BN-600 reactor and the BN-800 reactor , both in Russia. The Phénix breeder reactor in France was powered down in 2009 after 36 years of operation. Both China and India are building breeder reactors. The Indian 500 MWe Prototype Fast Breeder Reactor
2886-584: The building of larger single-purpose production reactors for the production of weapons-grade plutonium for use in the first nuclear weapons. The United States tested the first nuclear weapon in July 1945, the Trinity test , and the atomic bombings of Hiroshima and Nagasaki happened one month later. Despite the military nature of the first nuclear devices, there was strong optimism in the 1940s and 1950s that nuclear power could provide cheap and endless energy. Electricity
2964-702: The bulk of the long-term radioactivity. High-level waste (HLW) must be stored isolated from the biosphere with sufficient shielding so as to limit radiation exposure. After being removed from the reactors, used fuel bundles are stored for six to ten years in spent fuel pools , which provide cooling and shielding against radiation. After that, the fuel is cool enough that it can be safely transferred to dry cask storage . The radioactivity decreases exponentially with time, such that it will have decreased by 99.5% after 100 years. The more intensely radioactive short-lived fission products (SLFPs) decay into stable elements in approximately 300 years, and after about 100,000 years,
3042-415: The concentration of naturally occurring radioactive materials in coal. A 2008 report from Oak Ridge National Laboratory concluded that coal power actually results in more radioactivity being released into the environment than nuclear power operation, and that the population effective dose equivalent from radiation from coal plants is 100 times that from the operation of nuclear plants. Although coal ash
3120-716: The cusp of World War II , in order to develop a nuclear weapon . In the United States, these research efforts led to the creation of the first man-made nuclear reactor, the Chicago Pile-1 under the Stagg Field stadium at the University of Chicago , which achieved criticality on December 2, 1942. The reactor's development was part of the Manhattan Project , the Allied effort to create atomic bombs during World War II. It led to
3198-409: The decade, global installed nuclear capacity reached 300 GW. Since the late 1980s, new capacity additions slowed significantly, with the installed nuclear capacity reaching 366 GW in 2005. The 1986 Chernobyl disaster in the USSR , involving an RBMK reactor, altered the development of nuclear power and led to a greater focus on meeting international safety and regulatory standards. It
Philippsburg Nuclear Power Plant - Misplaced Pages Continue
3276-537: The decommissioning process to take around 10-15 years. For the first unit, parts made for the cancelled Wyhl plant were used. The second unit was originally planned to be a BWR as well but plans later changed. Final disconnection for both units was scheduled for 2011 for unit 1 and 2017 for unit 2, but as of 2010 had been changed to 2026 and 2032 respectively. Following the incident at the Fukushima plant in Japan reactor 1
3354-467: The disaster, Japan shut down all of its nuclear power reactors, some of them permanently, and in 2015 began a gradual process to restart the remaining 40 reactors, following safety checks and based on revised criteria for operations and public approval. In 2022, the Japanese government, under the leadership of Prime Minister Fumio Kishida , declared that 10 more nuclear power plants were to be reopened since
3432-452: The full energy potential of the original uranium. The main constituent of spent fuel from LWRs is slightly enriched uranium . This can be recycled into reprocessed uranium (RepU), which can be used in a fast reactor, used directly as fuel in CANDU reactors, or re-enriched for another cycle through an LWR. Re-enriching of reprocessed uranium is common in France and Russia. Reprocessed uranium
3510-515: The heart of France's drive for carbon neutrality by 2050. Meanwhile, in the United States, the Department of Energy , in collaboration with commercial entities, TerraPower and X-energy , is planning on building two different advanced nuclear reactors by 2027, with further plans for nuclear implementation in its long term green energy and energy security goals. Nuclear power plants are thermal power stations that generate electricity by harnessing
3588-570: The highest output mines are remote underground operations, such as McArthur River uranium mine , in Canada, which by itself accounts for 13% of global production. As of 2011 the world's known resources of uranium, economically recoverable at the arbitrary price ceiling of US$ 130/kg, were enough to last for between 70 and 100 years. In 2007, the OECD estimated 670 years of economically recoverable uranium in total conventional resources and phosphate ores assuming
3666-425: The importance of low-carbon generation for mitigating climate change . As of 2015 , the global trend was for new nuclear power stations coming online to be balanced by the number of old plants being retired. In 2016, the U.S. Energy Information Administration projected for its "base case" that world nuclear power generation would increase from 2,344 terawatt hours (TWh) in 2012 to 4,500 TWh in 2040. Most of
3744-569: The largest earthquakes ever recorded. The Fukushima Daiichi Nuclear Power Plant suffered three core meltdowns due to failure of the emergency cooling system for lack of electricity supply. This resulted in the most serious nuclear accident since the Chernobyl disaster. The accident prompted a re-examination of nuclear safety and nuclear energy policy in many countries. Germany approved plans to close all its reactors by 2022, and many other countries reviewed their nuclear power programs. Following
3822-547: The late 1970s. During the 1970s and 1980s rising economic costs (related to extended construction times largely due to regulatory changes and pressure-group litigation) and falling fossil fuel prices made nuclear power plants then under construction less attractive. In the 1980s in the U.S. and 1990s in Europe, the flat electric grid growth and electricity liberalization also made the addition of large new baseload energy generators economically unattractive. The 1973 oil crisis had
3900-516: The life of nuclear fuel to a few years. In some countries, such as the United States, spent fuel is classified in its entirety as a nuclear waste. In other countries, such as France, it is largely reprocessed to produce a partially recycled fuel, known as mixed oxide fuel or MOX . For spent fuel that does not undergo reprocessing, the most concerning isotopes are the medium-lived transuranic elements , which are led by reactor-grade plutonium (half-life 24,000 years). Some proposed reactor designs, such as
3978-463: The lifetime of a facility and saved in a decommissioning fund. First nuclear power plant Obninsk Nuclear Power Plant ( Russian : Обнинская АЭС , romanized : Obninskaja AES ; pronunciation ) was built in the " Science City " of Obninsk , Kaluga Oblast , about 110 km (68 mi) southwest of Moscow , Soviet Union . Connected to the power grid in June 1954, Obninsk
SECTION 50
#17330861598094056-719: The majority from France, 17% from Germany, and 9% from Japan. Breeding is the process of converting non-fissile material into fissile material that can be used as nuclear fuel. The non-fissile material that can be used for this process is called fertile material , and constitute the vast majority of current nuclear waste. This breeding process occurs naturally in breeder reactors . As opposed to light water thermal-neutron reactors, which use uranium-235 (0.7% of all natural uranium), fast-neutron breeder reactors use uranium-238 (99.3% of all natural uranium) or thorium. A number of fuel cycles and breeder reactor combinations are considered to be sustainable or renewable sources of energy. In 2006 it
4134-488: The mid-1970s anti-nuclear activism gained a wider appeal and influence, and nuclear power began to become an issue of major public protest. In some countries, the nuclear power conflict "reached an intensity unprecedented in the history of technology controversies". The increased public hostility to nuclear power led to a longer license procurement process, more regulations and increased requirements for safety equipment, which made new construction much more expensive. In
4212-400: The morning of 14 May 2020. This article about a Germany power station is a stub . You can help Misplaced Pages by expanding it . Nuclear Power Nuclear power is the use of nuclear reactions to produce electricity . Nuclear power can be obtained from nuclear fission , nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power
4290-437: The most common type of reactor, this concentration is too low, and it must be increased by a process called uranium enrichment . In civilian light water reactors, uranium is typically enriched to 3.5–5% uranium-235. The uranium is then generally converted into uranium oxide (UO 2 ), a ceramic, that is then compressively sintered into fuel pellets, a stack of which forms fuel rods of the proper composition and geometry for
4368-418: The most hazardous substances in nuclear waste), there is an estimated 160,000 years worth of uranium in total conventional resources and phosphate ore at the price of 60–100 US$ /kg. However, reprocessing is expensive, possibly dangerous and can be used to manufacture nuclear weapons. One analysis found that uranium prices could increase by two orders of magnitude between 2035 and 2100 and that there could be
4446-428: The natural process of uranium dissolved from the surface area of the ocean floor, both of which maintain the solubility equilibria of seawater concentration at a stable level. Some commentators have argued that this strengthens the case for nuclear power to be considered a renewable energy . The normal operation of nuclear power plants and facilities produce radioactive waste , or nuclear waste. This type of waste
4524-432: The near future. Most nuclear power plants use thermal reactors with enriched uranium in a once-through fuel cycle . Fuel is removed when the percentage of neutron absorbing atoms becomes so large that a chain reaction can no longer be sustained, typically three years. It is then cooled for several years in on-site spent fuel pools before being transferred to long-term storage. The spent fuel, though low in volume,
4602-416: The once-through fuel cycle. While reprocessing reduces the volume of high-level waste, it does not reduce the fission products that are the primary causes of residual heat generation and radioactivity for the first few centuries outside the reactor. Thus, reprocessed waste still requires an almost identical treatment for the initial first few hundred years. Reprocessing of civilian fuel from power reactors
4680-469: The particular reactor. After some time in the reactor, the fuel will have reduced fissile material and increased fission products, until its use becomes impractical. At this point, the spent fuel will be moved to a spent fuel pool which provides cooling for the thermal heat and shielding for ionizing radiation. After several months or years, the spent fuel is radioactively and thermally cool enough to be moved to dry storage casks or reprocessed. Uranium
4758-497: The predicted increase was expected to be in Asia. As of 2018, there were over 150 nuclear reactors planned including 50 under construction. In January 2019, China had 45 reactors in operation, 13 under construction, and planned to build 43 more, which would make it the world's largest generator of nuclear electricity. As of 2021, 17 reactors were reported to be under construction. China built significantly fewer reactors than originally planned. Its share of electricity from nuclear power
SECTION 60
#17330861598094836-454: The primary motivations of the anti-nuclear movement , which contends that nuclear power poses many threats to people and the environment, citing the potential for accidents like the Fukushima nuclear disaster in Japan in 2011, and is too expensive/slow to deploy when compared to alternative sustainable energy sources. Nuclear fission was discovered in 1938 after over four decades of work on
4914-572: The private sector. The first organization to develop practical nuclear power was the U.S. Navy , with the S1W reactor for the purpose of propelling submarines and aircraft carriers . The first nuclear-powered submarine, USS Nautilus , was put to sea in January 1954. The S1W reactor was a pressurized water reactor . This design was chosen because it was simpler, more compact, and easier to operate compared to alternative designs, thus more suitable to be used in submarines. This decision would result in
4992-462: The reaction rate is contained by control rods that absorb excess neutrons. The controllability of nuclear reactors depends on the fact that a small fraction of neutrons resulting from fission are delayed . The time delay between the fission and the release of the neutrons slows changes in reaction rates and gives time for moving the control rods to adjust the reaction rate. The life cycle of nuclear fuel starts with uranium mining . The uranium ore
5070-637: The restart of another ten reactors. Prime Minister Fumio Kishida in July 2022 announced that the country should consider building advanced reactors and extending operating licences beyond 60 years. As of 2022, with world oil and gas prices on the rise, while Germany is restarting its coal plants to deal with loss of Russian gas that it needs to supplement its Energiewende , many other countries have announced ambitious plans to reinvigorate ageing nuclear generating capacity with new investments. French President Emmanuel Macron announced his intention to build six new reactors in coming decades, placing nuclear at
5148-450: The science of radioactivity and the elaboration of new nuclear physics that described the components of atoms . Soon after the discovery of the fission process, it was realized that a fissioning nucleus can induce further nucleus fissions, thus inducing a self-sustaining chain reaction. Once this was experimentally confirmed in 1939, scientists in many countries petitioned their governments for support for nuclear fission research, just on
5226-512: The second-largest low-carbon power source after hydroelectricity . As of November 2024, there are 415 civilian fission reactors in the world , with overall capacity of 374 GW, 66 under construction and 87 planned, with a combined capacity of 72 GW and 84 GW, respectively. The United States has the largest fleet of nuclear reactors, generating almost 800 TWh of low-carbon electricity per year with an average capacity factor of 92%. The average global capacity factor
5304-426: The spent fuel becomes less radioactive than natural uranium ore. Commonly suggested methods to isolate LLFP waste from the biosphere include separation and transmutation , synroc treatments, or deep geological storage. Thermal-neutron reactors , which presently constitute the majority of the world fleet, cannot burn up the reactor grade plutonium that is generated during the reactor operation. This limits
5382-417: The then-current use rate. Light water reactors make relatively inefficient use of nuclear fuel, mostly using only the very rare uranium-235 isotope. Nuclear reprocessing can make this waste reusable, and newer reactors also achieve a more efficient use of the available resources than older ones. With a pure fast reactor fuel cycle with a burn up of all the uranium and actinides (which presently make up
5460-524: The use of a thorium fuel cycle in the third stage, as it has abundant thorium reserves but little uranium. Nuclear decommissioning is the process of dismantling a nuclear facility to the point that it no longer requires measures for radiation protection, returning the facility and its parts to a safe enough level to be entrusted for other uses. Due to the presence of radioactive materials, nuclear decommissioning presents technical and economic challenges. The costs of decommissioning are generally spread over
5538-559: Was 5% in 2019 and observers have cautioned that, along with the risks, the changing economics of energy generation may cause new nuclear energy plants to "no longer make sense in a world that is leaning toward cheaper, more reliable renewable energy". In October 2021, the Japanese cabinet approved the new Plan for Electricity Generation to 2030 prepared by the Agency for Natural Resources and Energy (ANRE) and an advisory committee, following public consultation. The nuclear target for 2030 requires
5616-560: Was achieved on 2 May 1954, and the first grid connection was made on 27 June 1954. For around four years, until the opening of the Siberian Nuclear Power Station , Obninsk remained the only nuclear power reactor in the Soviet Union ; the power plant remained active until 29 April 2002 when it was finally shut down. According to Kotchetkov, in its 48 years of operation there were no significant incidents resulting in personnel overdose or mortality, or radioactive release to
5694-417: Was closed on 17 March 2011 for a three-month moratorium on nuclear power. The outcome of this moratorium was announced on the morning of 30 May 2011 and Philippsburg-1 was named as a plant that would not be returning to generation at the end of the moratorium. Subsequent legislation caused the end of Philippsburg-2's operation on the evening of 31 December 2019. The two cooling towers were demolished early on
5772-461: Was connected to the national power grid on 27 August 1956. In common with a number of other generation I reactors , the plant had the dual purpose of producing electricity and plutonium-239 , the latter for the nascent nuclear weapons program in Britain . The total global installed nuclear capacity initially rose relatively quickly, rising from less than 1 gigawatt (GW) in 1960 to 100 GW in
5850-399: Was created as a direct outcome of the 1986 Chernobyl accident. The Chernobyl disaster played a major part in the reduction in the number of new plant constructions in the following years. Influenced by these events, Italy voted against nuclear power in a 1987 referendum, becoming the first country to completely phase out nuclear power in 1990. In the early 2000s, nuclear energy was expecting
5928-420: Was estimated that with seawater extraction, there was likely five billion years' worth of uranium resources for use in breeder reactors. Breeder technology has been used in several reactors, but as of 2006, the high cost of reprocessing fuel safely requires uranium prices of more than US$ 200/kg before becoming justified economically. Breeder reactors are however being developed for their potential to burn all of
6006-673: Was generated for the first time by a nuclear reactor on December 20, 1951, at the EBR-I experimental station near Arco, Idaho , which initially produced about 100 kW . In 1953, American President Dwight Eisenhower gave his " Atoms for Peace " speech at the United Nations , emphasizing the need to develop "peaceful" uses of nuclear power quickly. This was followed by the Atomic Energy Act of 1954 which allowed rapid declassification of U.S. reactor technology and encouraged development by
6084-495: Was the first grid-connected nuclear power plant in the world, i.e. the first nuclear reactor that produced electricity industrially, albeit at small scale. It was located at the Institute of Physics and Power Engineering . The plant is also known as APS-1 Obninsk ( Atomic Power Station 1 Obninsk ). It remained in operation between 1954 and 2002. Its production of electricity for the grid ceased in 2002; thereafter it functioned as
#808191