The Personal System/55 ( パーソナルシステム/55 ) or PS/55 is a personal computer series released from IBM Japan in 1987.
68-561: The PS/55 is the successor to IBM 5550 (Multistation 5550), but its architecture is based upon IBM PS/2 . The first line-up of the series consisted of rebranded 5550 models except the Model 5570-S which was based on the PS/2 Model 80 (IBM 8580). Unlike the PS/2, most PS/55-based models have a 32-bit ( 80386 or 80486 ) CPU and Micro Channel (MCA) bus for the high-end business computing market. IBM Japan
136-485: A UNIX operating system for PS/2 models with Intel 386 or later processors. IBM's initial PS/2 computers were popular with target market corporate buyers, and by September 1988, IBM reported that it had sold 3 million PS/2 machines in the past 18 months. However, the PS/2 was unsuccessful in the consumer market since IBM failed to establish a link in the consumer's mind between the PS/2 MicroChannel architecture and
204-418: A box of 26×29 pixels, and the total display resolution is 1066×725 pixels calculated with box width by 41×25 text. 16 pixel font models render characters in a box of 18×21 pixels, and the total display resolution is 738×525 pixels. The 5550 had one more column than 40 columns of usual Japanese computers, which enabled line breaking . For personal computing, Nihongo DOS K2.00 had been developed by Microsoft. It
272-507: A complex called the Power Platform. The PS/2 Models 90 (IBM 8590/9590) and 95 (IBM 8595/9595/9595A) used Processor Complex daughterboards holding the CPU , memory controller, MCA interface, and other system components. The available Processor Complex options ranged from the 20 MHz Intel 486 to the 90 MHz Pentium and were fully interchangeable. The IBM PC Server 500 , which has
340-486: A film actor, was used to promote the 5550. IBM later introduced IBM JX for home users in Japan, Australia and New Zealand, and DOS/V for both business and home users in Japan. The 5550 was originally planned as a terminal with a combination of word processing and personal computing targeted for Japanese computer market. To display 24 dots Mincho kanji typeface which was also used in many Japanese word processing machines,
408-574: A full AT-class machine and support up to 4 MB of RAM. Later ISA PS/2 models comprised the Model 30 286 (a Model 30 with an Intel 286 CPU), Model 35 (IBM 8535) and Model 40 (IBM 8540) with Intel 386SX or IBM 386SLC processors. The higher-numbered models (above 50) were equipped with the Micro Channel bus and mostly ESDI or SCSI hard drives (models 60-041 and 80-041 had MFM hard drives). PS/2 Models 50 (IBM 8550) and 60 (IBM 8560) used
476-499: A high of 10,000 employees in Boca Raton before the PS/2 came out, only seven years later, IBM had $ 600 million in unsold inventory and was laying off staff by the thousands. After the failure of the PS/2 line to establish a new standard, IBM was forced to revert to building ISA PCs—following the industry it had once led—with the low-end PS/1 line and later with the more compatible Aptiva and PS/ValuePoint lines. Still,
544-454: A link in the consumer's mind between the PS/2 MicroChannel architecture and the immature OS/2 1.x operating system; the more capable OS/2 version 2.0 was not released until 1992. The firm suffered massive financial losses for the remainder of the 1980s, forfeiting its previously unquestioned position as the industry leader, and eventually lost its status as the largest manufacturer of personal computers, first to Compaq and then to Dell . From
612-484: A more finely graduated range (powers of 2, instead of powers of 4). Many PS/2 models also used proprietary IBM SIMMs and could not be fitted with commonly available types. However industry standard SIMMs could be modified to work in PS/2 machines if the SIMM-presence and SIMM-type detection bridges, or associated contacts, were correctly rewired. At launch, the PS/2 family comprised the Model 30 , 50 , 60 and 80 ;
680-485: A motherboard identical to the 9595A, also uses Processor Complexes. Other later Micro Channel PS/2 models included the Model 65SX with a 16 MHz 386SX; various Model 53 (IBM 9553), 56 (IBM 8556) and 57 (IBM 8557) variants with 386SX, 386SLC or 486SLC2 processors; the Models 76 and 77 (IBM 9576/9577) with 486SX or 486DX2 processors respectively; and the 486-based Model 85 (IBM 9585). The IBM PS/2E (IBM 9533)
748-415: A printer, could now function as a high-speed data transfer interface. This allowed the use of new hardware such as parallel port scanners , CD-ROM drives, and also enhanced the capabilities of printers by allowing them to communicate with the host PC and send back signals instead of simply being a passive output device. Most of the initial range of PS/2 models were equipped with a new frame buffer known as
SECTION 10
#1732869166648816-553: A result of this a 720 KB floppy could be formatted to 1440 KB in a PS/2, but the resulting floppy would only be readable by a PS/2 machine. PS/2s primarily used Mitsubishi floppy drives and did not use a separate Molex power connector; the data cable also contained the power supply lines. As the hardware aged the drives often malfunctioned due to bad quality capacitors . The PS/2 used several different types of internal hard drives. Early models used MFM or ESDI drives. Some desktop models used combo power/data cables similar to
884-822: A role of a terminal in January 1982. This change extended its development term. In May 1982 Business Show (one of computer industry exhibitions in Japan), IBM Japan only displayed the IBM PC as a reference material. They unveiled the development of 5550 in fall 1982. IBM Japan didn't have a factory for mass production of personal computers, so the production of 5550 was outsourced to some companies. System units, hard disks, and monitors were manufactured by Matsushita Electric Industrial , printers by Oki Electric Industry , and keyboards by Alps Electric . In Japan, Multistation 5550 competed against: BYTE in 1983 speculated that "we may soon see
952-550: A similar machine here in America". Describing the 5550 as "a true workstation", the magazine envisioned the computer as filling the "considerable gulf above the PC", and a rival to the IBM System/36 minicomputer. It praised the 5550's "unprecedented" combination of kanji support with high-end word-processing capability, and reported that in Japan an ecosystem of vendors providing products for
1020-419: A somewhat standardized capacity of 2880 KB. The PS/2 floppy drives lacked a capacity detector. 1440 KB floppies had a hole so that drives could distinguish them from 720 KB floppies, preventing users from formatting the smaller capacity disks to the higher capacity (doing so would work, but with a higher tendency of data loss). Clone manufacturers implemented the hole detection, but IBM did not. As
1088-549: A version of BSD UNIX for the ROMP that was only available to select colleges and universities. The RISC Adapter Card contained the ROMP-C microprocessor (an enhanced version of the ROMP that first appeared in the IBM RT PC workstations), a memory management unit (the ROMP had virtual memory ), a floating-point coprocessor , and up to 8 MB of memory for use by the ROMP. The 6152
1156-523: A year, and the largest such account review in the history of business. Overall, the PS/2 line was largely unsuccessful with the consumer market, even though the PC-based Models 30 and 25 were an attempt to address that. With what was widely seen as a technically competent but cynical attempt to gain undisputed control of the market, IBM unleashed an industry backlash, which went on to standardize VESA, EISA and PCI. In large part, IBM failed to establish
1224-422: Is 1040×725 pixels (12×24 and 24×24 pixel Mincho font, 80×25 text) in 8 colors. The graphics mode is 1024×768 pixels in 16 colors. This is the same resolution as 8514/A and XGA/A , but not compatible. The first Display Adapter was installed in the model 5570-S, also known as the first Micro Channel machine of PS/55. It had a compatibility problem with PS/2 applications. Since the model 5550-S released in 1988,
1292-551: Is a personal computer series that IBM marketed in Japan , Korea , Taiwan and China in the 1980s and 1990s, for business use customers. In Japan, it was introduced in 1983 and promoted as "Multistation 5550 ( マルチステーション5550 ) " because it had three roles in one machine: a PC , a word processing machine which was traditionally marketed as a machine different from a PC in Japan, and an IBM-host attached terminal. The IBM PC that had been marketed by IBM since 1981, using Intel 8088 ,
1360-474: Is a feature of the PCI-X bus format. Bus mastering capability, bus arbitration, and a primitive form of plug-and-play management of hardware were all benefits of MCA. Gilbert Held in his 2000 book Server Management observes: "MCA used an early (and user-hostile) version of what we know now as 'Plug-N′-Play', requiring a special setup disk for each machine and each card." MCA never gained wide acceptance outside of
1428-647: Is not true of the 95xx models (and some unlisted 85xx's), which are specialist workstation displays designed for use with the XGA-2 or Image Adapter/A cards, and whose fixed frequencies all exceed that of basic VGA – the lowest of their commonly available modes instead being 640 × 480 at 75 Hz, if not something much higher still. It is also worth noting that these were still merely dual- or "multiple-frequency" monitors, not variable-frequency (also known as multisync); in particular, despite running happily at 640 × 480 , 720 × 400 and 1024 × 768 , an (e.g.) 8514 cannot sync
SECTION 20
#17328691666481496-709: The Display Adapter II that improved the PS/2 compatibility was introduced. In the boot sequence , the Display Adapter enables VGA on the motherboard, and it passes the video signal from the motherboard to adapter's VGA connector . When using Japanese DOS, VGA is disabled, and the Display Adapter switches its video selector from VGA to own video chip. In addition, it added the 256 color mode (1024×768 pixels in 256 colors chosen from 262,144 colors). The adapter has 1 MB of video RAM, and 256 KB of RAM for user-defined characters. Most PS/2-based models have compatibility with
1564-590: The Intel 286 processor, the PS/2 Models 70 386 (IBM 8570) and 80 used the 386DX , while the mid-range PS/2 Model 55 SX (IBM 8555–081) and used the 16/32-bit 386SX processor. The Model 50 was revised to the Model 50 Z still with 10 MHz 80286 processor, but with memory run at zero wait state, and a switch to ESDI hard drives. Later Model 70 486 and 80 variants (B-xx) also used 25 MHz Intel 486 processors, in
1632-475: The Model 25 was launched a few months later. The PS/2 Models 25 and 30 (IBM 8525 and 8530, respectively) were the lowest-end models in the lineup and meant to replace the IBM PC and XT. Model 25s came with either an 8086 CPU running at 8 MHz, 512 KB of RAM, and 720 KB floppy disks, or 80286 CPU. The 8086s had ISA expansion slots and a built-in MCGA monitor, which could be either color or monochrome, while
1700-540: The PC Convertible . In addition, they could be had as an optional feature on the XT and AT. The PS/2 line used entirely 3.5" drives which assisted in their quick adoption by the industry, although the lack of 5.25" drive bays in the computers created problems later on in the 1990s as they could not accommodate internal CD-ROM drives. In addition, the lack of built-in 5.25" floppy drives meant that PS/2 users could not immediately run
1768-521: The Video Graphics Array , or VGA for short. This effectively replaced the previous EGA standard. VGA increased graphics memory to 256 KB and provided for resolutions of 640×480 with 16 colors, and 320 × 200 with 256 colors. VGA also provided a palette of 262,144 colors (as opposed to the EGA palette of 64 colors). The IBM 8514 and later XGA computer display standards were also introduced on
1836-508: The 5550 had high display resolution such as a 1024×768 pixel graphic screen. The first model of 5550 was designed to read a display font from an external storage for multilingual support, including Chinese and Korean languages. The 5550 fulfills three roles, via the following components: The original Bunsho Program and emulators booted from a floppy disk without Nihongo DOS. They used a proprietary disk format which couldn't be read from Nihongo DOS, so users had to replace floppy disks or set
1904-580: The 80286 models came with VGA monitor and ISA expansion slots. A cut-down Model M keyboard with no numeric keypad was standard, with the normal keyboard being an extra-cost option. There was a very rare later model called the PS/2 Model 25-SX which sported either a 16 MHz or 20 MHz 386 CPU, up to 12 MB of memory, IDE hard drive, VGA Monitor and 16 bit ISA slots making it the highest available model 25 available denoted by model number 8525-L41. The Model 30 had either an 8086 or 286 CPU and sported
1972-611: The Bunsho Program uses three floppy disks; program disk, font disk, and user data disk. Later models contain a font ROM card as other 1980's Japanese personal computers did. Yu Kawara ( 川原 裕 ) of IBM Fujisawa Development Laboratory planned the terminal with a combination of word processor and personal computer, called the Multi-functional Workstation, and he proposed it at the headquarter in March 1981. The development team
2040-546: The Display Adapter II. VGA and the following display modes are supported: Later, XGA and VGA-only models were released. These later machines cannot run the special Japanese DOS, instead requiring the use of DOS/V with software-rendered kanji. The following keyboards have the PS/2 port . These keyboards have new scancode sets (81h, 82h, 8Ah) to support additional keys for Japanese input method . IBM 5550 IBM 5550
2108-661: The PC/XT/AT. CBIOS was so compatible that it even included Cassette BASIC . While IBM did not publish the BIOS source code, it did promise to publish BIOS entry points . With certain models to the IBM PS/2 line, Micro Channel Architecture (MCA) was also introduced. MCA was conceptually similar to the channel architecture of the IBM System/360 mainframes. MCA was technically superior to ISA and allowed for higher-speed communications within
IBM PS/55 - Misplaced Pages Continue
2176-567: The PS/2 introduced a new software data area known as the Extended BIOS Data Area (EBDA). Its primary use was to add a new buffer area for the dedicated mouse port. This also required making a change to the "traditional" BIOS Data Area (BDA) which was then required to point to the base address of the EBDA. Another new PS/2 innovation was the introduction of bidirectional parallel ports which, in addition to their traditional use for connecting
2244-460: The PS/2 line in July 1995. IBM's PS/2 was designed to remain software compatible with their PC/AT/XT line of computers upon which the large PC clone market was built, but the hardware was quite different. PS/2 had two BIOSes : one named ABIOS (Advanced BIOS) which provided a new protected mode interface and was used by OS/2, and CBIOS (Compatible BIOS) which was included to be software compatible with
2312-483: The PS/2 line. Key monitors and their maximum resolutions: In truth, all XGA 1024 × 768 monitors are multimode, as XGA works as an add-on card to a built-in VGA and transparently passes the VGA signal through when not operating in a high-resolution mode. All of the listed 85xx displays can therefore sync 640×480 at 60 Hz (or 720 × 400 at 70 Hz) in addition to any higher mode they may also be capable of. This however
2380-433: The PS/2 platform experienced some success in the corporate sector where the reliability, ease of maintenance and strong corporate support from IBM offset the rather daunting cost of the machines. Also, many people still lived with the motto " Nobody ever got fired for buying an IBM ". In the mid-range desktop market, the models 55SX and later 56SX were the leading sellers for almost their entire lifetimes. Later PS/2 models saw
2448-409: The PS/2. When setting up the card with its disk, all choices for interrupts and other changes were accomplished automatically by the PC reading the old configuration from the floppy disk. This made necessary changes, then recorded the new configuration to the floppy disk. This meant that the user must keep that same floppy disk matched to that particular PC. For a small organization with a few PCs, this
2516-408: The addition of an extra key to the right of the left Shift key. PS/2 systems introduced a new specification for the keyboard and mouse interfaces, which are still in use today (though increasingly supplanted by USB devices) and are thus called "PS/2" interfaces. The PS/2 keyboard interface, inspired by Apple's ADB interface, was electronically identical to the long-established AT interface, but
2584-635: The boot partition to switch between two programs. Also, they had to use a conversion program to exchange data. Later, they were ported for Nihongo DOS, and functions were gradually implemented. 3270 Kanji Emulation, 5250 Kanji Emulation and Bunsho Program were superseded by Nihongo 3270 PC in October 1983, Nihongo 5250 PC in September 1984 and DOS Bunsho Program in May 1986. The first generation of IBM 5550 has up to three 5¼ inch '2DD' (720 KB) floppy drives because
2652-574: The bottom-rung 8086-based Model 25 and 30, which had a cut-down version of VGA referred to as MCGA ; the 286 models came with VGA. This supported CGA graphics modes, VGA 320 × 200 256 color and 640 × 480 monochrome mode, but not EGA or color 640 × 480 . All of the new PS/2 graphics systems (whether MCGA, VGA, 8514, or later XGA) used a 15-pin D-sub connector for video out. This used analog RGB signals, rather than four or six digital color signals as on previous CGA and EGA monitors. The digital signals limited
2720-542: The broader PC market. The PS/2 line was created by IBM partly in an attempt to recapture control of the PC market by introducing the advanced yet proprietary Micro Channel architecture (MCA) on higher-end models. These models were in the strange position of being incompatible with the hardware standards previously established by IBM and adopted in the IBM PC compatible industry. Most major PC manufacturers balked at IBM's licensing terms for MCA-compatible hardware, particularly
2788-562: The cable connector was changed from the 5-pin DIN connector to the smaller 6-pin mini-DIN interface. The same connector and a similar synchronous serial interface was used for the PS/2 mouse port. The initial desktop Model 50 and Model 70 also featured a new cableless internal design, based on use of interposer circuit boards to link the internal drives to the planar (motherboard). Additionally, these machines could be largely disassembled and reassembled for service without tools. Additionally,
IBM PS/55 - Misplaced Pages Continue
2856-545: The case, featured MCA and a 486SLC CPU. The 6152 Academic System was a workstation computer developed by IBM's Academic Information Systems (ACIS) division for the university market introduced in February 1988. The 6152 was based on the PS/2 Model 60, adding a RISC Adapter Card on the Micro Channel bus. This card was a co-processor that enabled the 6152 to run ROMP software compiled for IBM's Academic Operating System (AOS),
2924-417: The color gamut to a fixed 16- or 64-color palette with no room for expansion. In contrast, any color depth (bits per primary) can be encoded into the analog RGB signals so the color gamut can be increased arbitrarily by using wider (more bits per sample) DACs and a more sensitive monitor. The connector was also compatible with analog grayscale displays. Unlike earlier systems such as MDA and Hercules , this
2992-470: The communication software. We are planning to replace all of our IBM terminals. A new personal computer must respond for the host computer as fast as a terminal, and it must have various communication softwares." In Japan, the 5550 had annual sales of 70,000 units in 1985, and the Nikkei Personal Computing magazine reported in 1986 that the 5550 had the largest personal computer share of 30% in
3060-529: The computer was forming. The magazine concluded that "if the American PC is any precedent, the market should soon be filled with 5550 software". The 5550 was primarily sold for large enterprises who used IBM's mainframe computer. Meiji Life who used the IBM 3081 mainframe decided to purchase about 500 units of the 5550 in 1983. A manager of its System Development section said, "IBM supports us to satisfy our demand for
3128-543: The corporate sector. IBM Personal System The Personal System/2 or PS/2 is IBM 's second generation of personal computers . Released in 1987, it officially replaced the IBM PC , XT , AT , and PC Convertible in IBM's lineup. Many of the PS/2's innovations, such as the 16550 UART (serial port), 1440 KB 3.5-inch floppy disk format, 72-pin SIMMs , PS/2 port , and VGA video standard , went on to become standards in
3196-468: The first few years the PS/2 was available, and they were very commonly purchased with lower-end models. The VGA connector became the de facto standard for connecting monitors and projectors on both PC and non-PC hardware over the course of the early 1990s, replacing a variety of earlier connectors. Apple had first popularized the 3.5" floppy on the Macintosh line and IBM brought them to the PC in 1986 with
3264-575: The floppy drives. Later models used DBA ESDI or Parallel SCSI . Typically, desktop PS/2 models only permitted use of one hard drive inside the computer case. Additional storage could be attached externally using the optional SCSI interface. Later PS/2 models introduced the 72-pin SIMM which became the de facto standard for RAM modules by the mid-1990s in mid-to-late 486 and nearly all Pentium desktop systems. The 72-pin SIMMs were 32/36 bits wide and replaced
3332-403: The full 101-key keyboard and standalone monitor along with three 8-bit ISA expansion slots. 8086 models had 720 KB floppies while 286 models had 1440 KB ones. Both the Model 25 and 30 could have an optional 20 MB ST-506 hard disk (which in the Model 25 took the place of the second floppy drive if so equipped and used a proprietary 3.5" form factor). 286-based Model 30s are otherwise
3400-411: The immature OS/2 1.x operating system (the more capable OS/2 version 2.0 was not released until 1992) to justify the PS/2's price premium, in contrast to rival IBM PC compatibles that stuck with industry-wide standard hardware while running Microsoft Windows . In 1992, Macworld stated that "IBM lost control of its own market and became a minor player with its own technology." IBM officially retired
3468-412: The large body of existing IBM-compatible software. However IBM made available optional external 5.25" drives, with internal adapters for the early PS/2 models, to enable data transfer. In the initial lineup, IBM used 720 KB double density (DD) capacity drives on the 8086-based models and 1440 KB high density (HD) on the 80286-based and higher models. By the end of the PS/2 line they had moved to
SECTION 50
#17328691666483536-633: The old 30-pin SIMM (8/9-bit) standard. The older SIMMs were much less convenient because they had to be installed in sets of two or four to match the width of the CPU's 16-bit (Intel 80286 and 80386SX ) or 32-bit (80386 and 80486 ) data bus, and would have been extremely inconvenient to use in Pentium systems (which featured a 64-bit memory bus). The 72-pin SIMMs were also made with greater capacities (starting at 1 MB and ultimately reaching 128 MB, instead of 256 KB to 16 MB (and usually no more than 4 MB) for 30-pin) and in
3604-408: The otherwise common intermediate 800 × 600 SVGA resolution, even at the relatively low 50 to 56 Hz refresh rates initially used. Although the design of these adapters did not become an industry standard as VGA did, their 1024 × 768 pixel resolution was subsequently widely adopted as a standard by other manufacturers, and XGA became a synonym for this screen resolution. The only exceptions were
3672-412: The per-machine royalties. The OS/2 operating system was announced at the same time as the PS/2 line and was intended to be the primary operating system for models with Intel 80286 or later processors. However, at the time of the first shipments, only IBM PC DOS 3.3 was available. OS/2 1.0 (text-mode only) and Microsoft's Windows 2.0 became available several months later. IBM also released AIX PS/2,
3740-407: The system. The majority of MCA's features would be seen in later buses with the exception of: streaming-data procedure, channel-check reporting, error logging and internal bus-level video pass-through for devices like the IBM 8514 . Transfer speeds were on par with the much later PCI standard. MCA allowed one-to-one, card-to-card, and multi-card to processor simultaneous transaction management which
3808-588: The television show M*A*S*H playing the staff of a contemporary (i.e. late-1980s) business in roles reminiscent of their characters' roles from the series. Harry Morgan, Larry Linville, William Christopher, Wayne Rogers, Gary Burghoff, Jamie Farr, and Loretta Swit were in from the beginning, whereas Alan Alda joined the campaign later. The profound lack of success of these advertising campaigns led, in part, to IBM's termination of its relationships with its global advertising agencies ; these accounts were reported by Wired magazine to have been worth over $ 500 million
3876-472: Was annoying, but less expensive and time-consuming than bringing in a PC technician to do installation. But for large organizations with hundreds or even thousands of PCs, permanently matching each PC with its own floppy disk was a logistical nightmare. Without the original, (and correctly updated) floppy disk, no changes could be made to the PC's cards. In addition to the technical setup, legally, royalties were required for each MCA-compatible machine sold. There
3944-539: Was difficult to combine different types of machines. Considering price–performance ratio and continuity of an architecture, the team examined not only Intel's but also other manufacturer's processsors. The IBM PC used an Intel 8088, but the 5550 employed an Intel 8086 because bus speed largely influenced for performance of the machine which had high display resolution. To gain an advantage over competitors in Japanese word processing, 24 pixel font models render characters in
4012-694: Was founded as an Independent Business Unit (IBU). The team set goals for IBM 5550 that the machine was usable for both word processing and personal computing on the same architecture at least 3-5 years. They tried to build the 5550 from the IBM Displaywriter System 6580, the English word processor developed in Austin office in 1980, and the IBM Personal Computer developed in Boca Raton office, but it
4080-473: Was hesitating to sell personal computers for consumers because the IBM JX failed. The AT bus model was released for home users in 1991. The MCA video card called Display Adapter has a Japanese font containing nearly 7,000 glyphs stored in its ROM , which enables PS/2-based computers to display Japanese text without loading the font into memory. Similar to the IBM 5550, the display resolution in character mode
4148-413: Was not powerful enough to process the far eastern languages of Japanese, Korean and Chinese. Nor was the resolution of IBM PC's display high enough to show the complex characters of these languages. The IBM 5550 was first introduced in Japan in March 1983, using Intel 8086 microprocessor and was called "Multistation 5550" because it had three roles in one machine: a PC , a word processing machine which
SECTION 60
#17328691666484216-459: Was nothing unique in IBM insisting on payment of royalties on the use of its patents applied to Micro Channel-based machines. Up until that time, some companies had failed to pay IBM for the use of its patents on the earlier generation of Personal Computer. The PS/2 IBM Model M keyboard used the same 101-key layout of the previous IBM PC/AT Extended keyboard, itself derived from the original IBM PC keyboard . European variants had 102 keys with
4284-639: Was the first Energy Star compliant personal computer. It had a 50 MHz IBM 486SLC processor, an ISA bus, four PC card slots, and an IDE hard drive interface. The environmentally friendly PC borrowed many components from the ThinkPad line and was composed of recycled plastics, designed to be easily recycled at the end of its life, and used very little power. The IBM PS/2 Server 195 and 295 (IBM 8600) were 486-based dual-bus MCA network servers supporting asymmetric multiprocessing , designed by Parallan Computer Inc . The IBM PC Server 720 (IBM 8642)
4352-442: Was the first computer to use the ROMP-C, which would later be introduced in new RT PC models. During the 1980s, IBM's advertising of the original PC and its other product lines had frequently used the likeness of Charlie Chaplin . For the PS/2, however, IBM augmented this character with the following jingle: How ya gonna do it? PS/2 it! It's as easy as IBM. (Or, "The solution is IBM.") Another campaign featured actors from
4420-709: Was the largest MCA-based server made by IBM, although it was not, strictly speaking, a PS/2 model. It could be fitted with up to six Intel Pentium processors interconnected by the Corollary C-bus and up to eighteen SCSI hard disks. This model was equipped with seven combination MCA/ PCI slots. IBM also produced several portable and laptop PS/2s , including the Model L40 (ISA-bus 386SX), N33 (IBM's first notebook-format computer from year 1991, Model 8533, 386SX), N51 (386SX/SLC), P70 (386DX) and P75 (486DX2). The IBM ThinkPad 700C , aside from being labeled "700C PS/2" on
4488-458: Was the second Japanese localization of MS-DOS 2.0 followed to Toshiba's PASOPIA 16. Nihongo DOS bundled the Microsoft BASIC interpreter which designed for the 5550. Programming languages and the Japanese version of Multiplan were also provided. The team didn't consider the machine was used for online communication, but they realized its importance during the development. They decided to add
4556-429: Was traditionally marketed in Japan as a machine different from a PC, and an online terminal. After the Japanese 5550 models, Korean , Traditional Chinese and Simplified Chinese models were also introduced. IBM 5550 initially used its own architecture, but, later since 1987, was changed to use IBM Personal System/2 's Micro Channel Architecture , being renamed as Personal System/55 . In Japan, Kiyoshi Atsumi ,
4624-429: Was transparent to software, so all programs supporting the new standards could run unmodified whichever type of display was attached. On the other hand, whether the display was color or monochrome was undetectable to software, so selection between application displays optimized for color or monochrome, in applications that supported both, required user intervention. These grayscale displays were relatively inexpensive during
#647352