Misplaced Pages

PAS-4

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Dr. Harold Allen Rosen (20 March 1926 – 30 January 2017 ) was an American electrical engineer , known as "the father of the geostationary satellite ", and "father of the communications satellite ".

#676323

51-534: PAS 4 , was an American geostationary satellite that was launched by an Ariane 4 . PAS-4 was constructed by Hughes Aircraft Corporation , based on the HS-601 satellite bus . It had a mass at launch of 2,920 kg (6,440 lb), which decreased to around 1,727 kg (3,807 lb) by the time it was operational. Designed for an operational life of 15 years, the spacecraft was equipped with 20 C-band and 30 Ku-band transponders . Its two solar panels , which had

102-479: A delta-v of approximately 50 m/s per year. A second effect to be taken into account is the longitudinal drift, caused by the asymmetry of the Earth – the equator is slightly elliptical ( equatorial eccentricity ). There are two stable equilibrium points sometimes called "gravitational wells" (at 75.3°E and 108°W) and two corresponding unstable points (at 165.3°E and 14.7°W). Any geostationary object placed between

153-427: A geostationary transfer orbit (GTO), an elliptical orbit with an apogee at GEO height and a low perigee . On-board satellite propulsion is then used to raise the perigee, circularise and reach GEO. Satellites in geostationary orbit must all occupy a single ring above the equator . The requirement to space these satellites apart, to avoid harmful radio-frequency interference during operations, means that there are

204-416: A 55,000 rpm flywheel energy storage subsystem to provide bursts of acceleration to augment the turbine's more steady power output. The flywheel also stored energy through regenerative braking . The flywheel was composed of a titanium hub with a carbon fiber cylinder and was gimbal mounted to minimize adverse gyroscopic effects on vehicle handling. The prototype vehicle was a Saturn , modified to accept

255-455: A fixed position in the sky. The concept of a geostationary orbit was popularised by the science fiction writer Arthur C. Clarke in the 1940s as a way to revolutionise telecommunications, and the first satellite to be placed in this kind of orbit was launched in 1963. Communications satellites are often placed in a geostationary orbit so that Earth-based satellite antennas do not have to rotate to track them but can be pointed permanently at

306-415: A geostationary orbit in particular, it ensures that it holds the same longitude over time. This orbital period, T , is directly related to the semi-major axis of the orbit through the formula: where: The eccentricity is zero, which produces a circular orbit . This ensures that the satellite does not move closer or further away from the Earth, which would cause it to track backwards and forwards across

357-576: A geostationary satellite to globalise communications. Telecommunications between the US and Europe was then possible between just 136 people at a time, and reliant on high frequency radios and an undersea cable . Conventional wisdom at the time was that it would require too much rocket power to place a satellite in a geostationary orbit and it would not survive long enough to justify the expense, so early efforts were put towards constellations of satellites in low or medium Earth orbit. The first of these were

408-547: A higher graveyard orbit to avoid collisions. In 1929, Herman Potočnik described both geosynchronous orbits in general and the special case of the geostationary Earth orbit in particular as useful orbits for space stations . The first appearance of a geostationary orbit in popular literature was in October 1942, in the first Venus Equilateral story by George O. Smith , but Smith did not go into details. British science fiction author Arthur C. Clarke popularised and expanded

459-399: A known position) and providing an additional reference signal. This improves position accuracy from approximately 5m to 1m or less. Past and current navigation systems that use geostationary satellites include: Geostationary satellites are launched to the east into a prograde orbit that matches the rotation rate of the equator. The smallest inclination that a satellite can be launched into

510-408: A large area of the earth's surface, extending 81° away in latitude and 77° in longitude. They appear stationary in the sky, which eliminates the need for ground stations to have movable antennas. This means that Earth-based observers can erect small, cheap and stationary antennas that are always directed at the desired satellite. However, latency becomes significant as it takes about 240 ms for

561-501: A limited number of orbital slots available, and thus only a limited number of satellites can be operated in geostationary orbit. This has led to conflict between different countries wishing access to the same orbital slots (countries near the same longitude but differing latitudes ) and radio frequencies . These disputes are addressed through the International Telecommunication Union 's allocation mechanism under

SECTION 10

#1732870153677

612-406: A signal to pass from a ground based transmitter on the equator to the satellite and back again. This delay presents problems for latency-sensitive applications such as voice communication, so geostationary communication satellites are primarily used for unidirectional entertainment and applications where low latency alternatives are not available. Geostationary satellites are directly overhead at

663-404: A simple, long-lived control system to go along with the satellite's lightweight electronics. He gathered a small team of gifted colleagues (most notably, Don Williams, Tom Hudspeth and John Mendel) to convert the concept into a design for a practical geostationary communication satellite system. The spin stabilized satellite itself weighed only 55 pounds. When his superiors initially refused to fund

714-687: A span of 26 m (85 ft) generated 4.7 kW of power when the spacecraft first entered service, which was expected to drop to around 4.3 kW by the end of the vehicle's operational life. Arianespace launched PAS-4, using an Ariane 4 launch vehicle , flight number V76, in the Ariane 42L H10-3 configuration. The launch took place from ELA-2 at the Centre Spatial Guyanais , at Kourou in French Guiana , on 3 August 1995, at 22:58:00 UTC . This article about one or more spacecraft of

765-524: A worthwhile new project that could keep the skilled staff gainfully employed. Stimulated by the possibilities of the new Space Age, Rosen wanted it to be some kind of space program. Because at that time international telephony was very expensive and hard to arrange, and transoceanic television was impossible, he decided it should be some kind of communication satellite since these problems could be solved that way. He began to research what kind of communication satellite system would work best for this purpose. At

816-452: Is that of the launch site's latitude, so launching the satellite from close to the equator limits the amount of inclination change needed later. Additionally, launching from close to the equator allows the speed of the Earth's rotation to give the satellite a boost. A launch site should have water or deserts to the east, so any failed rockets do not fall on a populated area. Most launch vehicles place geostationary satellites directly into

867-403: Is the gravitational constant , (6.674 28 ± 0.000 67 ) × 10  m kg s . The magnitude of the acceleration, a , of a body moving in a circle is given by: where v is the magnitude of the velocity (i.e. the speed) of the satellite. From Newton's second law of motion , the centripetal force F c is given by: As F c = F g , so that Replacing v with the equation for

918-781: Is typically 70°, and in some cases less. Geostationary satellite imagery has been used for tracking volcanic ash , measuring cloud top temperatures and water vapour, oceanography , measuring land temperature and vegetation coverage, facilitating cyclone path prediction, and providing real time cloud coverage and other tracking data. Some information has been incorporated into meteorological prediction models , but due to their wide field of view, full-time monitoring and lower resolution, geostationary weather satellite images are primarily used for short-term and real-time forecasting. Geostationary satellites can be used to augment GNSS systems by relaying clock , ephemeris and ionospheric error corrections (calculated from ground stations of

969-408: Is used to provide visible and infrared images of Earth's surface and atmosphere for weather observation, oceanography , and atmospheric tracking. As of 2019 there are 19 satellites in either operation or stand-by. These satellite systems include: These satellites typically capture images in the visual and infrared spectrum with a spatial resolution between 0.5 and 4 square kilometres. The coverage

1020-473: The Radio Regulations . In the 1976 Bogota Declaration , eight countries located on the Earth's equator claimed sovereignty over the geostationary orbits above their territory, but the claims gained no international recognition. A statite is a hypothetical satellite that uses radiation pressure from the sun against a solar sail to modify its orbit. It would hold its location over the dark side of

1071-714: The USNS Kingsport docked in Lagos on August 23, 1963. The first satellite placed in a geostationary orbit was Syncom 3 , which was launched by a Delta D rocket in 1964. With its increased bandwidth, this satellite was able to transmit live coverage of the Summer Olympics from Japan to America. Geostationary orbits have been in common use ever since, in particular for satellite television. Today there are hundreds of geostationary satellites providing remote sensing and communications. Although most populated land locations on

SECTION 20

#1732870153677

1122-430: The centripetal force required to maintain the orbit ( F c ) is equal to the gravitational force acting on the satellite ( F g ): From Isaac Newton 's universal law of gravitation , where F g is the gravitational force acting between two objects, M E is the mass of the Earth, 5.9736 × 10  kg , m s is the mass of the satellite, r is the distance between the centers of their masses , and G

1173-448: The speed of an object moving around a circle produces: where T is the orbital period (i.e. one sidereal day), and is equal to 86 164 .090 54  s . This gives an equation for r : The product GM E is known with much greater precision than either factor alone; it is known as the geocentric gravitational constant μ = 398 600 .4418 ± 0.0008 km s . Hence Harold Rosen (electrical engineer) He formed and led

1224-424: The Earth at a latitude of approximately 30 degrees. A statite is stationary relative to the Earth and Sun system rather than compared to surface of the Earth, and could ease congestion in the geostationary ring. Geostationary satellites require some station keeping to keep their position, and once they run out of thruster fuel they are generally retired. The transponders and other onboard systems often outlive

1275-640: The United States is a stub . You can help Misplaced Pages by expanding it . Geostationary satellite A geostationary orbit , also referred to as a geosynchronous equatorial orbit ( GEO ), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator , 42,164 km (26,199 mi) in radius from Earth's center, and following the direction of Earth's rotation . An object in such an orbit has an orbital period equal to Earth's rotational period, one sidereal day , and so to ground observers it appears motionless, in

1326-400: The absence of servicing missions from the Earth or a renewable propulsion method, the consumption of thruster propellant for station-keeping places a limitation on the lifetime of the satellite. Hall-effect thrusters , which are currently in use, have the potential to prolong the service life of a satellite by providing high-efficiency electric propulsion . For circular orbits around a body,

1377-522: The closure of Rosen Motors, Rosen became a consultant for Boeing in the design of new satellite systems. In 1949, Rosen married Rosetta, and they had two sons, Robert (born 1950) and Rocky (born 1966). Rosetta died in 1969. In 1984 he married Deborah Castleman, a satellite systems engineer also working at Hughes Aircraft Company. Rosen died at his home the Pacific Palisades neighborhood of Los Angeles on January 30, 2017, due to complications from

1428-458: The collection of artificial satellites in this orbit is known as the Clarke Belt. In technical terminology the orbit is referred to as either a geostationary or geosynchronous equatorial orbit, with the terms used somewhat interchangeably. The first geostationary satellite was designed by Harold Rosen while he was working at Hughes Aircraft in 1959. Inspired by Sputnik 1 , he wanted to use

1479-509: The concept in a 1945 paper entitled Extra-Terrestrial Relays – Can Rocket Stations Give Worldwide Radio Coverage? , published in Wireless World magazine. Clarke acknowledged the connection in his introduction to The Complete Venus Equilateral . The orbit, which Clarke first described as useful for broadcast and relay communications satellites, is sometimes called the Clarke orbit. Similarly,

1530-659: The equator and appear lower in the sky to an observer nearer the poles. As the observer's latitude increases, communication becomes more difficult due to factors such as atmospheric refraction , Earth's thermal emission , line-of-sight obstructions, and signal reflections from the ground or nearby structures. At latitudes above about 81°, geostationary satellites are below the horizon and cannot be seen at all. Because of this, some Russian communication satellites have used elliptical Molniya and Tundra orbits, which have excellent visibility at high latitudes. A worldwide network of operational geostationary meteorological satellites

1581-474: The equilibrium points would (without any action) be slowly accelerated towards the stable equilibrium position, causing a periodic longitude variation. The correction of this effect requires station-keeping maneuvers with a maximal delta-v of about 2 m/s per year, depending on the desired longitude. Solar wind and radiation pressure also exert small forces on satellites: over time, these cause them to slowly drift away from their prescribed orbits. In

PAS-4 - Misplaced Pages Continue

1632-472: The fields of radar and missile guidance and control. After joining the Hughes Aircraft Company in 1956, and while he was working on the development of airborne radars, the world was catapulted into the space age by the 1957 launch of Sputnik, the world's first artificial satellite . At the same time, his department's most important program was cancelled. His boss, Frank Carver, challenged him to find

1683-542: The following properties: An inclination of zero ensures that the orbit remains over the equator at all times, making it stationary with respect to latitude from the point of view of a ground observer (and in the Earth-centered Earth-fixed reference frame). The orbital period is equal to exactly one sidereal day. This means that the satellite will return to the same point above the Earth's surface every (sidereal) day, regardless of other orbital properties. For

1734-523: The ground. All geostationary satellites have to be located on this ring. A combination of lunar gravity, solar gravity, and the flattening of the Earth at its poles causes a precession motion of the orbital plane of any geostationary object, with an orbital period of about 53 years and an initial inclination gradient of about 0.85° per year, achieving a maximal inclination of 15° after 26.5 years. To correct for this perturbation , regular orbital stationkeeping maneuvers are necessary, amounting to

1785-596: The new engine/flywheel unit. It was successfully road tested in the Mojave Desert in January 1997 but was never mass-produced, when the automakers to whom it was demonstrated chose not to go with the flywheel technology. The company was dissolved in November 1997. Their sister company, Capstone Turbine Corporation ( Tarzana, Los Angeles ) received the company's technology and continued to develop and market it after 1997. After

1836-538: The passive Echo balloon satellites in 1960, followed by Telstar 1 in 1962. Although these projects had difficulties with signal strength and tracking, issues that could be solved using geostationary orbits, the concept was seen as impractical, so Hughes often withheld funds and support. By 1961, Rosen and his team had produced a cylindrical prototype with a diameter of 76 centimetres (30 in), height of 38 centimetres (15 in), weighing 11.3 kilograms (25 lb), light and small enough to be placed into orbit. It

1887-476: The planet now have terrestrial communications facilities ( microwave , fiber-optic ), with telephone access covering 96% of the population and internet access 90%, some rural and remote areas in developed countries are still reliant on satellite communications. Most commercial communications satellites , broadcast satellites and SBAS satellites operate in geostationary orbits. Geostationary communication satellites are useful because they are visible from

1938-485: The position in the sky where the satellites are located. Weather satellites are also placed in this orbit for real-time monitoring and data collection, and navigation satellites to provide a known calibration point and enhance GPS accuracy. Geostationary satellites are launched via a temporary orbit , and placed in a slot above a particular point on the Earth's surface. The orbit requires some stationkeeping to keep its position, and modern retired satellites are placed in

1989-628: The project, Rosen began talking to his contacts at Raytheon; rather than lose him to his previous employer, Hughes' management agreed to support prototype development. He subsequently convinced the U.S. government to fund the Syncom program, a flight program that was based on the Hughes prototype. After a discouraging rocket failure that doomed Syncom I in February 1963, Syncom II was successfully launched in August 1963. It

2040-524: The same plane, altitude and speed; however, the presence of satellites in eccentric orbits allows for collisions at up to 4 km/s. Although a collision is comparatively unlikely, GEO satellites have a limited ability to avoid any debris. At geosynchronous altitude, objects less than 10 cm in diameter cannot be seen from the Earth, making it difficult to assess their prevalence. Despite efforts to reduce risk, spacecraft collisions have occurred. The European Space Agency telecom satellite Olympus-1

2091-405: The sky. A geostationary orbit can be achieved only at an altitude very close to 35,786 kilometres (22,236 miles) and directly above the equator. This equates to an orbital speed of 3.07 kilometres per second (1.91 miles per second) and an orbital period of 1,436 minutes, one sidereal day . This ensures that the satellite will match the Earth's rotational period and has a stationary footprint on

PAS-4 - Misplaced Pages Continue

2142-524: The team that designed and built the first geosynchronous communications satellite , Syncom , for Hughes Aircraft Company. Harold Allen Rosen was born on March 20, 1926, in New Orleans , Louisiana . He served as a radio communication and radar technician in the U.S. Navy during World War II , from 1944 to 1946. His experiences in the Navy provided him with hands-on experience with radio communications and

2193-626: The then-new field of radars. He graduated from Tulane University in New Orleans in 1947 with a Bachelor of Engineering degree in electrical engineering. He received an M.S. and a PhD in electrical engineering in 1948 and 1951 respectively from the California Institute of Technology in Pasadena . While still in graduate school, he began working for Raytheon , where he helped develop early anti-aircraft guided missiles, making many innovations in

2244-485: The thruster fuel and by allowing the satellite to move naturally into an inclined geosynchronous orbit some satellites can remain in use, or else be elevated to a graveyard orbit . This process is becoming increasingly regulated and satellites must have a 90% chance of moving over 200 km above the geostationary belt at end of life. Space debris at geostationary orbits typically has a lower collision speed than at low Earth orbit (LEO) since all GEO satellites orbit in

2295-458: The time, Rosen was unaware of science writer Arthur C. Clarke 's 1945 description of a geosynchronous satellite , but he was aware of the conventional wisdom regarding geostationary satellites, expressed most stridently by the highly regarded Bell Labs, at that time the world's leading communications R&D entity, in a March 1959 IRE Journal titled “Transoceanic Communications Via Satellites,” written by John Pierce and Rudy Kompfner. They expressed

2346-451: The view that geostationary satellites would be too heavy to be launched by the rockets that were then available. And, even if geostationary satellites could be launched, their presumed complexity would prevent them from having a long enough lifetime to be commercially viable. Rosen, in reading their paper, felt otherwise. He reasoned that since Bell Labs designed communication equipment for ground applications, it had little incentive for keeping

2397-403: The weight down. Also, he was confident that his previous experience in guided missile design was more relevant for designing the control system for such a satellite and that the supposedly-complex control system the authors claimed would be necessary would not be needed. Rosen had an epiphany when it occurred to him that if he used spin-phased impulses on a spin-stabilized satellite, he could have

2448-560: Was spin stabilised with a dipole antenna producing a pancake shaped beam. In August 1961, they were contracted to begin building the real satellite. They lost Syncom 1 to electronics failure, but Syncom 2 was successfully placed into a geosynchronous orbit in 1963. Although its inclined orbit still required moving antennas, it was able to relay TV transmissions, and allowed for US President John F. Kennedy in Washington D.C., to phone Nigerian prime minister Abubakar Tafawa Balewa aboard

2499-432: Was followed by Syncom III in 1964, in time to relay live television signals from Tokyo during the Summer Olympics. The first commercial satellite, Early Bird, was launched in 1965. With communication satellites a commercial reality, Hughes formed a division to pursue this as a business, and Rosen became its technical director. He later became a vice president of Hughes and a member of its policy board in 1975. In these roles he

2550-463: Was key in helping to build the world's largest communications satellite business at Hughes Aircraft Company. Upon his retirement from Hughes in 1992, he joined with his brother Benjamin in another development project. In 1993 Harold Rosen and his brother Benjamin founded Rosen Motors in Woodland Hills, California . They developed a gas turbine -powered series hybrid automotive powertrain using

2601-490: Was struck by a meteoroid on August 11, 1993, and eventually moved to a graveyard orbit , and in 2006 the Russian Express-AM11 communications satellite was struck by an unknown object and rendered inoperable, although its engineers had enough contact time with the satellite to send it into a graveyard orbit. In 2017, both AMC-9 and Telkom-1 broke apart from an unknown cause. A typical geostationary orbit has

SECTION 50

#1732870153677
#676323