Misplaced Pages

OpenAL

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

OpenAL ( Open Audio Library ) is a cross-platform audio application programming interface (API). It is designed for efficient rendering of multichannel three-dimensional positional audio. Its API style and conventions deliberately resemble those of OpenGL . OpenAL is an environmental 3D audio library, which can add realism to a game by simulating attenuation (degradation of sound over distance), the Doppler effect (change in frequency as a result of motion), and material densities.

#851148

81-515: OpenAL aimed to originally be an open standard and open-source replacement for proprietary (and generally incompatible with one another) 3D audio APIs such as DirectSound and Core Audio , though in practice has largely been implemented on various platforms as a wrapper around said proprietary APIs or as a proprietary and vendor-specific fork. While the reference implementation later became proprietary and unmaintained, there are open source implementations such as OpenAL Soft available. OpenAL

162-444: A l = γ ⋅ p ρ = γ ⋅ R ⋅ T M = γ ⋅ k ⋅ T m , {\displaystyle c_{\mathrm {ideal} }={\sqrt {\gamma \cdot {p \over \rho }}}={\sqrt {\gamma \cdot R\cdot T \over M}}={\sqrt {\gamma \cdot k\cdot T \over m}},} where This equation applies only when

243-402: A dispersive medium , the speed of sound is a function of sound frequency, through the dispersion relation . Each frequency component propagates at its own speed, called the phase velocity , while the energy of the disturbance propagates at the group velocity . The same phenomenon occurs with light waves; see optical dispersion for a description. The speed of sound is variable and depends on

324-729: A royalty-free basis. Many definitions of the term standard permit patent holders to impose " reasonable and non-discriminatory licensing" royalty fees and other licensing terms on implementers or users of the standard. For example, the rules for standards published by the major internationally recognized standards bodies such as the Internet Engineering Task Force (IETF), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC), and ITU-T permit their standards to contain specifications whose implementation will require payment of patent licensing fees. Among these organizations, only

405-506: A "free software and open standards law." The decree includes the requirement that the Venezuelan public sector must use free software based on open standards, and includes a definition of open standard: Speed of sound The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F),

486-657: A common patent policy under the banner of the WSC . However, the ITU-T definition should not necessarily be considered also applicable in ITU-R, ISO and IEC contexts, since the Common Patent Policy does not make any reference to "open standards" but rather only to "standards." In section 7 of its RFC 2026, the IETF classifies specifications that have been developed in a manner similar to that of

567-453: A compression wave in a fluid is determined by the medium's compressibility and density . In solids, the compression waves are analogous to those in fluids, depending on compressibility and density, but with the additional factor of shear modulus which affects compression waves due to off-axis elastic energies which are able to influence effective tension and relaxation in a compression. The speed of shear waves, which can occur only in solids,

648-410: A computation of the speed of sound in air as 979 feet per second (298 m/s). This is too low by about 15%. The discrepancy is due primarily to neglecting the (then unknown) effect of rapidly fluctuating temperature in a sound wave (in modern terms, sound wave compression and expansion of air is an adiabatic process , not an isothermal process ). This error was later rectified by Laplace . During

729-674: A consensus basis. The definitions of the term open standard used by academics, the European Union , and some of its member governments or parliaments such as Denmark , France , and Spain preclude open standards requiring fees for use, as do the New Zealand , South African and the Venezuelan governments. On the standard organisation side, the World Wide Web Consortium (W3C) ensures that its specifications can be implemented on

810-402: A data format which is made public, is thoroughly documented and neutral with regard to the technological tools needed to peruse the same data. The E-Government Interoperability Framework (e-GIF) defines open standard as royalty-free according to the following text: While a universally agreed definition of "open standards" is unlikely to be resolved in the near future, the e-GIF accepts that

891-601: A definition of "open standards" needs to recognise a continuum that ranges from closed to open, and encompasses varying degrees of "openness." To guide readers in this respect, the e-GIF endorses "open standards" that exhibit the following properties: The e-GIF performs the same function in e-government as the Road Code does on the highways. Driving would be excessively costly, inefficient, and ineffective if road rules had to be agreed each time one vehicle encountered another. The Portuguese Open Standards Law, adopted in 2011, demands

SECTION 10

#1732884784852

972-528: A definition of open standards, which also is used in pan-European software development projects. It states: The French Parliament approved a definition of "open standard" in its "Law for Confidence in the Digital Economy." The definition is (Article 4): A clear royalty-free stance and far reaching requirements case is the one for India's Government 4.1 Mandatory Characteristics An Identified Standard will qualify as an "Open Standard", if it meets

1053-584: A full, irrevocable and irreversible way to the Portuguese State; e) There are no restrictions to its implementation. A Law passed by the Spanish Parliament requires that all electronic services provided by the Spanish public administration must be based on open standards. It defines an open standard as royalty-free, according to the following definition (ANEXO Definiciones k): An open standard fulfills

1134-495: A multiple listener model is required. OpenAL also fails to take into account sound propagation delays (the speed of sound is used for the Doppler effect only). The distance to a sound source only translates into an amplitude effect (attenuation) and not a delay. Hence OpenAL cannot be used for time difference of arrival calculations unless that functionality is added in separately. In order to take full speed advantage of OpenAL,

1215-486: A pipe aligned with the x {\displaystyle x} axis and with a cross-sectional area of A {\displaystyle A} . In time interval d t {\displaystyle dt} it moves length d x = v d t {\displaystyle dx=v\,dt} . In steady state , the mass flow rate m ˙ = ρ v A {\displaystyle {\dot {m}}=\rho vA} must be

1296-588: A set of principles which have contributed to the exponential growth of the Internet and related technologies. The "OpenStand Principles" define open standards and establish the building blocks for innovation. Standards developed using the OpenStand principles are developed through an open, participatory process, support interoperability, foster global competition, are voluntarily adopted on a global level and serve as building blocks for products and services targeted to meet

1377-456: A single given gas (assuming the molecular weight does not change) and over a small temperature range (for which the heat capacity is relatively constant), the speed of sound becomes dependent on only the temperature of the gas. In non-ideal gas behavior regimen, for which the Van der Waals gas equation would be used, the proportionality is not exact, and there is a slight dependence of sound velocity on

1458-466: A vendor/hardware specific implementation is needed and these are seldom released as open source. Many supported platforms in fact implement OpenAL as a wrapper which simply translates calls to the platform's native, and often proprietary, audio API. On Windows, if a vendor specific implementation is not detected it will fall back to the wrap_oal.dll wrapper library that translates OpenAL into DirectSound (Generic Software) or DirectSound3D (Generic Hardware);

1539-691: A weak dependence on frequency and pressure in ordinary air, deviating slightly from ideal behavior. In colloquial speech, speed of sound refers to the speed of sound waves in air . However, the speed of sound varies from substance to substance: typically, sound travels most slowly in gases , faster in liquids , and fastest in solids . For example, while sound travels at 343 m/s in air, it travels at 1481 m/s in water (almost 4.3 times as fast) and at 5120 m/s in iron (almost 15 times as fast). In an exceptionally stiff material such as diamond, sound travels at 12,000 m/s (39,370 ft/s),  – about 35 times its speed in air and about

1620-456: A wide range of meanings associated with their usage. There are a number of definitions of open standards which emphasize different aspects of openness, including the openness of the resulting specification, the openness of the drafting process, and the ownership of rights in the standard. The term "standard" is sometimes restricted to technologies approved by formalized committees that are open to participation by all interested parties and operate on

1701-542: Is a standard that is openly accessible and usable by anyone. It is also a common prerequisite that open standards use an open license that provides for extensibility. Typically, anybody can participate in their development due to their inherently open nature. There is no single definition, and interpretations vary with usage. Examples of open standards include the GSM , 4G , and 5G standards that allow most modern mobile phones to work world-wide. The terms open and standard have

SECTION 20

#1732884784852

1782-419: Is associated with compression and decompression in the direction of travel, and is the same process in gases and liquids, with an analogous compression-type wave in solids. Only compression waves are supported in gases and liquids. An additional type of wave, the transverse wave , also called a shear wave , occurs only in solids because only solids support elastic deformations. It is due to elastic deformation of

1863-417: Is called the object's Mach number . Objects moving at speeds greater than the speed of sound ( Mach 1 ) are said to be traveling at supersonic speeds . In Earth's atmosphere, the speed of sound varies greatly from about 295 m/s (1,060 km/h; 660 mph) at high altitudes to about 355 m/s (1,280 km/h; 790 mph) at high temperatures. Sir Isaac Newton 's 1687 Principia includes

1944-688: Is determined by the market. The ITU-T is a standards development organization (SDO) that is one of the three sectors of the International Telecommunication Union (a specialized agency of the United Nations ). The ITU-T has a Telecommunication Standardization Bureau director's Ad Hoc group on IPR that produced the following definition in March 2005, which the ITU-T as a whole has endorsed for its purposes since November 2005: The ITU-T , ITU-R , ISO , and IEC have harmonized on

2025-412: Is determined by the medium's compressibility , shear modulus , and density. The speed of shear waves is determined only by the solid material's shear modulus and density. In fluid dynamics , the speed of sound in a fluid medium (gas or liquid) is used as a relative measure for the speed of an object moving through the medium. The ratio of the speed of an object to the speed of sound (in the same medium)

2106-807: Is determined simply by the solid material's shear modulus and density. The speed of sound in mathematical notation is conventionally represented by c , from the Latin celeritas meaning "swiftness". For fluids in general, the speed of sound c is given by the Newton–Laplace equation: c = K s ρ , {\displaystyle c={\sqrt {\frac {K_{s}}{\rho }}},} where K s = ρ ( ∂ P ∂ ρ ) s {\displaystyle K_{s}=\rho \left({\frac {\partial P}{\partial \rho }}\right)_{s}} , where P {\displaystyle P}

2187-625: Is encoded in source objects , audio buffers and a single listener . A source object contains a pointer to a buffer, the velocity, position and direction of the sound, and the intensity of the sound. The listener object contains the velocity, position and direction of the listener, and the general gain applied to all sound. Buffers contain audio data in PCM format, either 8- or 16-bit , in either monaural or stereo format. The rendering engine performs all necessary calculations for distance attenuation, Doppler effect , etc. The net result of all of this for

2268-577: Is fully excited (i.e., molecular rotation is fully used as a heat energy "partition" or reservoir); but at the same time the temperature must be low enough that molecular vibrational modes contribute no heat capacity (i.e., insignificant heat goes into vibration, as all vibrational quantum modes above the minimum-energy-mode have energies that are too high to be populated by a significant number of molecules at this temperature). For air, these conditions are fulfilled at room temperature, and also temperatures considerably below room temperature (see tables below). See

2349-557: Is here meant in the sense of fulfilling the following requirements: The Network Centric Operations Industry Consortium (NCOIC) defines open standard as the following: Specifications for hardware and/or software that are publicly available implying that multiple vendors can compete directly based on the features and performance of their products. It also implies that the existing open system can be removed and replaced with that of another vendor with minimal effort and without major interruption. The Danish government has attempted to make

2430-472: Is the pressure and the derivative is taken isentropically, that is, at constant entropy s . This is because a sound wave travels so fast that its propagation can be approximated as an adiabatic process , meaning that there isn't enough time, during a pressure cycle of the sound, for significant heat conduction and radiation to occur. Thus, the speed of sound increases with the stiffness (the resistance of an elastic body to deformation by an applied force) of

2511-501: Is then published in the form of RFC 6852 in January 2013. The European Union defined the term for use within its European Interoperability Framework for Pan-European eGovernment Services, Version 1.0 although it does not claim to be a universal definition for all European Union use and documentation. To reach interoperability in the context of pan-European eGovernment services, guidance needs to focus on open standards. The word "open"

OpenAL - Misplaced Pages Continue

2592-504: The API : the core consisting of the actual OpenAL function calls, and the ALC (Audio Library Context) API which is used to manage rendering contexts, resource usage and locking in a cross platform manner. There is also an 'ALUT' (Audio Library Utility Toolkit) library that provides higher level 'convenience' functions — exactly analogous to OpenGL's ' GLUT '. In order to provide additional functionality in

2673-698: The GSM phones (adopted as a government standard), Open Group which promotes UNIX , and the Internet Engineering Task Force (IETF) which created the first standards of SMTP and TCP/IP. Buyers tend to prefer open standards which they believe offer them cheaper products and more choice for access due to network effects and increased competition between vendors. Open standards which specify formats are sometimes referred to as open formats . Many specifications that are sometimes referred to as standards are proprietary, and only available (if they can be obtained at all) under restrictive contract terms from

2754-446: The ozone layer . This produces a positive speed of sound gradient in this region. Still another region of positive gradient occurs at very high altitudes, in the thermosphere above 90 km . For an ideal gas, K (the bulk modulus in equations above, equivalent to C , the coefficient of stiffness in solids) is given by K = γ ⋅ p . {\displaystyle K=\gamma \cdot p.} Thus, from

2835-548: The springs , and the mass of the spheres. As long as the spacing of the spheres remains constant, stiffer springs/bonds transmit energy more quickly, while more massive spheres transmit energy more slowly. In a real material, the stiffness of the springs is known as the " elastic modulus ", and the mass corresponds to the material density . Sound will travel more slowly in spongy materials and faster in stiffer ones. Effects like dispersion and reflection can also be understood using this model. Some textbooks mistakenly state that

2916-605: The "One o'Clock Gun" is fired at the eastern end of Edinburgh Castle. Standing at the base of the western end of the Castle Rock, the sound of the Gun can be heard through the rock, slightly before it arrives by the air route, partly delayed by the slightly longer route. It is particularly effective if a multi-gun salute such as for "The Queen's Birthday" is being fired. In a gas or liquid, sound consists of compression waves. In solids, waves propagate as two different types. A longitudinal wave

2997-593: The "Simplified BSD License" as stated in the IETF Trust Legal Provisions and Copyright FAQ based on RFC 5377. In August 2012, the IETF combined with the W3C and IEEE to launch OpenStand and to publish The Modern Paradigm for Standards. This captures "the effective and efficient standardization processes that have made the Internet and Web the premiere platforms for innovation and borderless commerce". The declaration

3078-575: The 17th century there were several attempts to measure the speed of sound accurately, including attempts by Marin Mersenne in 1630 (1,380 Parisian feet per second), Pierre Gassendi in 1635 (1,473 Parisian feet per second) and Robert Boyle (1,125 Parisian feet per second). In 1709, the Reverend William Derham , Rector of Upminster, published a more accurate measure of the speed of sound, at 1,072 Parisian feet per second. (The Parisian foot

3159-495: The IETF and ITU-T explicitly refer to their standards as "open standards", while the others refer only to producing "standards". The IETF and ITU-T use definitions of "open standard" that allow "reasonable and non-discriminatory" patent licensing fee requirements. There are those in the open-source software community who hold that an "open standard" is only open if it can be freely adopted, implemented and extended. While open standards or architectures are considered non-proprietary in

3240-518: The IETF itself as being "open standards," and lists the standards produced by ANSI , ISO , IEEE , and ITU-T as examples. As the IETF standardization processes and IPR policies have the characteristics listed above by ITU-T, the IETF standards fulfill the ITU-T definition of "open standards." However, the IETF has not adopted a specific definition of "open standard"; both RFC 2026 and the IETF's mission statement (RFC 3935) talks about "open process," but RFC 2026 does not define "open standard" except for

3321-405: The Newton–Laplace equation above, the speed of sound in an ideal gas is given by c = γ ⋅ p ρ , {\displaystyle c={\sqrt {\gamma \cdot {p \over \rho }}},} where Using the ideal gas law to replace p with nRT / V , and replacing ρ with nM / V , the equation for an ideal gas becomes c i d e

OpenAL - Misplaced Pages Continue

3402-486: The OpenAL specification is generally handled and discussed via email on its public mailing list. The original mailing list, openal-devel hosted by Creative, ran from March 2003 to circa August 2012. Ryan C. Gordon, a Loki veteran who went on to develop Simple DirectMedia Layer , started a new mailing list and website at OpenAL.org in January 2014. As of February 2023, the list remains in use. The general functionality of OpenAL

3483-646: The degree of openness will be taken into account when selecting an appropriate standard: The UK government 's definition of open standards applies to software interoperability, data and document formats. The criteria for open standards are published in the "Open Standards Principles" policy paper and are as follows. The Cabinet Office in the UK recommends that government departments specify requirements using open standards when undertaking procurement exercises in order to promote interoperability and re-use, and avoid technological lock-in. The Venezuelan Government approved

3564-456: The denser materials. An illustrative example of the two effects is that sound travels only 4.3 times faster in water than air, despite enormous differences in compressibility of the two media. The reason is that the greater density of water, which works to slow sound in water relative to the air, nearly makes up for the compressibility differences in the two media. For instance, sound will travel 1.59 times faster in nickel than in bronze, due to

3645-453: The end user is that in a properly written OpenAL application, sounds behave quite naturally as the user moves through the three-dimensional space of the virtual world. From a programmer's perspective, very little additional work is required to make this happen in an existing OpenGL-based 3D graphical application. Unlike the OpenGL specification, the OpenAL specification includes two subsections of

3726-445: The fastest it can travel under normal conditions. In theory, the speed of sound is actually the speed of vibrations. Sound waves in solids are composed of compression waves (just as in gases and liquids) and a different type of sound wave called a shear wave , which occurs only in solids. Shear waves in solids usually travel at different speeds than compression waves, as exhibited in seismology . The speed of compression waves in solids

3807-502: The following conditions: The South African Government approved a definition in the "Minimum Interoperability Operating Standards Handbook" (MIOS). For the purposes of the MIOS, a standard shall be considered open if it meets all of these criteria. There are standards which we are obliged to adopt for pragmatic reasons which do not necessarily fully conform to being open in all respects. In such cases, where an open standard does not yet exist,

3888-564: The following criteria: Italy has a general rule for the entire public sector dealing with Open Standards, although concentrating on data formats, in Art. 68 of the Code of the Digital Administration ( Codice dell'Amministrazione Digitale ) [applications must] allow representation of data under different formats, at least one being an open data format. [...] [it is defined] an open data format,

3969-418: The future, OpenAL utilizes an extension mechanism. Individual vendors are thereby able to include their own extensions into distributions of OpenAL, commonly for the purpose of exposing additional functionality on their proprietary hardware. Extensions can be promoted to ARB (Architecture Review Board) status, indicating a standard extension which will be maintained for backwards compatibility. ARB extensions have

4050-473: The gas pressure. Humidity has a small but measurable effect on the speed of sound (causing it to increase by about 0.1%–0.6%), because oxygen and nitrogen molecules of the air are replaced by lighter molecules of water . This is a simple mixing effect. In the Earth's atmosphere , the chief factor affecting the speed of sound is the temperature . For a given ideal gas with constant heat capacity and composition,

4131-610: The greater stiffness of nickel at about the same density. Similarly, sound travels about 1.41 times faster in light hydrogen ( protium ) gas than in heavy hydrogen ( deuterium ) gas, since deuterium has similar properties but twice the density. At the same time, "compression-type" sound will travel faster in solids than in liquids, and faster in liquids than in gases, because the solids are more difficult to compress than liquids, while liquids, in turn, are more difficult to compress than gases. A practical example can be observed in Edinburgh when

SECTION 50

#1732884784852

4212-401: The ground, creating an acoustic shadow at some distance from the source. The decrease of the speed of sound with height is referred to as a negative sound speed gradient . However, there are variations in this trend above 11 km . In particular, in the stratosphere above about 20 km , the speed of sound increases with height, due to an increase in temperature from heating within

4293-413: The gunshot with a half-second pendulum. Measurements were made of gunshots from a number of local landmarks, including North Ockendon church. The distance was known by triangulation , and thus the speed that the sound had travelled was calculated. The transmission of sound can be illustrated by using a model consisting of an array of spherical objects interconnected by springs. In real material terms,

4374-466: The important factors, since fluids do not transmit shear stresses. In heterogeneous fluids, such as a liquid filled with gas bubbles, the density of the liquid and the compressibility of the gas affect the speed of sound in an additive manner, as demonstrated in the hot chocolate effect . In gases, adiabatic compressibility is directly related to pressure through the heat capacity ratio (adiabatic index), while pressure and density are inversely related to

4455-473: The material and decreases with an increase in density. For ideal gases, the bulk modulus K is simply the gas pressure multiplied by the dimensionless adiabatic index , which is about 1.4 for air under normal conditions of pressure and temperature. For general equations of state , if classical mechanics is used, the speed of sound c can be derived as follows: Consider the sound wave propagating at speed v {\displaystyle v} through

4536-563: The medium perpendicular to the direction of wave travel; the direction of shear-deformation is called the " polarization " of this type of wave. In general, transverse waves occur as a pair of orthogonal polarizations. These different waves (compression waves and the different polarizations of shear waves) may have different speeds at the same frequency. Therefore, they arrive at an observer at different times, an extreme example being an earthquake , where sharp compression waves arrive first and rocking transverse waves seconds later. The speed of

4617-400: The needs of markets and consumers. This drives innovation which, in turn, contributes to the creation of new markets and the growth and expansion of existing markets. There are five, key OpenStand Principles, as outlined below: 1. Cooperation Respectful cooperation between standards organizations, whereby each respects the autonomy, integrity, processes, and intellectual property rules of

4698-411: The organization that owns the copyright on the specification. As such these specifications are not considered to be fully open . Joel West has argued that "open" standards are not black and white but have many different levels of "openness". A more open standard tends to occur when the knowledge of the technology becomes dispersed enough that competition is increased and others are able to start copying

4779-711: The others. 2. Adherence to Principles – Adherence to the five fundamental principles of standards development, namely 3. Collective Empowerment Commitment by affirming standards organizations and their participants to collective empowerment by striving for standards that: 4. Availability Standards specifications are made accessible to all for implementation and deployment. Affirming standards organizations have defined procedures to develop specifications that can be implemented under fair terms. Given market diversity, fair terms may vary from royalty-free to fair, reasonable, and non-discriminatory terms (FRAND). 5. Voluntary Adoption Standards are voluntarily adopted and success

4860-432: The properties of the substance through which the wave is travelling. In solids, the speed of transverse (or shear) waves depends on the shear deformation under shear stress (called the shear modulus ), and the density of the medium. Longitudinal (or compression) waves in solids depend on the same two factors with the addition of a dependence on compressibility . In fluids, only the medium's compressibility and density are

4941-506: The prospect of being added to the core API after a period of time. For advanced digital signal processing and hardware-accelerated sound effects, the EFX (Effects Extension) or environmental audio extensions (EAX) can be used. The single listener model in OpenAL is tailored to a single human user and is not fit for artificial intelligence or robotic simulations or multiple human participants as in collaborative musical performances. In these cases

SECTION 60

#1732884784852

5022-631: The purpose of defining what documents IETF standards can link to. RFC 2026 belongs to a set of RFCs collectively known as BCP 9 (Best Common Practice, an IETF policy). RFC 2026 was later updated by BCP 78 and 79 (among others). As of 2011 BCP 78 is RFC 5378 (Rights Contributors Provide to the IETF Trust), and BCP 79 consists of RFC 3979 (Intellectual Property Rights in IETF Technology) and a clarification in RFC 4879. The changes are intended to be compatible with

5103-937: The removal of the latter from Windows Vista onward has effectively broken generic hardware acceleration on modern versions of Windows. The API is available on the following platforms and operating systems : Android (supports OpenSL ES ), AmigaOS 3.x and 4.x, Bada , BlackBerry 10 , BlackBerry PlayBook , BSD , iOS (supports Core Audio ), IRIX , Linux (supports ALSA , OSS , PortAudio and PulseAudio ), Mac OS 8 , Mac OS 9 and Mac OS X ( Core Audio ), Microsoft Windows (supports DirectSound , Windows Multimedia API and Windows Multimedia Device (MMDevice) API), MorphOS , OpenBSD , Solaris , QNX , and AROS . Supported gaming devices are for instance: GameCube , PlayStation 2 , PlayStation 3 , Xbox , Xbox 360 , Wii , and PlayStation Portable . The following video games are known to use OpenAL: Implementations: Developer resources: Open standard An open standard

5184-1421: The same at the two ends of the tube, therefore the mass flux j = ρ v {\displaystyle j=\rho v} is constant and v d ρ = − ρ d v {\displaystyle v\,d\rho =-\rho \,dv} . Per Newton's second law , the pressure-gradient force provides the acceleration: d v d t = − 1 ρ d P d x → d P = ( − ρ d v ) d x d t = ( v d ρ ) v → v 2 ≡ c 2 = d P d ρ {\displaystyle {\begin{aligned}{\frac {dv}{dt}}&=-{\frac {1}{\rho }}{\frac {dP}{dx}}\\[1ex]\rightarrow dP&=(-\rho \,dv){\frac {dx}{dt}}=(v\,d\rho )v\\[1ex]\rightarrow v^{2}&\equiv c^{2}={\frac {dP}{d\rho }}\end{aligned}}} And therefore: c = ( ∂ P ∂ ρ ) s = K s ρ , {\displaystyle c={\sqrt {\left({\frac {\partial P}{\partial \rho }}\right)_{s}}}={\sqrt {\frac {K_{s}}{\rho }}},} If relativistic effects are important,

5265-503: The sample implementation by Creative has turned proprietary, with the last releases in free licenses still accessible through the project's Subversion source code repository . However, OpenAL Soft is a widely used open source alternative and remains actively maintained and extended. While the OpenAL charter says that there will be an "Architecture Review Board" (ARB) modeled on the OpenGL ARB, no such organization has ever been formed and

5346-461: The section on gases in specific heat capacity for a more complete discussion of this phenomenon. For air, we introduce the shorthand R ∗ = R / M a i r . {\displaystyle R_{*}=R/M_{\mathrm {air} }.} In addition, we switch to the Celsius temperature θ = T − 273.15 K , which is useful to calculate air speed in

5427-480: The sense that the standard is either unowned or owned by a collective body, it can still be publicly shared and not tightly guarded. The typical example of "open source" that has become a standard is the personal computer originated by IBM and now referred to as Wintel , the combination of the Microsoft operating system and Intel microprocessor. There are three others that are most widely accepted as "open" which include

5508-426: The sound wave is a small perturbation on the ambient condition, and the certain other noted conditions are fulfilled, as noted below. Calculated values for c air have been found to vary slightly from experimentally determined values. Newton famously considered the speed of sound before most of the development of thermodynamics and so incorrectly used isothermal calculations instead of adiabatic . His result

5589-404: The speed of sound increases with density. This notion is illustrated by presenting data for three materials, such as air, water, and steel and noting that the speed of sound is higher in the denser materials. But the example fails to take into account that the materials have vastly different compressibility, which more than makes up for the differences in density, which would slow wave speeds in

5670-532: The speed of sound in air is about 343  m/s (1,125  ft/s ; 1,235  km/h ; 767  mph ; 667  kn ), or 1  km in 2.91 s or one mile in 4.69 s . It depends strongly on temperature as well as the medium through which a sound wave is propagating. At 0 °C (32 °F), the speed of sound in air is about 331 m/s (1,086 ft/s; 1,192 km/h; 740 mph; 643 kn). The speed of sound in an ideal gas depends only on its temperature and composition. The speed has

5751-423: The speed of sound is about 75% of the mean speed that the atoms move in that gas. For a given ideal gas the molecular composition is fixed, and thus the speed of sound depends only on its temperature . At a constant temperature, the gas pressure has no effect on the speed of sound, since the density will increase, and since pressure and density (also proportional to pressure) have equal but opposite effects on

5832-506: The speed of sound is calculated from the relativistic Euler equations . In a non-dispersive medium , the speed of sound is independent of sound frequency , so the speeds of energy transport and sound propagation are the same for all frequencies. Air, a mixture of oxygen and nitrogen, constitutes a non-dispersive medium. However, air does contain a small amount of CO 2 which is a dispersive medium, and causes dispersion to air at ultrasonic frequencies (greater than 28  kHz ). In

5913-404: The speed of sound is dependent solely upon temperature; see § Details below. In such an ideal case, the effects of decreased density and decreased pressure of altitude cancel each other out, save for the residual effect of temperature. Since temperature (and thus the speed of sound) decreases with increasing altitude up to 11 km , sound is refracted upward, away from listeners on

5994-490: The speed of sound, and the two contributions cancel out exactly. In a similar way, compression waves in solids depend both on compressibility and density—just as in liquids—but in gases the density contributes to the compressibility in such a way that some part of each attribute factors out, leaving only a dependence on temperature, molecular weight, and heat capacity ratio which can be independently derived from temperature and molecular composition (see derivations below). Thus, for

6075-402: The spheres represent the material's molecules and the springs represent the bonds between them. Sound passes through the system by compressing and expanding the springs, transmitting the acoustic energy to neighboring spheres. This helps transmit the energy in-turn to the neighboring sphere's springs (bonds), and so on. The speed of sound through the model depends on the stiffness /rigidity of

6156-693: The technology as they implement it. This occurred with the Wintel architecture as others were able to start imitating the software. Less open standards exist when a particular firm has much power (not ownership) over the standard, which can occur when a firm's platform "wins" in standard setting or the market makes one platform most popular. On August 12, 2012, the Institute of Electrical and Electronics Engineers (IEEE), Internet Society (ISOC), World Wide Web Consortium (W3C), Internet Engineering Task Force (IETF) and Internet Architecture Board (IAB), jointly affirmed

6237-429: The temperature and molecular weight, thus making only the completely independent properties of temperature and molecular structure important (heat capacity ratio may be determined by temperature and molecular structure, but simple molecular weight is not sufficient to determine it). Sound propagates faster in low molecular weight gases such as helium than it does in heavier gases such as xenon . For monatomic gases,

6318-667: The use of Open Standards, and is applicable to sovereign entities, central public administration services (including decentralized services and public institutes), regional public administration services and the public sector. In it, Open Standards are defined thus: a) Its adoption is fruit off an open decision process accessible to all interested parties; b) The specifications document must have been freely published, allowing its copy, distribution and use without restrictions; c) The specifications document cannot cover undocumented actions of processes; d) The applicable intellectual property rights, including patents, have been made available in

6399-422: Was 325 mm . This is longer than the standard "international foot" in common use today, which was officially defined in 1959 as 304.8 mm , making the speed of sound at 20 °C (68 °F) 1,055 Parisian feet per second). Derham used a telescope from the tower of the church of St. Laurence, Upminster to observe the flash of a distant shotgun being fired, and then measured the time until he heard

6480-435: Was missing the factor of γ but was otherwise correct. Numerical substitution of the above values gives the ideal gas approximation of sound velocity for gases, which is accurate at relatively low gas pressures and densities (for air, this includes standard Earth sea-level conditions). Also, for diatomic gases the use of γ = 1.4000 requires that the gas exists in a temperature range high enough that rotational heat capacity

6561-402: Was originally developed in 2000 by Loki Software to help them in their business of porting Windows games to Linux . After the demise of Loki, the project was maintained for a time by the free software / open source community , and implemented on NVIDIA nForce sound cards and motherboards. It was hosted (and largely developed) by Creative Technology until circa 2012. Since 1.1 (2009),

#851148