32-535: Odontognathae is a disused name for a paraphyletic group of toothed prehistoric birds. The group was originally proposed by Alexander Wetmore , who attempted to link fossil birds with the presence of teeth, specifically of the orders Hesperornithiformes and Ichthyornithiformes . As such they would be regarded as transitional fossils between the reptile -like " Archaeornithes " like Archaeopteryx and modern birds . They were described by Romer as birds with essentially modern anatomy, but retaining teeth. Unlike
64-442: A monophyletic grouping (a clade ) includes a common ancestor and all of its descendants. The terms are commonly used in phylogenetics (a subfield of biology ) and in the tree model of historical linguistics . Paraphyletic groups are identified by a combination of synapomorphies and symplesiomorphies . If many subgroups are missing from the named group, it is said to be polyparaphyletic. The term received currency during
96-479: A "single common ancestor" organism. Paraphyly is common in speciation , whereby a mother species (a paraspecies ) gives rise to a daughter species without itself becoming extinct. Research indicates as many as 20 percent of all animal species and between 20 and 50 percent of plant species are paraphyletic. Accounting for these facts, some taxonomists argue that paraphyly is a trait of nature that should be acknowledged at higher taxonomic levels. Cladists advocate
128-592: A cell nucleus, a plesiomorphy ) from its excluded descendants. Also, some systematists recognize paraphyletic groups as being involved in evolutionary transitions, the development of the first tetrapods from their ancestors for example. Any name given to these hypothetical ancestors to distinguish them from tetrapods—"fish", for example—necessarily picks out a paraphyletic group, because the descendant tetrapods are not included. Other systematists consider reification of paraphyletic groups to obscure inferred patterns of evolutionary history. The term " evolutionary grade "
160-407: A common ancestor are said to be monophyletic . A paraphyletic group is a monophyletic group from which one or more subsidiary clades (monophyletic groups) are excluded to form a separate group. Philosopher of science Marc Ereshefsky has argued that paraphyletic taxa are the result of anagenesis in the excluded group or groups. A cladistic approach normally does not grant paraphyletic assemblages
192-577: A common ancestor, excepting one or more monophyletic subgroups. A polyphyletic grouping meets neither criterion, and instead serves to characterize convergent relationships of biological features rather than genetic relationships – for example, night-active primates, fruit trees, or aquatic insects. As such, these characteristic features of a polyphyletic grouping are not inherited from a common ancestor, but evolved independently. Monophyletic groups are typically characterised by shared derived characteristics ( synapomorphies ), which distinguish organisms in
224-520: A confusion which persists. The first diagram shows a phylogenetic tree with two monophyletic groups. The several groups and subgroups are particularly situated as branches of the tree to indicate ordered lineal relationships between all the organisms shown. Further, any group may (or may not) be considered a taxon by modern systematics , depending upon the selection of its members in relation to their common ancestor(s); see second and third diagrams. The term monophyly , or monophyletic , derives from
256-419: A group of dinosaurs (part of Diapsida ), both of which are "reptiles". Osteichthyes , bony fish, are paraphyletic when circumscribed to include only Actinopterygii (ray-finned fish) and Sarcopterygii (lungfish, etc.), and to exclude tetrapods ; more recently, Osteichthyes is treated as a clade, including the tetrapods. The " wasps " are paraphyletic, consisting of the narrow-waisted Apocrita without
288-439: A kind of lizard). Put another way, viviparity is a synapomorphy for Theria within mammals, and an autapomorphy for Eulamprus tympanum (or perhaps a synapomorphy, if other Eulamprus species are also viviparous). Groupings based on independently-developed traits such as these examples of viviparity represent examples of polyphyly , not paraphyly. The following list recapitulates a number of paraphyletic groups proposed in
320-417: A lot of", and refers to the fact that a polyphyletic group includes organisms arising from multiple ancestral sources. By comparison, the term paraphyly , or paraphyletic , uses the ancient Greek prefix παρά ( pará ), meaning "beside, near", and refers to the situation in which one or several monophyletic subgroups are left apart from all other descendants of a unique common ancestor. That is,
352-549: A more inclusive clade, it often makes sense to study the paraphyletic group that remains without considering the larger clade. For example, the Neogene evolution of the Artiodactyla (even-toed ungulates, like deer, cows, pigs and hippopotamuses - Cervidae , Bovidae , Suidae and Hippopotamidae , the families that contain these various artiodactyls, are all monophyletic groups) has taken place in environments so different from that of
SECTION 10
#1733093535335384-424: A phylogenetic species concept that does not consider species to exhibit the properties of monophyly or paraphyly, concepts under that perspective which apply only to groups of species. They consider Zander's extension of the "paraphyletic species" argument to higher taxa to represent a category error When the appearance of significant traits has led a subclade on an evolutionary path very divergent from that of
416-433: Is allowed as a synonym of Magnoliopsida. Phylogenetic analysis indicates that the monocots are a development from a dicot ancestor. Excluding monocots from the dicots makes the latter a paraphyletic group. Among animals, several familiar groups are not, in fact, clades. The order Artiodactyla ( even-toed ungulates ) as traditionally defined is paraphyletic because it excludes Cetaceans (whales, dolphins, etc.). Under
448-629: Is rather arbitrary, since the character states of common ancestors are inferences, not observations. These terms were developed during the debates of the 1960s and 1970s accompanying the rise of cladistics . Paraphyletic groupings are considered problematic by many taxonomists, as it is not possible to talk precisely about their phylogenetic relationships, their characteristic traits and literal extinction. Related terms are stem group , chronospecies , budding cladogenesis, anagenesis, or 'grade' groupings. Paraphyletic groups are often relics from outdated hypotheses of phylogenic relationships from before
480-482: Is sometimes used for paraphyletic groups. Moreover, the concepts of monophyly , paraphyly, and polyphyly have been used in deducing key genes for barcoding of diverse group of species. Current phylogenetic hypotheses of tetrapod relationships imply that viviparity , the production of offspring without the external laying of a fertilized egg, developed independently in the lineages that led to humans ( Homo sapiens ) and southern water skinks ( Eulampus tympanum ,
512-503: The Cetacea (whales, dolphins, and porpoises) that the Artiodactyla are often studied in isolation even though the cetaceans are a descendant group. The prokaryote group is another example; it is paraphyletic because it is composed of two Domains (Eubacteria and Archaea) and excludes (the eukaryotes ). It is very useful because it has a clearly defined and significant distinction (absence of
544-569: The ICN ) abandoned consideration of bacterial nomenclature in 1975; currently, prokaryotic nomenclature is regulated under the ICNB with a starting date of 1 January 1980 (in contrast to a 1753 start date under the ICBN/ICN). Among plants, dicotyledons (in the traditional sense) are paraphyletic because the group excludes monocotyledons . "Dicotyledon" has not been used as a botanic classification for decades, but
576-638: The ants and bees . The sawflies ( Symphyta ) are similarly paraphyletic, forming all of the Hymenoptera except for the Apocrita, a clade deep within the sawfly tree. Crustaceans are not a clade because the Hexapoda (insects) are excluded. The modern clade that spans all of them is the Tetraconata . One of the goals of modern taxonomy over the past fifty years has been to eliminate paraphyletic "groups", such as
608-452: The clade from other organisms. An equivalent term is holophyly . The word "mono-phyly" means "one-tribe" in Greek. These definitions have taken some time to be accepted. When the cladistics school of thought became mainstream in the 1960s, several alternative definitions were in use. Indeed, taxonomists sometimes used terms without defining them, leading to confusion in the early literature,
640-480: The debates of the 1960s and 1970s accompanying the rise of cladistics , having been coined by zoologist Willi Hennig to apply to well-known taxa like Reptilia ( reptiles ), which is paraphyletic with respect to birds . Reptilia contains the last common ancestor of reptiles and all descendants of that ancestor except for birds. Other commonly recognized paraphyletic groups include fish , monkeys , and lizards . The term paraphyly , or paraphyletic , derives from
672-663: The dinosaur-like " Archaeornithes ", the various types of birds assigned to the Odontognathae had short tails with a plowshare -shaped pygostyle and a well developed carina for flight muscle. They also shared the feature of intramandibular articulation, something that is actually absent in Archaeopteryx , but found in many of its theropod relatives. The brains of the "odontognath" birds appear to be somewhat simpler than those of modern birds and have retained some "reptilian" traits. Ornithologist Alan Feduccia has used this, and
SECTION 20
#1733093535335704-450: The examples given here, from formal classifications. Species have a special status in systematics as being an observable feature of nature itself and as the basic unit of classification. Some articulations of the phylogenetic species concept require species to be monophyletic, but paraphyletic species are common in nature, to the extent that they do not have a single common ancestor. Indeed, for sexually reproducing taxa, no species has
736-473: The fact that a monophyletic group includes organisms consisting of all the descendants of a unique common ancestor. By comparison, the term polyphyly , or polyphyletic , uses the Ancient Greek prefix πολύς ( polús ), meaning "many, a lot of", and refers to the fact that a polyphyletic group includes organisms arising from multiple ancestral sources. Groups that include all the descendants of
768-416: The island of Taiwan . Monophyly In biological cladistics for the classification of organisms , monophyly is the condition of a taxonomic grouping being a clade – that is, a grouping of taxa which meets these criteria: Monophyly is contrasted with paraphyly and polyphyly as shown in the second diagram. A paraphyletic grouping meets 1. but not 2., thus consisting of the descendants of
800-605: The literature, and provides the corresponding monophyletic taxa. The concept of paraphyly has also been applied to historical linguistics , where the methods of cladistics have found some utility in comparing languages. For instance, the Formosan languages form a paraphyletic group of the Austronesian languages because they consist of the nine branches of the Austronesian family that are not Malayo-Polynesian and are restricted to
832-409: The name Neornithes is commonly used for the bird crown group , the Odontognathae being united with them the group Ornithurae . Paraphyletic Paraphyly is a taxonomic term describing a grouping that consists of the grouping's last common ancestor and some but not all of its descendant lineages. The grouping is said to be paraphyletic with respect to the excluded subgroups. In contrast,
864-462: The presence of the intramandibular articulation (a trait also found in mosasaurs and living varanid lizards ) as arguments that the Odontognathae and thus the birds as a whole have not evolved from theropod dinosaurs, but non-dinosaur thecodonts . This theory is contested by most paleontologists . Classically, Odontognathae was considered one of three superorders of Neornithes (modern birds) as opposed to Archaeornithes (the ancient birds). Today
896-675: The ranks of the ICZN Code , the two taxa are separate orders. Molecular studies, however, have shown that the Cetacea descend from artiodactyl ancestors, although the precise phylogeny within the order remains uncertain. Without the Cetaceans the Artiodactyls are paraphyletic. The class Reptilia is paraphyletic because it excludes birds (class Aves ). Under a traditional classification, these two taxa are separate classes. However birds are sister taxon to
928-563: The rise of cladistics. The prokaryotes (single-celled life forms without cell nuclei) are a paraphyletic grouping, because they exclude the eukaryotes , a descendant group. Bacteria and Archaea are prokaryotes, but archaea and eukaryotes share a common ancestor that is not ancestral to the bacteria. The prokaryote/eukaryote distinction was proposed by Edouard Chatton in 1937 and was generally accepted after being adopted by Roger Stanier and C.B. van Niel in 1962. The botanical code (the ICBN, now
960-460: The status of "groups", nor does it reify them with explanations, as in cladistics they are not seen as the actual products of evolutionary events. A group whose identifying features evolved convergently in two or more lineages is polyphyletic (Greek πολύς [ polys ], "many"). More broadly, any taxon that is not paraphyletic or monophyletic can be called polyphyletic. Empirically, the distinction between polyphyletic groups and paraphyletic groups
992-426: The two Ancient Greek words μόνος ( mónos ), meaning "alone, only, unique", and φῦλον ( phûlon ), meaning "genus, species", and refers to the fact that a monophyletic group includes organisms (e.g., genera, species) consisting of all the descendants of a unique common ancestor. Conversely, the term polyphyly , or polyphyletic , builds on the ancient Greek prefix πολύς ( polús ), meaning "many,
Odontognathae - Misplaced Pages Continue
1024-477: The two Ancient Greek words παρά ( pará ), meaning "beside, near", and φῦλον ( phûlon ), meaning "genus, species", and refers to the situation in which one or several monophyletic subgroups of organisms (e.g., genera, species) are left apart from all other descendants of a unique common ancestor. Conversely, the term monophyly , or monophyletic , builds on the Ancient Greek prefix μόνος ( mónos ), meaning "alone, only, unique", and refers to
#334665