Misplaced Pages

Now

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The present is the period of time that is occurring now. The present is contrasted with the past , the period of time that has already occurred, and the future , the period of time that has yet to occur.

#180819

79-411: Now most commonly refers to the present time. Now , NOW , or The Now may also refer to: Present It is sometimes represented as a hyperplane in space-time , typically called "now", although modern physics demonstrates that such a hyperplane cannot be defined uniquely for observers in relative motion. The present may also be viewed as a duration . Contemporary history describes

158-414: A − 3 {\displaystyle \rho \propto a^{-3}} , where a {\displaystyle a} is the scale factor . For ultrarelativistic particles ("radiation"), the energy density drops more sharply, as ρ ∝ a − 4 {\displaystyle \rho \propto a^{-4}} . This is because in addition to the volume dilution of

237-477: A cosmological constant in the simplest gravitational models, as a way to explain this late-time acceleration. According to the simplest extrapolation of the currently favored cosmological model, the Lambda-CDM model , this acceleration becomes dominant in the future. In 1912–1914, Vesto Slipher discovered that light from remote galaxies was redshifted , a phenomenon later interpreted as galaxies receding from

316-547: A Hubble constant of 73 ± 7 km⋅s ⋅Mpc . In 2003, David Spergel 's analysis of the cosmic microwave background during the first year observations of the Wilkinson Microwave Anisotropy Probe satellite (WMAP) further agreed with the estimated expansion rates for local galaxies, 72 ± 5 km⋅s ⋅Mpc . The universe at the largest scales is observed to be homogeneous (the same everywhere) and isotropic (the same in all directions), consistent with

395-529: A completion of its repairs related to the main mirror of the Hubble Space Telescope , allowing for sharper images and, consequently, more accurate analyses of its observations. Shortly after the repairs were made, Wendy Freedman 's 1994 Key Project analyzed the recession velocity of M100 from the core of the Virgo Cluster , offering a Hubble constant measurement of 80 ± 17 km⋅s ⋅Mpc . Later

474-414: A different associated light cone. One has to conclude that in relativistic models of physics there is no place for "the present" as an absolute element of reality, and only refers to things that are close to us. Einstein phrased this as: "People like us, who believe in physics, know that the distinction between past, present, and future is only a stubbornly persistent illusion" . In physical cosmology ,

553-464: A distance ct in a time t , as the red worldline illustrates. While it always moves locally at  c , its time in transit (about 13 billion years) is not related to the distance traveled in any simple way, since the universe expands as the light beam traverses space and time. The distance traveled is thus inherently ambiguous because of the changing scale of the universe. Nevertheless, there are two distances that appear to be physically meaningful:

632-404: A finite distance. The comoving distance that such particles can have covered over the age of the universe is known as the particle horizon , and the region of the universe that lies within our particle horizon is known as the observable universe . If the dark energy that is inferred to dominate the universe today is a cosmological constant, then the particle horizon converges to a finite value in

711-470: A given event, can not be in direct cause-effect relationship . Such collections of events are perceived differently by different observers. Instead, when focusing on "now" as the events perceived directly, not as a recollection or a speculation, for a given observer "now" takes the form of the observer's past light cone . The light cone of a given event is objectively defined as the collection of events in causal relationship to that event, but each event has

790-435: A non-zero Riemann curvature tensor in curvature of Riemannian manifolds . Euclidean "geometrically flat" space has a Riemann curvature tensor of zero. "Geometrically flat" space has three dimensions and is consistent with Euclidean space. However, spacetime has four dimensions; it is not flat according to Einstein's general theory of relativity. Einstein's theory postulates that "matter and energy curve spacetime, and there

869-433: A priori constraints) on how the space in which we live is connected or whether it wraps around on itself as a compact space . Though certain cosmological models such as Gödel's universe even permit bizarre worldlines that intersect with themselves, ultimately the question as to whether we are in something like a " Pac-Man universe", where if traveling far enough in one direction would allow one to simply end up back in

SECTION 10

#1732877180181

948-503: Is a disagreement between this measurement and the supernova-based measurements, known as the Hubble tension . A third option proposed recently is to use information from gravitational wave events (especially those involving the merger of neutron stars , like GW170817 ), to measure the expansion rate. Such measurements do not yet have the precision to resolve the Hubble tension. In principle,

1027-482: Is accelerating in the present epoch. By assuming a cosmological model, e.g. the Lambda-CDM model , another possibility is to infer the present-day expansion rate from the sizes of the largest fluctuations seen in the cosmic microwave background . A higher expansion rate would imply a smaller characteristic size of CMB fluctuations, and vice versa. The Planck collaboration measured the expansion rate this way and determined H 0 = 67.4 ± 0.5 (km/s)/Mpc . There

1106-443: Is enough matter and energy to provide for curvature." In part to accommodate such different geometries, the expansion of the universe is inherently general-relativistic. It cannot be modeled with special relativity alone: Though such models exist, they may be at fundamental odds with the observed interaction between matter and spacetime seen in the universe. The images to the right show two views of spacetime diagrams that show

1185-442: Is essentially pressureless, with | p | ≪ ρ c 2 {\displaystyle |p|\ll \rho c^{2}} , while a gas of ultrarelativistic particles (such as a photon gas ) has positive pressure p = ρ c 2 / 3 {\displaystyle p=\rho c^{2}/3} . Negative-pressure fluids, like dark energy, are not experimentally confirmed, but

1264-424: Is expanding. The words ' space ' and ' universe ', sometimes used interchangeably, have distinct meanings in this context. Here 'space' is a mathematical concept that stands for the three-dimensional manifold into which our respective positions are embedded, while 'universe' refers to everything that exists, including the matter and energy in space, the extra dimensions that may be wrapped up in various strings , and

1343-534: Is known. The object's distance can then be inferred from the observed apparent brightness . Meanwhile, the recession speed is measured through the redshift. Hubble used this approach for his original measurement of the expansion rate, by measuring the brightness of Cepheid variable stars and the redshifts of their host galaxies. More recently, using Type Ia supernovae , the expansion rate was measured to be H 0   =   73.24 ± 1.74 (km/s)/Mpc . This means that for every million parsecs of distance from

1422-538: Is often framed as a consequence of general relativity , it is also predicted by Newtonian gravity . According to inflation theory , the universe suddenly expanded during the inflationary epoch (about 10 of a second after the Big Bang), and its volume increased by a factor of at least 10 (an expansion of distance by a factor of at least 10 in each of the three dimensions). This would be equivalent to expanding an object 1  nanometer across ( 10  m , about half

1501-400: Is smaller in the past and larger in the future. Extrapolating back in time with certain cosmological models will yield a moment when the scale factor was zero; our current understanding of cosmology sets this time at 13.787 ± 0.020 billion years ago . If the universe continues to expand forever, the scale factor will approach infinity in the future. It is also possible in principle for

1580-584: Is the equation of state parameter . The energy density of such a fluid drops as Nonrelativistic matter has w = 0 {\displaystyle w=0} while radiation has w = 1 / 3 {\displaystyle w=1/3} . For an exotic fluid with negative pressure, like dark energy, the energy density drops more slowly; if w = − 1 {\displaystyle w=-1} it remains constant in time. If w < − 1 {\displaystyle w<-1} , corresponding to phantom energy ,

1659-417: Is the gravitational constant , ρ {\displaystyle \rho } is the energy density within the universe, p {\displaystyle p} is the pressure , c {\displaystyle c} is the speed of light , and Λ {\displaystyle \Lambda } is the cosmological constant. A positive energy density leads to deceleration of

SECTION 20

#1732877180181

1738-656: The accelerating expansion of the universe has removed the local supercluster beyond the cosmological horizon (at about 150 billion years). In radiocarbon dating , the "present" is defined as AD 1950 . In English grammar , actions are classified according to one of the following twelve verb tenses: past ( past , past continuous , past perfect , or past perfect continuous ), present (present, present continuous , present perfect , or present perfect continuous ), or future ( future , future continuous , future perfect , or future perfect continuous ). The present tense refers to things that are currently happening or are always

1817-491: The cosmological principle . These constraints demand that any expansion of the universe accord with Hubble's law , in which objects recede from each observer with velocities proportional to their positions with respect to that observer. That is, recession velocities v → {\displaystyle {\vec {v}}} scale with (observer-centered) positions x → {\displaystyle {\vec {x}}} according to where

1896-440: The equivalence principle of general relativity, the rules of special relativity are locally valid in small regions of spacetime that are approximately flat. In particular, light always travels locally at the speed  c ; in the diagram, this means, according to the convention of constructing spacetime diagrams, that light beams always make an angle of 45° with the local grid lines. It does not follow, however, that light travels

1975-431: The historical timeframe immediately relevant to the present time and is a certain perspective of modern history . You shouldn't chase after the past or place expectations on the future. What is past is left behind. The future is as yet unreached. Whatever quality is present you clearly see right there, right there. What we perceive as present is the vivid fringe of memory tinged with anticipation. "The present" raises

2054-418: The large-scale structure of the universe . Around 3 billion years ago, at a time of about 11 billion years, dark energy is believed to have begun to dominate the energy density of the universe. This transition came about because dark energy does not dilute as the universe expands, instead maintaining a constant energy density. Similarly to inflation, dark energy drives accelerated expansion, such that

2133-470: The Big Bang. During the matter-dominated epoch, cosmic expansion also decelerated, with the scale factor growing as the 2/3 power of the time ( a ∝ t 2 / 3 {\displaystyle a\propto t^{2/3}} ). Also, gravitational structure formation is most efficient when nonrelativistic matter dominates, and this epoch is responsible for the formation of galaxies and

2212-652: The Earth. In 1922, Alexander Friedmann used the Einstein field equations to provide theoretical evidence that the universe is expanding. Swedish astronomer Knut Lundmark was the first person to find observational evidence for expansion, in 1924. According to Ian Steer of the NASA/IPAC Extragalactic Database of Galaxy Distances, "Lundmark's extragalactic distance estimates were far more accurate than Hubble's, consistent with an expansion rate (Hubble constant) that

2291-401: The Hubble horizon are not dynamical, because gravitational influences do not have time to propagate across them, while perturbations much smaller than the Hubble horizon are straightforwardly governed by Newtonian gravitational dynamics . An object's peculiar velocity is its velocity with respect to the comoving coordinate grid, i.e., with respect to the average expansion-associated motion of

2370-418: The Hubble rate H {\displaystyle H} quantifies the rate of expansion. H {\displaystyle H} is a function of cosmic time . The expansion of the universe can be understood as a consequence of an initial impulse (possibly due to inflation ), which sent the contents of the universe flying apart. The mutual gravitational attraction of the matter and radiation within

2449-401: The case. For example, in the sentence, "she walks home everyday," the verb "walks" is in the present tense because it refers to an action that is regularly occurring in the present circumstances. Verbs in the present continuous tense indicate actions that are currently happening and will continue for a period of time. In the sentence, "she is walking home," the verb phrase "is walking" is in

Now - Misplaced Pages Continue

2528-457: The cosmic scale factor grew exponentially in time. In order to solve the horizon and flatness problems, inflation must have lasted long enough that the scale factor grew by at least a factor of e (about 10 ). The history of the universe after inflation but before a time of about 1 second is largely unknown. However, the universe is known to have been dominated by ultrarelativistic Standard Model particles, conventionally called radiation , by

2607-503: The cosmic expansion history can also be measured by studying how redshifts, distances, fluxes, angular positions, and angular sizes of astronomical objects change over the course of the time that they are being observed. These effects are too small to have yet been detected. However, changes in redshift or flux could be observed by the Square Kilometre Array or Extremely Large Telescope in the mid-2030s. At cosmological scales,

2686-456: The decay of particles' peculiar momenta, as discussed above. It can also be understood as adiabatic cooling . The temperature of ultrarelativistic fluids, often called "radiation" and including the cosmic microwave background , scales inversely with the scale factor (i.e. T ∝ a − 1 {\displaystyle T\propto a^{-1}} ). The temperature of nonrelativistic matter drops more sharply, scaling as

2765-400: The diagram on the right was to portray a 3-dimensional object having access to the past, present, and future in the present moment (4th dimension). It follows from Albert Einstein 's Special Theory of Relativity that there is no such thing as absolute simultaneity . When care is taken to operationalise "the present", it follows that the events that can be labeled as "simultaneous" with

2844-528: The distance between Earth and the quasar when the light was emitted, and the distance between them in the present era (taking a slice of the cone along the dimension defined as the spatial dimension). The former distance is about 4 billion light-years, much smaller than ct , whereas the latter distance (shown by the orange line) is about 28 billion light-years, much larger than  ct . In other words, if space were not expanding today, it would take 28 billion years for light to travel between Earth and

2923-416: The energy density grows as the universe expands. Inflation is a period of accelerated expansion hypothesized to have occurred at a time of around 10 seconds. It would have been driven by the inflaton , a field that has a positive-energy false vacuum state. Inflation was originally proposed to explain the absence of exotic relics predicted by grand unified theories , such as magnetic monopoles , because

3002-405: The evidence that leads to the inflationary model of the early universe also implies that the "total universe" is much larger than the observable universe. Thus any edges or exotic geometries or topologies would not be directly observable, since light has not reached scales on which such aspects of the universe, if they exist, are still allowed. For all intents and purposes, it is safe to assume that

3081-506: The existence of dark energy is inferred from astronomical observations. In an expanding universe, it is often useful to study the evolution of structure with the expansion of the universe factored out. This motivates the use of comoving coordinates , which are defined to grow proportionally with the scale factor. If an object is moving only with the Hubble flow of the expanding universe, with no other motion, then it remains stationary in comoving coordinates. The comoving coordinates are

3160-469: The expansion, a ¨ < 0 {\displaystyle {\ddot {a}}<0} , and a positive pressure further decelerates expansion. On the other hand, sufficiently negative pressure with p < − ρ c 2 / 3 {\displaystyle p<-\rho c^{2}/3} leads to accelerated expansion, and the cosmological constant also accelerates expansion. Nonrelativistic matter

3239-401: The first few billion years of its travel time, also indicating that the expansion of space between Earth and the quasar at the early time was faster than the speed of light. None of this behavior originates from a special property of metric expansion, but rather from local principles of special relativity integrated over a curved surface. Over time, the space that makes up the universe

Now - Misplaced Pages Continue

3318-442: The future without us being determined to do it) since at least Boethius . Thomas Aquinas offers the metaphor of a watchman, representing God, standing on a height looking down on a valley to a road where past, present and future, represented by the individuals and their actions strung out along its length, are all visible simultaneously to God. Therefore, God's knowledge is not tied to any particular date. The original intent of

3397-420: The future" over long distances. However, within general relativity , the shape of these comoving synchronous spatial surfaces is affected by gravity. Current observations are consistent with these spatial surfaces being geometrically flat (so that, for example, the angles of a triangle add up to 180 degrees). An expanding universe typically has a finite age. Light, and other particles, can have propagated only

3476-418: The infinite extent of the expanse. All that is certain is that the manifold of space in which we live simply has the property that the distances between objects are getting larger as time goes on. This only implies the simple observational consequences associated with the metric expansion explored below. No "outside" or embedding in hyperspace is required for an expansion to occur. The visualizations often seen of

3555-432: The infinite future. This implies that the amount of the universe that we will ever be able to observe is limited. Many systems exist whose light can never reach us, because there is a cosmic event horizon induced by the repulsive gravity of the dark energy. Within the study of the evolution of structure within the universe, a natural scale emerges, known as the Hubble horizon . Cosmological perturbations much larger than

3634-413: The inverse square of the scale factor (i.e. T ∝ a − 2 {\displaystyle T\propto a^{-2}} ). The contents of the universe dilute as it expands. The number of particles within a comoving volume remains fixed (on average), while the volume expands. For nonrelativistic matter, this implies that the energy density drops as ρ ∝

3713-409: The large-scale geometry of the universe according to the ΛCDM cosmological model. Two of the dimensions of space are omitted, leaving one dimension of space (the dimension that grows as the cone gets larger) and one of time (the dimension that proceeds "up" the cone's surface). The narrow circular end of the diagram corresponds to a cosmological time of 700 million years after the Big Bang, while

3792-545: The observer, recessional velocity of objects at that distance increases by about 73 kilometres per second (160,000 mph). Supernovae are observable at such great distances that the light travel time therefrom can approach the age of the universe. Consequently, they can be used to measure not only the present-day expansion rate but also the expansion history. In work that was awarded the 2011 Nobel Prize in Physics , supernova observations were used to determine that cosmic expansion

3871-423: The particle count, the energy of each particle (including the rest mass energy ) also drops significantly due to the decay of peculiar momenta. In general, we can consider a perfect fluid with pressure p = w ρ {\displaystyle p=w\rho } , where ρ {\displaystyle \rho } is the energy density. The parameter w {\displaystyle w}

3950-456: The past and is finished as of the current reference to the action. Finally, verbs in the present perfect continuous tense refer to actions that have been continuing up until the current time, thus combining the characteristics of both the continuous and perfect tenses. An example of a present perfect continuous verb phrase can be found in the sentence, "she has been walking this route for a week now," where "has been walking" indicates an action that

4029-416: The present continuous tense because it refers to a current action that will continue until a certain endpoint (when "she" reaches home). Verbs in the present perfect tense indicate actions that started in the past and is completed at the time of speaking. For example, in the sentence, "She has walked home," the verb phrase "has walked" is in the present perfect tense because it describes an action that began in

SECTION 50

#1732877180181

4108-435: The present era (less in the past and more in the future). The circular curling of the surface is an artifact of the embedding with no physical significance and is done for illustrative purposes; a flat universe does not curl back onto itself. (A similar effect can be seen in the tubular shape of the pseudosphere .) The brown line on the diagram is the worldline of Earth (or more precisely its location in space, even before it

4187-429: The present moment are the happiest. A number of meditative techniques aim to help the practiser live in the present moment. Christianity views God as being outside of time and, from the divine perspective past, present and future are actualized in the now of eternity . This trans-temporal conception of God has been proposed as a solution to the problem of divine foreknowledge (i.e. how can God know what we will do in

4266-489: The present time in the chronology of the universe is estimated at 13.8 billion years after the singularity determining the arrow of time . In terms of the cosmic expansion history , it is in the dark-energy-dominated era , after the universe's matter content has become diluted enough for dark energy to dominate the total energy density. It is also in the universe's Stelliferous Era , after enough time for superclusters to have formed (at about 5 billion years), but before

4345-416: The present universe conforms to Euclidean space , what cosmologists describe as geometrically flat , to within experimental error. Consequently, the rules of Euclidean geometry associated with Euclid's fifth postulate hold in the present universe in 3D space. It is, however, possible that the geometry of past 3D space could have been highly curved. The curvature of space is often modeled using

4424-418: The quasar, while if the expansion had stopped at the earlier time, it would have taken only 4 billion years. The light took much longer than 4 billion years to reach us though it was emitted from only 4 billion light-years away. In fact, the light emitted towards Earth was actually moving away from Earth when it was first emitted; the metric distance to Earth increased with cosmological time for

4503-646: The question: "How is it that all sentient beings experience now at the same time?" There is no logical reason why this should be the case and no easy answer to the question. Buddhism and many of its associated paradigms emphasize the importance of living in the present moment—being fully aware of what is happening, and not dwelling on the past or worrying about the future . This does not mean that they encourage hedonism , but merely that constant focus on one's current position in space and time (rather than future considerations, or past reminiscence) will aid one in relieving suffering. They teach that those who live in

4582-416: The rapid expansion would have diluted such relics. It was subsequently realized that the accelerated expansion would also solve the horizon problem and the flatness problem . Additionally, quantum fluctuations during inflation would have created initial variations in the density of the universe, which gravity later amplified to yield the observed spectrum of matter density variations . During inflation,

4661-477: The recession rates of cosmologically distant objects. Cosmic expansion is a key feature of Big Bang cosmology. It can be modeled mathematically with the Friedmann–Lemaître–Robertson–Walker metric (FLRW), where it corresponds to an increase in the scale of the spatial part of the universe's spacetime metric tensor (which governs the size and geometry of spacetime). Within this framework,

4740-563: The same place like going all the way around the surface of a balloon (or a planet like the Earth), is an observational question that is constrained as measurable or non-measurable by the universe's global geometry . At present, observations are consistent with the universe having infinite extent and being a simply connected space , though cosmological horizons limit our ability to distinguish between simple and more complicated proposals. The universe could be infinite in extent or it could be finite; but

4819-522: The same velocity as its own. More generally, the peculiar momenta of both relativistic and nonrelativistic particles decay in inverse proportion with the scale factor. For photons, this leads to the cosmological redshift . While the cosmological redshift is often explained as the stretching of photon wavelengths due to "expansion of space", it is more naturally viewed as a consequence of the Doppler effect . The universe cools as it expands. This follows from

SECTION 60

#1732877180181

4898-485: The same year, Adam Riess et al. used an empirical method of visual-band light-curve shapes to more finely estimate the luminosity of Type Ia supernovae . This further minimized the systematic measurement errors of the Hubble constant, to 67 ± 7 km⋅s ⋅Mpc . Reiss's measurements on the recession velocity of the nearby Virgo Cluster more closely agree with subsequent and independent analyses of Cepheid variable calibrations of Type Ia supernova , which estimates

4977-424: The scale factor grows exponentially in time. The most direct way to measure the expansion rate is to independently measure the recession velocities and the distances of distant objects, such as galaxies. The ratio between these quantities gives the Hubble rate, in accordance with Hubble's law. Typically, the distance is measured using a standard candle , which is an object or event for which the intrinsic brightness

5056-403: The separation of objects over time is associated with the expansion of space itself. However, this is not a generally covariant description but rather only a choice of coordinates . Contrary to common misconception, it is equally valid to adopt a description in which space does not expand and objects simply move apart while under the influence of their mutual gravity. Although cosmic expansion

5135-541: The size of the known universe in the 1940s, doubling the previous calculation made by Hubble in 1929. He announced this finding to considerable astonishment at the 1952 meeting of the International Astronomical Union in Rome. For most of the second half of the 20th century, the value of the Hubble constant was estimated to be between 50 and 90 km⋅s ⋅ Mpc . On 13 January 1994, NASA formally announced

5214-616: The spatial coordinates in the FLRW metric . The universe is a four-dimensional spacetime, but within a universe that obeys the cosmological principle, there is a natural choice of three-dimensional spatial surface. These are the surfaces on which observers who are stationary in comoving coordinates agree on the age of the universe . In a universe governed by special relativity , such surfaces would be hyperboloids , because relativistic time dilation means that rapidly receding distant observers' clocks are slowed, so that spatial surfaces must bend "into

5293-474: The surrounding material. It is a measure of how a particle's motion deviates from the Hubble flow of the expanding universe. The peculiar velocities of nonrelativistic particles decay as the universe expands, in inverse proportion with the cosmic scale factor . This can be understood as a self-sorting effect. A particle that is moving in some direction gradually overtakes the Hubble flow of cosmic expansion in that direction, asymptotically approaching material with

5372-413: The time of neutrino decoupling at about 1 second. During radiation domination, cosmic expansion decelerated, with the scale factor growing proportionally with the square root of the time. Since radiation redshifts as the universe expands, eventually nonrelativistic matter came to dominate the energy density of the universe. This transition happened at a time of about 50 thousand years after

5451-413: The time through which various events take place. The expansion of space is in reference to this 3D manifold only; that is, the description involves no structures such as extra dimensions or an exterior universe. The ultimate topology of space is a posteriori – something that in principle must be observed – as there are no constraints that can simply be reasoned out (in other words there cannot be any

5530-425: The universe expands "into" anything or that space exists "outside" it. To any observer in the universe, it appears that all but the nearest galaxies (which are bound to each other by gravity) move away at speeds that are proportional to their distance from the observer , on average. While objects cannot move faster than light , this limitation applies only with respect to local reference frames and does not limit

5609-415: The universe gradually slows this expansion over time, but expansion nevertheless continues due to momentum left over from the initial impulse. Also, certain exotic relativistic fluids , such as dark energy and inflation, exert gravitational repulsion in the cosmological context, which accelerates the expansion of the universe. A cosmological constant also has this effect. Mathematically, the expansion of

5688-462: The universe is infinite in spatial extent, without edge or strange connectedness. Regardless of the overall shape of the universe, the question of what the universe is expanding into is one that does not require an answer, according to the theories that describe the expansion; the way we define space in our universe in no way requires additional exterior space into which it can expand, since an expansion of an infinite expanse can happen without changing

5767-402: The universe is quantified by the scale factor , a {\displaystyle a} , which is proportional to the average separation between objects, such as galaxies. The scale factor is a function of time and is conventionally set to be a = 1 {\displaystyle a=1} at the present time. Because the universe is expanding, a {\displaystyle a}

5846-475: The universe to stop expanding and begin to contract, which corresponds to the scale factor decreasing in time. The scale factor a {\displaystyle a} is a parameter of the FLRW metric , and its time evolution is governed by the Friedmann equations . The second Friedmann equation, shows how the contents of the universe influence its expansion rate. Here, G {\displaystyle G}

5925-412: The wide end is a cosmological time of 18 billion years, where one can see the beginning of the accelerating expansion as a splaying outward of the spacetime, a feature that eventually dominates in this model. The purple grid lines mark cosmological time at intervals of one billion years from the Big Bang. The cyan grid lines mark comoving distance at intervals of one billion light-years in

6004-422: The width of a molecule of DNA ) to one approximately 10.6  light-years across (about 10  m , or 62 trillion miles). Cosmic expansion subsequently decelerated to much slower rates, until around 9.8 billion years after the Big Bang (4 billion years ago) it began to gradually expand more quickly , and is still doing so. Physicists have postulated the existence of dark energy , appearing as

6083-443: Was formed). The yellow line is the worldline of the most distant known quasar . The red line is the path of a light beam emitted by the quasar about 13 billion years ago and reaching Earth at the present day. The orange line shows the present-day distance between the quasar and Earth, about 28 billion light-years, which is a larger distance than the age of the universe multiplied by the speed of light,  ct . According to

6162-413: Was happening continuously in the past and continues to happen continuously in the present. [REDACTED] Quotations related to present at Wikiquote Expansion of the universe#Expansion history The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion, so it does not mean that

6241-533: Was within 1% of the best measurements today." In 1927, Georges Lemaître independently reached a similar conclusion to Friedmann on a theoretical basis, and also presented observational evidence for a linear relationship between distance to galaxies and their recessional velocity . Edwin Hubble observationally confirmed Lundmark's and Lemaître's findings in 1929. Assuming the cosmological principle , these findings would imply that all galaxies are moving away from each other. Astronomer Walter Baade recalculated

#180819