14°13′55″S 29°07′20″E / 14.231829°S 29.122092°E / -14.231829; 29.122092
45-544: Mita Hills Dam is an embankment dam with a hydroelectric power station and reservoir located near Kabwe , in the Central Province of Zambia . Construction of the dam began in 1955. The reservoir is approximately 30 km long by 3-5 km wide. Bream dominate the fish species in the lake. This article about a building or structure in Zambia is a stub . You can help Misplaced Pages by expanding it . This article about
90-407: A CMU wall having much greater lateral and tensile strength than unreinforced walls. "Architectural masonry is the evolvement of standard concrete masonry blocks into aesthetically pleasing concrete masonry units (CMUs)". CMUs can be manufactured to provide a variety of surface appearances. They can be colored during manufacturing or stained or painted after installation. They can be split as part of
135-418: A dam and the filling of the reservoir behind it places a new weight on the floor and sides of a valley. The stress of the water increases linearly with its depth. Water also pushes against the upstream face of the dam, a nonrigid structure that under stress behaves semiplastically, and causes greater need for adjustment (flexibility) near the base of the dam than at shallower water levels. Thus the stress level of
180-455: A dam, floodgate or canal in Africa is a stub . You can help Misplaced Pages by expanding it . Embankment dam An embankment dam is a large artificial dam . It is typically created by the placement and compaction of a complex semi- plastic mound of various compositions of soil or rock. It has a semi-pervious waterproof natural covering for its surface and a dense, impervious core. This makes
225-427: A darker color or an irregular shape. Others may use antique salvage bricks, or new bricks may be artificially aged by applying various surface treatments, such as tumbling. The attempts at rusticity of the late 20th century have been carried forward by masons specializing in a free, artistic style, where the courses are intentionally not straight, instead weaving to form more organic impressions. A crinkle-crankle wall
270-422: A drain layer to collect seep water. A zoned-earth dam has distinct parts or zones of dissimilar material, typically a shell of locally plentiful material with a watertight clay core. Modern zoned-earth embankments employ filter and drain zones to collect and remove seep water and preserve the integrity of the downstream shell zone. An outdated method of zoned earth dam construction used a hydraulic fill to produce
315-575: A masonry wall is not entirely dependent on the bond between the building material and the mortar; the friction between the interlocking blocks of masonry is often strong enough to provide a great deal of strength on its own. The blocks sometimes have grooves or other surface features added to enhance this interlocking, and some dry set masonry structures forgo mortar altogether. Stone blocks used in masonry can be dressed or rough, though in both examples corners, door and window jambs, and similar areas are usually dressed. Stonemasonry utilizing dressed stones
360-508: A non-staggered bond. The wide selection of brick styles and types generally available in industrialized nations allow much variety in the appearance of the final product. In buildings built during the 1950s-1970s, a high degree of uniformity of brick and accuracy in masonry was typical. In the period since then this style was thought to be too sterile, so attempts were made to emulate older, rougher work. Some brick surfaces are made to look particularly rustic by including burnt bricks, which have
405-408: A permanent colored facing (typically composed of polyester resins, silica sand and various other chemicals) to a concrete masonry unit, providing a smooth impervious surface." Glass block or glass brick are blocks made from glass and provide a translucent to clear vision through the block. A masonry veneer wall consists of masonry units, usually clay-based bricks, installed on one or both sides of
450-404: A small sustained overtopping flow can remove thousands of tons of overburden soil from the mass of the dam within hours. The removal of this mass unbalances the forces that stabilize the dam against its reservoir as the mass of water still impounded behind the dam presses against the lightened mass of the embankment, made lighter by surface erosion. As the mass of the dam erodes, the force exerted by
495-431: A structurally independent wall usually constructed of wood or masonry. In this context, the brick masonry is primarily decorative, not structural. The brick veneer is generally connected to the structural wall by brick ties (metal strips that are attached to the structural wall, as well as the mortar joints of the brick veneer). There is typically an air gap between the brick veneer and the structural wall. As clay-based brick
SECTION 10
#1733086194064540-686: A thick suspension of earth, rocks and water. Therefore, safety requirements for the spillway are high, and require it to be capable of containing a maximum flood stage. It is common for its specifications to be written such that it can contain at least a one-hundred-year flood. A number of embankment dam overtopping protection systems were developed in the early 21st century. These techniques include concrete overtopping protection systems, timber cribs , sheet-piles , riprap and gabions , Reinforced Earth , minimum energy loss weirs , embankment overflow stepped spillways , and precast concrete block protection systems. All dams are prone to seepage underneath
585-478: A wall of a given size. Furthermore, cinder and concrete blocks typically have much lower water absorption rates than brick. They often are used as the structural core for veneered brick masonry or are used alone for the walls of factories, garages, and other industrial-style buildings where such appearance is acceptable or desirable. Such blocks often receive a stucco surface for decoration. Surface-bonding cement , which contains synthetic fibers for reinforcement,
630-579: A watertight core. Rolled-earth dams may also employ a watertight facing or core in the manner of a rock-fill dam. The frozen-core dam is a temporary earth dam occasionally used in high latitudes by circulating a coolant through pipes inside the dam to maintain a watertight region of permafrost within it. Tarbela Dam is a large dam on the Indus River in Pakistan , about 50 km (31 mi) northwest of Islamabad . Its height of 485 ft (148 m) above
675-558: Is a brick wall that follows a serpentine path, rather than a straight line. This type of wall is more resistant to toppling than a straight wall; so much so that it may be made of a single wythe of unreinforced brick and so despite its longer length may be more economical than a straight wall. Blocks of cinder concrete ( cinder blocks or breezeblocks ), ordinary concrete ( concrete blocks ), or hollow tile are generically known as Concrete Masonry Units (CMUs). They usually are much larger than ordinary bricks and so are much faster to lay for
720-421: Is blasted using explosives to break the rock. Additionally, the rock pieces may need to be crushed into smaller grades to get the right range of size for use in an embankment dam. Earth-fill dams, also called earthen dams, rolled-earth dams or earth dams, are constructed as a simple embankment of well-compacted earth. A homogeneous rolled-earth dam is entirely constructed of one type of material but may contain
765-420: Is generally a highly durable form of construction. However, the materials used, the quality of the mortar and workmanship, and the pattern in which the units are assembled can substantially affect the durability of the overall masonry construction. A person who constructs masonry is called a mason or bricklayer . These are both classified as construction trades . Masonry is one of the oldest building crafts in
810-456: Is known as ashlar masonry, whereas masonry using irregularly shaped stones is known as rubble masonry . Both rubble and ashlar masonry can be laid in coursed rows of even height through the careful selection or cutting of stones, but a great deal of stone masonry is uncoursed. Solid brickwork is made of two or more wythes of bricks with the units running horizontally (called stretcher bricks) bound together with bricks running transverse to
855-549: Is only as long as the wire they are composed of and if used in severe climates (such as shore-side in a salt water environment) must be made of appropriate corrosion-resistant wire. Most modern gabions are rectangular. Earlier gabions were often cylindrical wicker baskets, open at both ends, used usually for temporary, often military, construction. Similar work can be done with finer aggregates using cellular confinement . Masonry walls have an endothermic effect of its hydrates , as in chemically bound water , unbound moisture from
900-717: Is sometimes used in this application and can impart extra strength to a block wall. Surface-bonding cement is often pre-colored and can be stained or painted thus resulting in a finished stucco-like surface. The primary structural advantage of concrete blocks in comparison to smaller clay-based bricks is that a CMU wall can be reinforced by filling the block voids with concrete with or without steel rebar . Generally, certain voids are designated for filling and reinforcement, particularly at corners, wall-ends, and openings while other voids are left empty. This increases wall strength and stability more economically than filling and reinforcing all voids. Typically, structures made of CMUs will have
945-496: Is usually not completely waterproof, the structural wall will often have a water-resistant surface (usually tar paper ) and weep holes can be left at the base of the brick veneer to drain moisture that accumulates inside the air gap. Concrete blocks, real and cultured stones , and veneer adobe are sometimes used in a very similar veneer fashion. Most insulated buildings that use concrete block, brick, adobe, stone, veneers or some combination thereof feature interior insulation in
SECTION 20
#1733086194064990-417: The rock-filled dam . A cross-section of an embankment dam shows a shape like a bank, or hill. Most have a central section or core composed of an impermeable material to stop water from seeping through the dam. The core can be of clay, concrete, or asphalt concrete . This type of dam is a good choice for sites with wide valleys. They can be built on hard rock or softer soils. For a rock-fill dam, rock-fill
1035-527: The U.S. Bureau of Reclamation Masonry Masonry is the craft of building a structure with brick, stone, or similar material, including mortar plastering which are often laid in, bound, and pasted together by mortar . The term masonry can also refer to the building units (stone, brick, etc.) themselves. The common materials of masonry construction are bricks and building stone , rocks such as marble , granite , and limestone , cast stone , concrete blocks , glass blocks , and adobe . Masonry
1080-616: The asphalt make such dams especially suited to earthquake regions. For the Moglicë Hydro Power Plant in Albania the Norwegian power company Statkraft built an asphalt-core rock-fill dam. Upon completion in 2018 the 320 m long, 150 m high and 460 m wide dam is anticipated to be the world's highest of its kind. A concrete-face rock-fill dam (CFRD) is a rock-fill dam with concrete slabs on its upstream face. This design provides
1125-534: The concrete block, and the poured concrete if the hollow cores inside the blocks are filled. Masonry can withstand temperatures up to 1,000 °F (538 °C) and it can withstand direct exposure to fire for up to 4 hours. In addition to that, concrete masonry keeps fires contained to their room of origin 93% of the time. For those reasons, concrete and masonry units hold the highest flame spread index classification, Class A. Fire cuts can be used to increase safety and reduce fire damage to masonry buildings. From
1170-536: The concrete slab as an impervious wall to prevent leakage and also a structure without concern for uplift pressure. In addition, the CFRD design is flexible for topography, faster to construct and less costly than earth-fill dams. The CFRD concept originated during the California Gold Rush in the 1860s when miners constructed rock-fill timber-face dams for sluice operations . The timber was later replaced by concrete as
1215-406: The core is separated using a filter. Filters are specifically graded soil designed to prevent the migration of fine grain soil particles. When suitable building material is at hand, transport is minimized, leading to cost savings during construction. Rock-fill dams are resistant to damage from earthquakes . However, inadequate quality control during construction can lead to poor compaction and sand in
1260-648: The cores remain unfilled. Filling some or all of the cores with concrete or concrete with steel reinforcement (typically rebar ) offers much greater tensile and lateral strength to structures. One problem with masonry walls is that they rely mainly on their weight to keep them in place; each block or brick is only loosely connected to the next via a thin layer of mortar. This is why they do not perform well in earthquakes, when entire buildings are shaken horizontally. Many collapses during earthquakes occur in buildings that have load-bearing masonry walls. Besides, heavier buildings having masonry suffer more damage. The strength of
1305-401: The dam impervious to surface or seepage erosion . Such a dam is composed of fragmented independent material particles. The friction and interaction of particles binds the particles together into a stable mass rather than by the use of a cementing substance. Embankment dams come in two types: the earth-filled dam (also called an earthen dam or terrain dam ) made of compacted earth, and
1350-406: The dam must be calculated in advance of building to ensure that its break level threshold is not exceeded. Overtopping or overflow of an embankment dam beyond its spillway capacity will cause its eventual failure . The erosion of the dam's material by overtopping runoff will remove masses of material whose weight holds the dam in place and against the hydraulic forces acting to move the dam. Even
1395-486: The dam, but embankment dams are prone to seepage through the dam as well; for example, the Usoi landslide dam leaks 35-80 cubic meters per second. Sufficiently fast seepage can dislodge a dam's component particles, which results in faster seepage, which turns into a runaway feedback loop that can destroy the dam in a piping-type failure. Seepage monitoring is therefore an essential safety consideration. gn and Construction in
Mita Hills Dam - Misplaced Pages Continue
1440-452: The design was applied to irrigation and power schemes. As CFRD designs grew in height during the 1960s, the fill was compacted and the slab's horizontal and vertical joints were replaced with improved vertical joints. In the last few decades, design has become popular. The tallest CFRD in the world is the 233 m-tall (764 ft) Shuibuya Dam in China , completed in 2008. The building of
1485-566: The embankment which can lead to liquefaction of the rock-fill during an earthquake. Liquefaction potential can be reduced by keeping susceptible material from being saturated, and by providing adequate compaction during construction. An example of a rock-fill dam is New Melones Dam in California or the Fierza Dam in Albania . A core that is growing in popularity is asphalt concrete . The majority of such dams are built with rock and/or gravel as
1530-411: The form of fiberglass batts between wooden wall studs or in the form of rigid insulation boards covered with plaster or drywall . In most climates this insulation is much more effective on the exterior of the wall, allowing the building interior to take advantage of the aforementioned thermal mass of the masonry. This technique does, however, require some sort of weather-resistant exterior surface over
1575-464: The insulation and, consequently, is generally more expensive. Gabions are baskets, usually now of zinc -protected steel ( galvanized steel ) that are filled with fractured stone of medium size. These will act as a single unit and are stacked with setbacks to form a revetment or retaining wall . They have the advantage of being well drained, flexible, and resistant to flood, water flow from above, frost damage, and soil flow. Their expected useful life
1620-457: The manufacturing process, giving the blocks a rough face replicating the appearance of natural stone, such as brownstone . CMUs may also be scored, ribbed, sandblasted, polished, striated (raked or brushed), include decorative aggregates, be allowed to slump in a controlled fashion during curing, or include several of these techniques in their manufacture to provide a decorative appearance. "Glazed concrete masonry units are manufactured by bonding
1665-424: The primary fill. Almost 100 dams of this design have now been built worldwide since the first such dam was completed in 1962. All asphalt-concrete core dams built so far have an excellent performance record. The type of asphalt used is a viscoelastic - plastic material that can adjust to the movements and deformations imposed on the embankment as a whole, and to settlement of the foundation. The flexible properties of
1710-501: The reservoir begins to move the entire structure. The embankment, having almost no elastic strength, would begin to break into separate pieces, allowing the impounded reservoir water to flow between them, eroding and removing even more material as it passes through. In the final stages of failure, the remaining pieces of the embankment would offer almost no resistance to the flow of the water and continue to fracture into smaller and smaller sections of earth or rock until they disintegrate into
1755-399: The river bed and 95 sq mi (250 km ) reservoir make it the largest earth-filled dam in the world. The principal element of the project is an embankment 9,000 feet (2,700 m) long with a maximum height of 465 feet (142 m). The dam used approximately 200 million cubic yards (152.8 million cu. meters) of fill, which makes it one of the largest man-made structures in
1800-730: The tension force present in modern thin, light, tall building systems. Masonry has both structural and non-structural applications. Structural applications include walls, columns, beams, foundations, load-bearing arches, and others. On the other hand, masonry is also used in non-structural applications such as fireplaces chimneys and veneer systems. Brick and concrete block are the most common types of masonry in use in industrialized nations and may be either load-bearing or non-load-bearing. Concrete blocks, especially those with hollow cores, offer various possibilities in masonry construction. They generally provide great compressive strength and are best suited to structures with light transverse loading when
1845-410: The top course of blocks in the walls filled with concrete and tied together with steel reinforcement to form a bond beam. Bond beams are often a requirement of modern building codes and controls. Another type of steel reinforcement referred to as ladder-reinforcement , can also be embedded in horizontal mortar joints of concrete block walls. The introduction of steel reinforcement generally results in
Mita Hills Dam - Misplaced Pages Continue
1890-404: The upstream face and made of masonry , concrete , plastic membrane, steel sheet piles, timber or other material. The impervious zone may also be inside the embankment, in which case it is referred to as a "core". In the instances where clay is used as the impervious material, the dam is referred to as a "composite" dam. To prevent internal erosion of clay into the rock fill due to seepage forces,
1935-587: The wall (called "header" bricks). Each row of bricks is known as a course. The pattern of headers and stretchers employed gives rise to different 'bonds' such as the common bond (with every sixth course composed of headers), the English bond, and the Flemish bond (with alternating stretcher and header bricks present on every course). Bonds can differ in strength and in insulating ability. Vertically staggered bonds tend to be somewhat stronger and less prone to major cracking than
1980-414: The world. Because earthen dams can be constructed from local materials, they can be cost-effective in regions where the cost of producing or bringing in concrete would be prohibitive. Rock -fill dams are embankments of compacted free-draining granular earth with an impervious zone. The earth used often contains a high percentage of large particles, hence the term "rock-fill". The impervious zone may be on
2025-413: The world. The construction of Egyptian pyramids, Roman aqueducts, and medieval cathedrals are all examples of masonry. Early structures used the weight of the masonry itself to stabilize the structure against lateral movements. The types and techniques of masonry used evolved with architectural needs and cultural norms. Since mid-20th century, masonry has often featured steel-reinforced elements to help carry
#63936